Effects of Dietary Nitrate Supplementation on High-Intensity Cycling Sprint Performance in Recreationally Active Adults: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy and Study Selection
2.2. Quality Assessment
2.3. Data Extraction
2.4. Meta-Analyses
2.4.1. Heterogeneity Assessment
2.4.2. Subgroup Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Quality Assessment
3.4. Publication Bias
3.5. Meta-Analysis
3.5.1. Mean Power Output
3.5.2. Peak Power Output
3.5.3. Time-to-Peak Power
3.5.4. Minimum Power Output
3.5.5. Subgroup Analyses: Mean Power Output
3.5.6. Subgroup Analyses: Peak Power Output
3.5.7. Subgroup Analyses: Time-to-Peak Power
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abbiss, C.R.; Peiffer, J.J.; Laursen, P.B. Optimal Cadence Selection during Cycling: Review Article. Int. SportMed J. 2009, 10, 1–15. [Google Scholar] [CrossRef]
- de Koning, J.J.; Bobbert, M.F.; Foster, C. Determination of Optimal Pacing Strategy in Track Cycling with an Energy Flow Model. J. Sci. Med. Sport 1999, 2, 266–277. [Google Scholar] [CrossRef]
- Abbiss, C.R.; Laursen, P.B. Describing and Understanding Pacing Strategies during Athletic Competition. Sports Med. 2008, 38, 239–252. [Google Scholar] [CrossRef]
- Liedl, M.A.; Swain, D.P.; Branch, J.D. Physiological Effects of Constant versus Variable Power during Endurance Cycling. Med. Sci. Sports Exerc. 1999, 31, 1472–1477. [Google Scholar] [CrossRef]
- Martin, J.C.; Davidson, C.J.; Pardyjak, E.R. Understanding Sprint-Cycling Performance: The Integration of Muscle Power, Resistance, and Modeling. Int. J. Sports Physiol. Perform. 2007, 2, 5–21. [Google Scholar] [CrossRef] [PubMed]
- MacInnis, M.J.; Gibala, M.J. Physiological Adaptations to Interval Training and the Role of Exercise Intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; Van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term Sprint Interval versus Traditional Endurance Training: Similar Initial Adaptations in Human Skeletal Muscle and Exercise Performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef]
- Rokkedal-Lausch, T.; Franch, J.; Poulsen, M.K.; Thomsen, L.P.; Weitzberg, E.; Kamavuako, E.N.; Karbing, D.S.; Larsen, R.G. Chronic High-Dose Beetroot Juice Supplementation Improves Time Trial Performance of Well-Trained Cyclists in Normoxia and Hypoxia. Nitric Oxide—Biol. Chem. 2019, 85, 44–52. [Google Scholar] [CrossRef]
- Coates, A.M.; Joyner, M.J.; Little, J.P.; Jones, A.M.; Gibala, M.J. A Perspective on High-Intensity Interval Training for Performance and Health. Sports Med. 2023, 53, 85–96. [Google Scholar] [CrossRef]
- MacDougall, J.D.; Hicks, A.L.; MacDonald, J.R.; McKelvie, R.S.; Green, H.J.; Smith, K.M. Muscle Performance and Enzymatic Adaptations to Sprint Interval Training. J. Appl. Physiol. 1998, 84, 2138–2142. [Google Scholar] [CrossRef]
- Castañeda-Babarro, A. The Wingate Anaerobic Test, a Narrative Review of the Protocol Variables That Affect the Results Obtained. Appl. Sci. 2021, 11, 7417. [Google Scholar] [CrossRef]
- Hall, A.J.; Aspe, R.R.; Craig, T.P.; Kavaliauskas, M.; Babraj, J.; Swinton, P.A. The Effects of Sprint Interval Training on Physical Performance: A Systematic Review and Meta-Analysis. J. Strength Cond. Res. 2023, 37, 457–481. [Google Scholar] [CrossRef] [PubMed]
- Burgomaster, K.A.; Heigenhauser, G.J.F.; Gibala, M.J. Effect of Short-Term Sprint Interval Training on Human Skeletal Muscle Carbohydrate Metabolism during Exercise and Time-Trial Performance. J. Appl. Physiol. 2006, 100, 2041–2047. [Google Scholar] [CrossRef]
- Richard Davison, R.C.; Swan, D.; Coleman, D.; Bird, S. Correlates of Simulated Hill Climb Cycling Performance. J. Sports Sci. 2000, 18, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Farland, C.V.; Guidotti, F.; Harbin, M.; Roberts, B.; Schuette, J.; Tuuri, A.; Doberstein, S.T.; Porcari, J.P. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity. J. Sports Sci. Med. 2015, 14, 747–755. [Google Scholar] [PubMed]
- Ko, D.-H.; Choi, Y.-C.; Lee, D.-S. The Effect of Short-Term Wingate-Based High Intensity Interval Training on Anaerobic Power and Isokinetic Muscle Function in Adolescent Badminton Players. Children 2021, 8, 458. [Google Scholar] [CrossRef] [PubMed]
- Sirotic, A.C.; Coutts, A.J. Physiological and Performance Test Correlates of Prolonged, High-Intensity, Intermittent Running Performance in Moderately Trained Women Team Sport Athletes. J. Strength Cond. Res. 2007, 21, 138–144. [Google Scholar] [CrossRef]
- Zagatto, A.M.; Beck, W.R.; Gobatto, C.A. Validity of the Running Anaerobic Sprint Test for Assessing Anaerobic Power and Predicting Short-Distance Performances. J. Strength Cond. Res. 2009, 23, 1820–1827. [Google Scholar] [CrossRef]
- Inoue, A.; Sá Filho, A.S.; Mello, F.C.M.; Santos, T.M. Relationship between Anaerobic Cycling Tests and Mountain Bike Cross-Country Performance. J. Strength Cond. Res. 2012, 26, 1589–1593. [Google Scholar] [CrossRef]
- Senefeld, J.W.; Wiggins, C.C.; Regimbal, R.J.; Dominelli, P.B.; Baker, S.E.; Joyner, M.J. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-Analysis. Med. Sci. Sports Exerc. 2020, 52, 2250–2261. [Google Scholar] [CrossRef]
- Hernández, A.; Schiffer, T.A.; Ivarsson, N.; Cheng, A.J.; Bruton, J.D.; Lundberg, J.O.; Weitzberg, E.; Westerblad, H. Dietary Nitrate Increases Tetanic [Ca2+]i and Contractile Force in Mouse Fast-Twitch Muscle. J. Physiol. 2012, 590, 3575–3583. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Gandra, P.G.; Jones, A.M.; Hogan, M.C.; Nogueira, L. Incubation with Sodium Nitrite Attenuates Fatigue Development in Intact Single Mouse Fibres at Physiological PO2. J. Physiol. 2019, 597, 5429–5443. [Google Scholar] [CrossRef]
- Bailey, S.J.; Fulford, J.; Vanhatalo, A.; Winyard, P.G.; Blackwell, J.R.; DiMenna, F.J.; Wilkerson, D.P.; Benjamin, N.; Jones, A.M. Dietary Nitrate Supplementation Enhances Muscle Contractile Efficiency during Knee-Extensor Exercise in Humans. J. Appl. Physiol. 2010, 109, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.K.; Hirai, D.M.; Copp, S.W.; Holdsworth, C.T.; Allen, J.D.; Jones, A.M.; Musch, T.I.; Poole, D.C. Impact of Dietary Nitrate Supplementation via Beetroot Juice on Exercising Muscle Vascular Control in Rats. J. Physiol. 2013, 591, 547–557. [Google Scholar] [CrossRef]
- Breese, B.C.; McNarry, M.A.; Marwood, S.; Blackwell, J.R.; Bailey, S.J.; Jones, A.M. Beetroot Juice Supplementation Speeds O2 Uptake Kinetics and Improves Exercise Tolerance during Severe-Intensity Exercise Initiated from an Elevated Metabolic Rate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013, 305, R1441–R1450. [Google Scholar] [CrossRef]
- Coggan, A.R.; Peterson, L.R. Dietary Nitrate Enhances the Contractile Properties of Human Skeletal Muscle. Exerc. Sport Sci. Rev. 2018, 46, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Abu-Alghayth, M.; Vanhatalo, A.; Wylie, L.J.; McDonagh, S.T.J.; Thompson, C.; Kadach, S.; Kerr, P.; Smallwood, M.J.; Jones, A.M.; Winyard, P.G. S-Nitrosothiols, and Other Products of Nitrate Metabolism, Are Increased in Multiple Human Blood Compartments Following Ingestion of Beetroot Juice. Redox Biol. 2021, 43, 101974. [Google Scholar] [CrossRef]
- Wei, C.; Vanhatalo, A.; Black, M.I.; Blackwell, J.R.; Rajaram, R.; Kadach, S.; Jones, A.M. Relationships between Nitric Oxide Biomarkers and Physiological Outcomes Following Dietary Nitrate Supplementation. Nitric Oxide Biol. Chem. 2024, 148, 23–33. [Google Scholar] [CrossRef]
- Alsharif, N.S.; Clifford, T.; Alhebshi, A.; Rowland, S.N.; Bailey, S.J. Effects of Dietary Nitrate Supplementation on Performance during Single and Repeated Bouts of Short-Duration High-Intensity Exercise: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Antioxidants 2023, 12, 1194. [Google Scholar] [CrossRef]
- Tan, R.; Baranauskas, M.N.; Karl, S.T.; Ortiz de Zevallos, J.; Shei, R.-J.; Paris, H.L.; Wiggins, C.C.; Bailey, S.J. Effects of Dietary Nitrate Supplementation on Peak Power Output: Influence of Supplementation Strategy and Population. Nitric Oxide 2023, 138–139, 105–119. [Google Scholar] [CrossRef]
- Hofman, N.; Orie, J.; Hoozemans, M.J.M.; Foster, C.; De Koning, J.J. Wingate Test as a Strong Predictor of 1500-m Performance in Elite Speed Skaters. Int. J. Sports Physiol. Perform. 2017, 12, 1288–1292. [Google Scholar] [CrossRef] [PubMed]
- Maciejewski, H.; Rahmani, A.; Chorin, F.; Lardy, J.; Giroux, C.; Ratel, S. The 1,500-m Rowing Performance Is Highly Dependent on Modified Wingate Anaerobic Test Performance in National-Level Adolescent Rowers. Pediatr. Exerc. Sci. 2016, 28, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Brunnhuber, K.; Chalkidou, K.; Chalmers, I.; Clarke, M.; Fenton, M.; Forbes, C.; Glanville, J.; Hicks, N.J.; Moody, J.; et al. How to Formulate Research Recommendations. BMJ 2006, 333, 804–806. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.-Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Smart, N.A.; Waldron, M.; Ismail, H.; Giallauria, F.; Vigorito, C.; Cornelissen, V.; Dieberg, G. Validation of a New Tool for the Assessment of Study Quality and Reporting in Exercise Training Studies: TESTEX. Int. J. Evid. Based Healthc. 2015, 13, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Hedges, L.V. Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Intervention. Version 5.1.0 (Updated March 2011); The Cochrane Collaboration: London, UK, 2011. [Google Scholar]
- Jonvik, K.L.; Nyakayiru, J.; Van Dijk, J.W.; Maase, K.; Ballak, S.B.; Senden, J.M.G.; Van Loon, L.J.C.; Verdijk, L.B. Repeated-Sprint Performance and Plasma Responses Following Beetroot Juice Supplementation Do Not Differ between Recreational, Competitive and Elite Sprint Athletes. Eur. J. Sport Sci. 2018, 18, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Rimer, E.G.; Peterson, L.R.; Coggan, A.R.; Martin, J.C. Increase in Maximal Cycling Power with Acute Dietary Nitrate Supplementation. Int. J. Sports Physiol. Perform. 2016, 11, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Finkel, A.; Röhrich, M.A.; Maassen, N.; Lützow, M.; Blau, L.S.; Hanff, E.; Tsikas, D.; Maassen, M. Long-Term Effects of NO3- on the Relationship between Oxygen Uptake and Power after Three Weeks of Supplemented HIHVT. J. Appl. Physiol. 2018, 125, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Jodra, P.; Domínguez, R.; Sánchez-Oliver, A.J.; Veiga-Herreros, P.; Bailey, S.J. Effect of Beetroot Juice Supplementation on Mood, Perceived Exertion, and Performance During a 30-Second Wingate Test. Int. J. Sports Physiol. Perform. 2020, 15, 243–248. [Google Scholar] [CrossRef]
- Aydin, O.; Yassikaya, M.Y. Validity and Reliability Analysis of the PlotDigitizer Software Program for Data Extraction from Single-Case Graphs. Perspect. Behav. Sci. 2022, 45, 239–257. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally Estimating the Sample Mean from the Sample Size, Median, Mid-Range, and/or Mid-Quartile Range. Stat. Methods Med. Res. 2018, 27, 1785–1805. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range and/or Interquartile Range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- Cuenca, E.; Jodra, P.; Pérez-López, A.; González-Rodríguez, L.G.; Fernandes da Silva, S.; Veiga-Herreros, P.; Domínguez, R. Effects of Beetroot Juice Supplementation on Performance and Fatigue in a 30-s All-Out Sprint Exercise: A Randomized, Double-Blind Cross-Over Study. Nutrients 2018, 10, 1222. [Google Scholar] [CrossRef]
- Domínguez, R.; Garnacho-Castaño, M.V.; Cuenca, E.; García-Fernández, P.; Muñoz-González, A.; de Jesús, F.; Lozano-Estevan, M.D.C.; Fernandes da Silva, S.; Veiga-Herreros, P.; Maté-Muñoz, J.L. Effects of Beetroot Juice Supplementation on a 30-s High-Intensity Inertial Cycle Ergometer Test. Nutrients 2017, 9, 1360. [Google Scholar] [CrossRef]
- Wylie, L.J.; Bailey, S.J.; Kelly, J.; Blackwell, J.R.; Vanhatalo, A.; Jones, A.M. Influence of Beetroot Juice Supplementation on Intermittent Exercise Performance. Eur. J. Appl. Physiol. 2016, 116, 415–425. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Sutton, A.J.; Ioannidis, J.P.A.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for Examining and Interpreting Funnel Plot Asymmetry in Meta-Analyses of Randomised Controlled Trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Tang, J.L.; Liu, J.L. Misleading Funnel Plot for Detection of Bias in Meta-Analysis. J. Clin. Epidemiol. 2000, 53, 477–484. [Google Scholar] [CrossRef]
- Campos, H.O.; Drummond, L.R.; Rodrigues, Q.T.; Machado, F.S.M.; Pires, W.; Wanner, S.P.; Coimbra, C.C. Nitrate Supplementation Improves Physical Performance Specifically in Non-Athletes during Prolonged Open-Ended Tests: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2018, 119, 636–657. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Gupta, S.; Adli, T.; Hou, W.; Coolsaet, R.; Hayes, A.; Kim, K.; Pandey, A.; Gordon, J.; Chahil, G.; et al. The Effects of Dietary Nitrate Supplementation on Endurance Exercise Performance and Cardiorespiratory Measures in Healthy Adults: A Systematic Review and Meta-Analysis. J. Int. Soc. Sports Nutr. 2021, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Hoon, M.W.; Hopkins, W.G.; Jones, A.M.; Martin, D.T.; Halson, S.L.; West, N.P.; Johnson, N.A.; Burke, L.M. Nitrate Supplementation and High-Intensity Performance in Competitive Cyclists. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2014, 39, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- McMahon, N.F.; Leveritt, M.D.; Pavey, T.G. The Effect of Dietary Nitrate Supplementation on Endurance Exercise Performance in Healthy Adults: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 735–756. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L.; Withers, R.T.; Brose, G.; Maxwell, B.D.; Costill, D.L. Isokinetic Contractile Properties of the Quadriceps with Relation to Fiber Type. Eur. J. Appl. Physiol. 1981, 47, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, O.; Dotan, R.; Inbar, O.; Rothstein, A.; Karlsson, J.; Tesch, P. Anaerobic Capacity and Muscle Fiber Type Distribution in Man. Int. J. Sports Med. 1980, 1, 82–85. [Google Scholar] [CrossRef]
- Bailey, S.J.; Varnham, R.L.; DiMenna, F.J.; Breese, B.C.; Wylie, L.J.; Jones, A.M. Inorganic Nitrate Supplementation Improves Muscle Oxygenation, O2 Uptake Kinetics, and Exercise Tolerance at High but Not Low Pedal Rates. J. Appl. Physiol. 2015, 118, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Esbjörnsson-Liljedahl, M.; Sundberg, C.J.; Norman, B.; Jansson, E. Metabolic Response in Type I and Type II Muscle Fibers during a 30-s Cycle Sprint in Men and Women. J. Appl. Physiol. 1999, 87, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- Coggan, A.R.; Leibowitz, J.L.; Kadkhodayan, A.; Thomas, D.P.; Ramamurthy, S.; Spearie, C.A.; Waller, S.; Farmer, M.; Peterson, L.R. Effect of Acute Dietary Nitrate Intake on Maximal Knee Extensor Speed and Power in Healthy Men and Women. Nitric Oxide Biol. Chem. 2015, 48, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Aucouturier, J.; Boissière, J.; Pawlak-Chaouch, M.; Cuvelier, G.; Gamelin, F.-X. Effect of Dietary Nitrate Supplementation on Tolerance to Supramaximal Intensity Intermittent Exercise. Nitric Oxide—Biol. Chem. 2015, 49, 16–25. [Google Scholar] [CrossRef]
- Christensen, P.M.; Nyberg, M.; Bangsbo, J. Influence of Nitrate Supplementation on VO2 Kinetics and Endurance of Elite Cyclists. Scand. J. Med. Sci. Sports 2013, 23, e21–e31. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Pugliese, L.; Rejc, E.; Pavei, G.; Bonato, M.; Montorsi, M.; La Torre, A.; Rasica, L.; Marzorati, M. Effects of a Short-Term High-Nitrate Diet on Exercise Performance. Nutrients 2016, 8, 534. [Google Scholar] [CrossRef]
- Silva, K.V.C.; Costa, B.D.; Gomes, A.C.; Saunders, B.; Mota, J.F. Factors That Moderate the Effect of Nitrate Ingestion on Exercise Performance in Adults: A Systematic Review with Meta-Analyses and Meta-Regressions. Adv. Nutr. 2022, 13, 1866–1881. [Google Scholar] [CrossRef] [PubMed]
- Hogwood, A.C.; Ortiz de Zevallos, J.; Kruse, K.; De Guzman, J.; Buckley, M.; Weltman, A.; Allen, J.D. The Effects of Inorganic Nitrate Supplementation on Exercise Economy and Endurance Capacity across the Menstrual Cycle. J. Appl. Physiol. 2023, 135, 1167–1175. [Google Scholar] [CrossRef]
- López-Samanes, Á.; Ramos-Álvarez, J.J.; Miguel-Tobal, F.; Gaos, S.; Jodra, P.; Arranz-Muñoz, R.; Domínguez, R.; Montoya, J.J. Influence of Beetroot Juice Ingestion on Neuromuscular Performance on Semi-Professional Female Rugby Players: A Randomized, Double-Blind, Placebo-Controlled Study. Foods 2022, 11, 3614. [Google Scholar] [CrossRef] [PubMed]
- López-Samanes, Á.; Pérez-Lopez, A.; Morencos, E.; Muñoz, A.; Kühn, A.; Sánchez-Migallón, V.; Moreno-Pérez, V.; González-Frutos, P.; Bach-Faig, A.; Roberts, J.; et al. Beetroot Juice Ingestion Does Not Improve Neuromuscular Performance and Match-Play Demands in Elite Female Hockey Players: A Randomized, Double-Blind, Placebo-Controlled Study. Eur. J. Nutr. 2023, 62, 1123–1130. [Google Scholar] [CrossRef]
- Ortiz de Zevallos, J.; Hogwood, A.C.; Kruse, K.; De Guzman, J.; Buckley, M.; Weltman, A.L.; Allen, J.D. Sex Differences in the Effects of Inorganic Nitrate Supplementation on Exercise Economy and Endurance Capacity in Healthy Young Adults. J. Appl. Physiol. 2023, 135, 1157–1166. [Google Scholar] [CrossRef]
- Poredoš, D.; Jenko Pražnikar, Z.; Kozinc, Ž. Acute Effects of Beetroot Juice Supplementation on Isometric Muscle Strength, Rate of Torque Development and Isometric Endurance in Young Adult Men and Women: A Randomized, Double-Blind, Controlled Cross-Over Pilot Study. Nutrients 2022, 14, 4759. [Google Scholar] [CrossRef]
- Tan, R.; Merrill, C.; Riley, C.F.; Hammer, M.A.; Kenney, R.T.; Riley, A.A.; Li, J.; Zink, A.C.; Karl, S.T.; Price, K.M.; et al. Acute Inorganic Nitrate Ingestion Does Not Impact Oral Microbial Composition, Cognitive Function, or High-Intensity Exercise Performance in Female Team-Sport Athletes. Eur. J. Appl. Physiol. 2024. [Google Scholar] [CrossRef]
- Wickham, K.A.; Spriet, L.L. No Longer Beeting around the Bush: A Review of Potential Sex Differences with Dietary Nitrate Supplementation 1. Appl. Physiol. Nutr. Metab. 2019, 44, 915–924. [Google Scholar] [CrossRef]
- Tan, R.; Pennell, A.; Karl, S.T.; Cass, J.K.; Go, K.; Clifford, T.; Bailey, S.J.; Perkins Storm, C. Effects of Dietary Nitrate Supplementation on Back Squat and Bench Press Performance: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2493. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Ramaglia, M.; Bellistri, G.; Pavei, G.; Pugliese, L.; Montorsi, M.; Rasica, L.; Marzorati, M. Aerobic Fitness Affects the Exercise Performance Responses to Nitrate Supplementation. Med. Sci. Sports Exerc. 2015, 47, 1643–1651. [Google Scholar] [CrossRef] [PubMed]
Parameter | Inclusion Criteria |
---|---|
Participant | Recreationally active, healthy adult males and females, aged 18–65 years. |
Intervention | Nitrate supplementation provided as beetroot juice without contiguous ingestion of other supplements, and information was provided on the supplementation dose, timing, frequency, and vehicle of administration. |
Comparator | Placebo provided as beetroot juice with negligible nitrate content. |
Outcomes | Performance outcomes of peak power, mean power, time-to-peak power, minimum power, and total work done during bouts of 30-s high-intensity sprints. |
Study Design | Randomized, double-blinded, crossover, placebo-controlled trials. Only studies that were published in English and as original research (i.e., not a conference abstract or review) were included. |
Author | Subjects | Supplementation | Exercise Protocol | Findings |
---|---|---|---|---|
Cuenca et al. (2018) [46] | 15 recreationally active men Age: 22.4 ± 1.6 y Ht: 1.78 ± 0.06 m Wt: 76.9 ± 10.3 kg | 3 h prior to exercise ingestion of NO3−-rich BR (~6.4 mmol NO3−) | 1 × CMJ PRE cycling sprint 30-s “all-out” cycling sprint 2 × CMJ POST cycling sprint | ↑ Ppeak: +3.8% (PL: 848 ± 134 vs. BR: 881 ± 135) ↓ time-to-Ppeak: −18% (PL: 8.9 ± 1.4 vs. BR: 7.3 ± 0.9) ↑ Pmean: + 4% (PL: 641 ± 91 vs. BR: 666 ± 100) ↔Pmin: 4.4% (PL: 8.9 ± 1.4 vs. BR: 7.3 ± 0.9) |
Dominguez et al. (2017) [47] | 15 recreationally active men Age: 21.46 ± 1.72 y Ht: 1.78 ± 0.07 m Wt: 76.90 ± 8.67 kg | 3 h prior to exercise ingestion of NO3−-rich BR (~5.6 mmol NO3−) | 30-s “all-out” cycling sprint at 7.5% body mass | ↑ Ppeak: +5.4% (PL: 816.83 ± 136.97 vs. BR: 865.69 ± 143.91) ↔ Pmean (PL: 613.98 ± 94.14 vs. BR: 648.41 ± 104.79) ↓ time-to-Ppeak: −8.4% (PL: 8.00 ± 1.46 vs. BR: 7.33 ± 1.23) ↔ Pmin (PL: 433.33 ± 99.39 vs. BR: 442.61 ± 122.79) |
Jodra et al. (2019) [42] | 15 recreationally active men Age: 23 ± 2 y Ht: 1.78 ± 0.06 m Wt: 75.6 ± 8.9 kg | 3 h prior to exercise ingestion of NO3−-rich BR (~6.4 mmol NO3−) | 1 × “all-out” cycling sprint at 7.5% body mass | ↑ Ppeak: +4.4%: (PL: 848.40 ± 134.40 vs. BR: 880.93 ± 134.56) ↓ time-to-Ppeak (PL: 8.87 ± 1.41 vs. BR: 7.33 ± 0.90) ↔ Pmean (PL: 641.14 ± 91.40 vs. BR: 666.48 ± 99.98) ↔ Pmin (PL: 452.53 ± 64.63 vs. BR: 472.27 ± 72.35) |
Jonvik et al. (2018) ** [39] | 10 recreationally active men and 10 recreationally active women Age: men 27 ± 6 y women 33 ± 7 y Ht: men 1.84 ± 0.07 m women 1.70 ± 0.07 m Wt: men 78 ± 8 kg women 64 ± 8 kg | 6 d NO3−-rich BR juice supplementation (~800 mg NO3−·d−1) | 30-s “all-out” cycling sprint at 8.5% body mass | ↓ time-to-Ppeak (2.8%; p = 0.007) ↔ in Pmean (PL: 502.49 ± 56.40 vs. BR: 501.08 ± 53.99) (WG1 women) ↔ in Ppeak (PL: 769.19 ± 108.25 vs. BR: 761.98 ± 105.64) (WG1 women) ↔ in Pmean (PL: 464.58 ± 54.89 vs. BR: 468.23 ± 44.06) (WG2 women) ↔ in Ppeak (PL: 716.76 ± 102.16 vs. BR: 692.84 ± 97.02) (WG2 women) ↔ in Pmean (PL: 440.89 ± 54.88 vs. BR: 448.57 ± 49.56) (WG3 women) ↔ in Ppeak (PL: 646.71 ± 89.40 vs. BR: 679.49 ± 97.42) (WG3 women) ↔ in Pmean (PL: 751.38 ± 69.56 vs. BR: 757.65 ± 59.40) (WG1 men) ↔ in Ppeak (PL: 1260.24 ± 159.76 vs. BR: 1299.97 ±139.10) (WG1 men) ↔ in Pmean (PL: 676.16 ± 61.37 vs. BR: 671.91 ± 65.72) (WG2 men) ↔ in Ppeak (PL: 1144.64 ± 175.18 vs. BR: 1157.27 ± 141.50) (WG2 men) ↔ in Pmean (PL: 632.65 ± 36.40 vs. BR: 614.18 ± 63.51) (WG3 men) ↔ in Ppeak (PL: 1052.81 ± 149.37 vs. BR: 1050.79 ± 130.25) (WG3 men) |
Rimer et al. (2016) [40] | 11 men and 2 women university athletes Age: 25.9 ± 7.5 y Ht: 1.806 ± 0.075 m Wt: 73.8 ± 10.3 kg | 2.5 h prior to exercise ingestion of NO3−-rich BR (~11.2 mmol NO3−) | 4 × 3–4-s “all-out” cycling sprints + 120-s rest 1 × 30-s “all-out” cycling sprint (5 min after 4-s sprints) | ↔ in Ppeak (PL: 1185 ± 249 vs. BR: 1173 ± 255) ↔in total work (PL: 23.0 ± 4.4 KJ vs. BR: 22.8 ± 4.8 KJ) |
Wylie et al. (2016) [48] | 10 recreationally active men Age: 21 ± 1 y Ht: 1.82 ± 0.01 m Wt: 87.5 ± 9.5 kg | 5 d NO−-rich BR juice supplementation (~8.2 mmol NO3−·d−1 + additional 4.1 mmol on day 3 and 4) | 24 × 6-s “all-out” cycling sprints + 24-s passive recovery 7 × 30-s “all-out” cycling sprints + 210-s active recovery (20 W) + 30-s passive recovery 6 × 60-s cycling bouts (instructed to maximize mean power across all bouts) + 40-s active recovery (20 W) + 20-s passive recovery | 7 × 30-s protocol: ↔Pmean (PL: 562 ± 94 vs. BR: 558 ± 95) ↔ Ppeak (PL: 776 ± 142 vs. BR: 768 ± 157) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, R.; Cass, J.K.; Lincoln, I.G.; Wideen, L.E.; Nicholl, M.J.; Molnar, T.J.; Gough, L.A.; Bailey, S.J.; Pennell, A. Effects of Dietary Nitrate Supplementation on High-Intensity Cycling Sprint Performance in Recreationally Active Adults: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 2764. https://doi.org/10.3390/nu16162764
Tan R, Cass JK, Lincoln IG, Wideen LE, Nicholl MJ, Molnar TJ, Gough LA, Bailey SJ, Pennell A. Effects of Dietary Nitrate Supplementation on High-Intensity Cycling Sprint Performance in Recreationally Active Adults: A Systematic Review and Meta-Analysis. Nutrients. 2024; 16(16):2764. https://doi.org/10.3390/nu16162764
Chicago/Turabian StyleTan, Rachel, Jordan K. Cass, Isabella G. Lincoln, Lauren E. Wideen, Madelyn J. Nicholl, Trevor J. Molnar, Lewis A. Gough, Stephen J. Bailey, and Adam Pennell. 2024. "Effects of Dietary Nitrate Supplementation on High-Intensity Cycling Sprint Performance in Recreationally Active Adults: A Systematic Review and Meta-Analysis" Nutrients 16, no. 16: 2764. https://doi.org/10.3390/nu16162764
APA StyleTan, R., Cass, J. K., Lincoln, I. G., Wideen, L. E., Nicholl, M. J., Molnar, T. J., Gough, L. A., Bailey, S. J., & Pennell, A. (2024). Effects of Dietary Nitrate Supplementation on High-Intensity Cycling Sprint Performance in Recreationally Active Adults: A Systematic Review and Meta-Analysis. Nutrients, 16(16), 2764. https://doi.org/10.3390/nu16162764