Effect of Low vs. High Carbohydrate Intake after Glycogen-Depleting Workout on Subsequent 1500 m Run Performance in High-Level Runners
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Organization of the Study
2.3. Diet Analyses and Manipulations
2.4. Glycogen-Depleting Exercise Session (GDS)
2.5. 1500 m Time Trial (TT)
2.6. Malondialdehyde (MDA) Measurement
2.7. Statistics
3. Results
3.1. Diet and Body Mass
3.2. Glycogen Depletion Session
3.3. Time Trial
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christensen, E.H.; Hansen, O., III. Arbeitsfähigkeit und Ernährung. Skand. Arch. Physiol. 1939, 81, 160–171. [Google Scholar] [CrossRef]
- Krogh, A.; Lindhard, J. The Relative Value of Fat and Carbohydrate as Sources of Muscular Energy: With Appendices on the Correlation between Standard Metabolism and the Respiratory Quotient during Rest and Work. Biochem. J. 1920, 14, 290–363. [Google Scholar] [CrossRef] [PubMed]
- Gordon, B.; Kohn, L.A.; Levine, S.A.; Matton, M.; Scriver, W.D.M.; Whiting, W.B. Sugar content of the blood in runners following a marathon race: With especial reference to the prevention of hypoglycemia: Further observations. J. Am. Med. Assoc. 1925, 85, 508–509. [Google Scholar] [CrossRef]
- Zuntz, N. Ueber die Bedeutung der verschiedenen Nährstoffe als Erzeuger der Muskelkraft. Arch. Physiol. Menschen Tiere 1901, 83, 557–571. [Google Scholar] [CrossRef]
- Bergström, J.; Hultman, E. Muscle glycogen synthesis after exercise: An enhancing factor localized to the muscle cells in man. Nature 1966, 210, 309–310. [Google Scholar] [CrossRef] [PubMed]
- Hermansen, L.; Hultman, E.; Saltin, B. Muscle glycogen during prolonged severe exercise. Acta Physiol. Scand. 1967, 71, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Ahlborg, B.; Bergstrom, J.; Brohult, J.; Ekelund, L.-G.; Hultman, E.; Maschio, G. Human muscle glycogen content and capacity for prolonged exercise after different diets. Forsvarmedicin 1967, 3, 85–99. [Google Scholar]
- Bergström, J.; Hermansen, L.; Hultman, E.; Saltin, B. Diet, Muscle glycogen and physical performance. Acta Physiol. Scand. 1967, 71, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Gollnick, P.D.; Piehl, K.; Saltin, B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J. Physiol. 1974, 241, 45–57. [Google Scholar] [CrossRef]
- Saltin, B.; Karlsson, J. Muscle glycogen utilisation during work of different intensities. In Muscle Metabolism during Exercise; Pernow, B., Saltin, B., Eds.; Plenum Press: New York, NY, USA, 1971; pp. 289–300. [Google Scholar]
- Hermansen, L. Effect of metabolic changes on force generation in skeletal muscle during maximal exercise. Ciba Found Symp. 1981, 82, 75–88. [Google Scholar]
- Jacobs, I. Lactate, muscle glycogen and exercise performance in man. Acta Physiol. Scand. Suppl. 1981, 495, 1–35. [Google Scholar]
- Sutton, J.R.; Jones, N.L.; Toews, C.J. Effect of PH on muscle glycolysis during exercise. Clin. Sci. 1981, 61, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Greenhaff, P.L.; Gleeson, M.; Maughan, R.J. The effects of diet on muscle pH and metabolism during high intensity exercise. Eur. J. Appl Physiol. Occup. Physiol. 1988, 57, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Gollnick, P.D.; Armstrong, R.B.; Sembrowich, W.L.; Shepherd, R.E.; Saltin, B.; Da Boit, M.; Bailey, S.J.; Callow, S.; DiMenna, F.J.; Jones, A.M.; et al. Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J. Appl. Physiol. 1973, 34, 615–618. [Google Scholar] [CrossRef]
- Ørtenblad, N.; Westerblad, H.; Nielsen, J. Muscle glycogen stores and fatigue. J. Physiol. 2013, 591, 4405–4413. [Google Scholar] [CrossRef] [PubMed]
- Ørtenblad, N.; Nielsen, J.; Saltin, B.; Holmberg, H.-C. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J. Physiol. 2011, 589 Pt 3, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Gejl, K.D.; Hvid, L.G.; Frandsen, U.; Jensen, K.; Sahlin, K.; Ørtenblad, N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med. Sci. Sports Exerc. 2014, 46, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Poole, D.C. The effects of a glycogen-loading regimen on the capacity to perform anaerobic exercise. Eur. J. Appl. Physiol. 1981, 46, 211–219. [Google Scholar] [CrossRef]
- Pizza, F.X.; Flynn, M.G.; Duscha, B.D.; Holden, J.; Kubitz, E.R. A Carbohydrate loading regimen improves high intensity, short duration exercise performance. Int. J. Sport Nutr. 1995, 5, 110–116. [Google Scholar] [CrossRef]
- Hargreaves, M.; Finn, J.P.; Withers, R.T.; Scroop, G.C.; Mackay, M.; Snow, R.J.; Carey, M.F.; Halbert, J. Effect of muscle glycogen availability on maximal exercise performance. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 188–192. [Google Scholar] [CrossRef]
- Bangsbo, J.; Graham, T.E.; Kiens, B.; Saltin, B. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J. Physiol. 1992, 451, 205–227. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.G.; A Hutchins, C.; Spillman, D. The influence of dietary carbohydrate and pre-exercise glucose consumption on supramaximal intermittent exercise performance. Br. J. Sports Med. 1994, 28, 171–176. [Google Scholar] [CrossRef]
- Vandenberghe, K.; Hespel, P.; Eynde, B.V.; Lysens, R.; Richter, E.A. No effect of glycogen level on glycogen metabolism during high intensity exercise. Med. Sci. Sports Exerc. 1995, 27, 1278–1283. [Google Scholar] [CrossRef]
- Ramonas, A.; Laursen, P.B.; Williden, M.; Kilding, A.E. The effect of acute manipulation of carbohydrate availability on high intensity running performance, running economy, critical speed, and substrate metabolism in trained Male runners. Eur. J. Sport Sci. 2023, 23, 1961–1971. [Google Scholar] [CrossRef]
- Schytz, C.T.; Ørtenblad, N.; Gejl, K.D.; Nielsen, J. Differential utilisation of subcellular skeletal muscle glycogen pools: A comparative analysis between 1 and 15 min of maximal exercise. J. Physiol. 2024, 602, 1681–1702. [Google Scholar] [CrossRef]
- Heuberger, J.A.A.C.; Rotmans, J.I.; Gal, P.; Stuurman, E.F.; Westende, J.; Post, E.T.; A Daniels, J.M.; Moerland, M.; van Veldhoven, P.L.J.; de Kam, M.L.; et al. Effects of erythropoietin on cycling performance of well trained cyclists: A double-blind, randomised, placebo-controlled trial. Lancet Haematol. 2017, 4, e374–e386. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 17, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Jeukendrup, A.E.; Jones, A.M.; Mooses, M. Contemporary Nutrition Strategies to Optimize Performance in Distance Runners and Race Walkers. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.J.; Chaillou, T.; Kamandulis, S.; Subocius, A.; Westerblad, H.; Brazaitis, M.; Venckunas, T. Carbohydrates do not accelerate force recovery after glycogen-depleting followed by high-intensity exercise in humans. Scand. J. Med. Sci. Sports 2020, 30, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Fournier, P.A.; Fairchild, T.J.; Ferreira, L.D.; Bräu, L. Post-exercise muscle glycogen repletion in the extreme: Effect of food absence and active recovery. J. Sports Sci. Med. 2004, 3, 139–146. [Google Scholar]
- Pageaux, B. Perception of effort in Exercise Science: Definition, measurement and perspectives. Eur. J. Sport Sci. 2016, 16, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3. [Google Scholar] [CrossRef] [PubMed]
- Vigh-Larsen, J.F.; Ørtenblad, N.; Spriet, L.L.; Overgaard, K.; Mohr, M. Muscle Glycogen Metabolism and High-Intensity Exercise Performance: A Narrative Review. Sports Med. 2021, 51, 1855–1874. [Google Scholar] [CrossRef] [PubMed]
- Greenhaff, P.L.; Gleeson, M.; Maughan, R.J. Diet-induced metabolic acidosis and the performance of high intensity exercise in man. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 57, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.S.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29 (Suppl. S1), S17–S27. [Google Scholar] [CrossRef] [PubMed]
- Shiose, K.; Takahashi, H.; Yamada, Y. Muscle Glycogen Assessment and Relationship with Body Hydration Status: A Narrative Review. Nutrients 2022, 15, 155. [Google Scholar] [CrossRef] [PubMed]
- Schytz, C.T.; Ørtenblad, N.; Birkholm, T.A.; Plomgaard, P.; Nybo, L.; Kolnes, K.J.; Andersen, O.E.; Lundby, C.; Nielsen, J.; Gejl, K.D. Lowered muscle glycogen reduces body mass with no effect on short-term exercise performance in men. Scand. J. Med. Sci. Sports 2023, 33, 1054–1071. [Google Scholar] [CrossRef]
- Phillips, S.M.; Van Loon, L.J.C. Dietary protein for athletes: From requirements to optimum adaptation. J. Sports Sci. 2011, 29 (Suppl. S1), S29–S38. [Google Scholar] [CrossRef]
- Stephen, A.M.; Champ, M.M.-J.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- Greenhaff, P.L.; Gleeson, M.; Maughan, R.J. The effects of dietary manipulation on blood acid-base status and the performance of high intensity exercise. Eur. J. Appl Physiol Occup. Physiol. 1987, 56, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J.; Greenhaff, P.L.; Leiper, J.B.; Ball, D.; Lambert, C.P.; Gleeson, M. Diet composition and the performance of high-intensity exercise. J. Sports Sci. 1997, 15, 265–275. [Google Scholar] [CrossRef]
- Karlsson, J.; Saltin, B. Diet, muscle glycogen, and endurance performance. J. Appl. Physiol. 1971, 31, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Hultman, E.; Spriet, L.L.; Söderlund, K. Biochemistry of muscle fatigue. Biomed. Biochim. Acta 1986, 45, S97–S106. [Google Scholar] [PubMed]
- Nybo, L. CNS Fatigue and Prolonged Exercise: Effect of Glucose Supplementation. Med. Sci. Sports Exerc. 2003, 35, 589–594. [Google Scholar] [CrossRef]
- Vigh-Larsen, J.F.; Ørtenblad, N.; Nielsen, J.; Andersen, O.E.; Overgaard, K.; Mohr, M. The Role of Muscle Glycogen Content and Localization in High-Intensity Exercise Performance: A Placebo-Controlled Trial. Med. Sci. Sports Exerc. 2022, 54, 2073–2086. [Google Scholar] [CrossRef] [PubMed]
- Örtenblad, N.; Nielsen, J. Muscle glycogen and cell function—Location, location, location. Scand. J. Med. Sci. Sports 2015, 25 (Suppl. S4), 34–40. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.; Schrøder, H.D.; Rix, C.G.; Ørtenblad, N. Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres. J. Physiol. 2009, 587 Pt 14, 3679–3690. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.; Holmberg, H.-C.; Schrøder, H.D.; Saltin, B.; Ørtenblad, N. Human skeletal muscle glycogen utilization in exhaustive exercise: Role of subcellular localization and fibre type. J. Physiol. 2011, 589 Pt 11, 2871–2885. [Google Scholar] [CrossRef]
- Gejl, K.D.; Ørtenblad, N.; Andersson, E.; Plomgaard, P.; Holmberg, H.; Nielsen, J. Local depletion of glycogen with supramaximal exercise in human skeletal muscle fibres. J. Physiol. 2017, 595, 2809–2821. [Google Scholar] [CrossRef]
- Vigh-Larsen, J.F.; Ørtenblad, N.; Andersen, O.E.; Thorsteinsson, H.; Kristiansen, T.H.; Bilde, S.; Mikkelsen, M.S.; Nielsen, J.; Mohr, M.; Overgaard, K. Fibre type- and localisation-specific muscle glycogen utilisation during repeated high-intensity intermittent exercise. J. Physiol. 2022, 600, 4713–4730. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, J.P.; Costill, D.L.; Mitchell, J.B.; Houmard, J.A.; Flynn, M.G.; Fink, W.J.; Beltz, J.D.; Cox, G.R.; Clark, S.A.; Cox, A.J.; et al. Carbohydrate balance in competitive runners during successive days of intense training. J. Appl. Physiol. 1988, 65, 2601–2606. [Google Scholar] [CrossRef]
- Duhamel, T.A.; Perco, J.G.; Green, H.J. Manipulation of dietary carbohydrates after prolonged effort modifies muscle sarcoplasmic reticulum responses in exercising males. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R1100–R1110. [Google Scholar] [CrossRef]
- Venckunas, T.; Brazaitis, M.; Snieckus, A.; Mickevicius, M.; Eimantas, N.; Subocius, A.; Mickeviciene, D.; Westerblad, H.; Kamandulis, S. Adding High-Intensity Interval Training to Classical Resistance Training Does Not Impede the Recovery from Inactivity-Induced Leg Muscle Weakness. Antioxidants 2022, 12, 16. [Google Scholar] [CrossRef]
- Tanskanen, M.; Atalay, M.; Uusitalo, A. Altered oxidative stress in overtrained athletes. J. Sports Sci. 2010, 28, 309–317. [Google Scholar] [CrossRef]
- Lugo, R.; Avila-Nava, A.; Pech-Aguilar, A.G.; Medina-Vera, I.; Guevara-Cruz, M.; Solis, A.L.G. Relationship between lipid accumulation product and oxidative biomarkers by gender in adults from Yucatan, Mexico. Sci. Rep. 2022, 12, 14338. [Google Scholar] [CrossRef]
- Lindinger, M.I.; Spriet, L.L.; Hultman, E.; Putman, T.; McKelvie, R.S.; Lands, L.C.; Jones, N.L.; Heigenhauser, G.J.; Foster, P.P.; Feiveson, A.H.; et al. Plasma volume and ion regulation during exercise after low- and high-carbohydrate diets. Am. J. Physiol. Integr. Comp. Physiol. 1994, 266 Pt 2, R1896–R1906. [Google Scholar] [CrossRef]
- Psilander, N.; Frank, P.; Flockhart, M.; Sahlin, K. Exercise with low glycogen increases PGC-1α gene expression in human skeletal muscle. Eur. J. Appl. Physiol. 2013, 113, 951–963. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.; Cheng, A.J.; Kamandulis, S.; Subocius, A.; Brazaitis, M.; Venckunas, T.; Chaillou, T. Carbohydrate restriction following strenuous glycogen-depleting exercise does not potentiate the acute molecular response associated with mitochondrial biogenesis in human skeletal muscle. Eur. J. Appl. Physiol. 2021, 121, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Hanon, C.; Thomas, C. Effects of optimal pacing strategies for 400-, 800-, and 1500-m races on the VO2 response. J. Sports Sci. 2011, 29, 905–912. [Google Scholar] [CrossRef]
- King, A.J.; Etxebarria, N.; Ross, M.L.; Garvican-Lewis, L.; Heikura, I.A.; McKay, A.K.A.; Tee, N.; Forbes, S.F.; Beard, N.A.; Saunders, P.U.; et al. Short-Term Very High Carbohydrate Diet and Gut-Training Have Minor Effects on Gastrointestinal Status and Performance in Highly Trained Endurance Athletes. Nutrients 2022, 14, 1929. [Google Scholar] [CrossRef] [PubMed]
- Ørtenblad, N.; Zachariassen, M.; Nielsen, J.; Gejl, K.D. Substrate utilization and durability during prolonged intermittent exercise in elite road cyclists. Eur. J. Appl. Physiol. 2024, 124, 2193–2205. [Google Scholar] [CrossRef] [PubMed]
Low-CHO Diet | High-CHO Diet | Difference between Diets | ||
---|---|---|---|---|
p Value | Effect Size (Cohen’s d) | |||
Body mass before GDS, kg | 68.6 (11.3) [53.1–87.4] | 68.4 (11.4) [53.4–87.7] | 0.166 | 0.02 |
Habitual (Baseline) dietary intake a | ||||
Energy intake, kcal/d | 2789 (621) [2192–3927] | 2724 (671) [1623–3872] | 0.556 | 0.10 |
Energy intake, kcal/kg/d | 41.1 (8.5) [26–54] | 39.7 (6.8) [25–50] | 0.452 | 0.18 |
CHO, g/d | 333 (128) [186–612] | 328 (119) [188–580] | 0.674 | 0.04 |
CHO, g/kg/d | 4.9 (1.5) [2.3–7.3] | 4.8 (1.3) [3.0–6.9] | 0.578 | 0.07 |
Fiber (indigestible CHO), g/d | 25.5 (7.6) [15.3–37.2] | 28.0 (7.3) [13.8–39.4] | 0.289 | 0.33 |
Net CHO, g/d | 306 (127) [147–578] | 299 (120) [147–548] | 0.503 | 0.06 |
Net CHO, g/kg/d | 4.4 (1.5) [2.0–6.8] | 4.3 (1.4) [2.6–6.6] | 0.408 | 0.07 |
Fat, g/d | 113.5 (22.3) [83–151] | 111.2 (25.4) [61–138] | 0.808 | 0.10 |
Fat, g/kg/d | 1.8 (0.5) [1.2–2.7] | 1.6 (0.4) [0.9–2.3] | 0.692 | 0.20 |
Protein, g/d | 120.1 (25.6) [73–153] | 114.2 (28.1) [81–167] | 0.541 | 0.22 |
Protein, g/kg/d | 1.8 (0.4) [1.0–2.6] | 1.7 (0.3) [1.3–2.3] | 0.434 | 0.25 |
Water, L/d | 3.2 (1.5) [1.5–5.9] | 3.3 (1.4) [1.5–5.9] | 0.701 | 0.07 |
Water, mL/kg/d | 47.5 (24.0) [22–89] | 48.6 (21.1) [23–84] | 0.755 | 0.05 |
Dietary intake for 2 days preceding TT | ||||
Body mass before TT, kg | 67.7 (11.0) [52.9–85.4] *** | 68.4 (11.4) [53.9–87.1] | 0.048 | 0.07 |
Energy intake, kcal/d | 2595 (680) [1558–4075] | 4008 (1014) [2940–5948] ** | <0.001 | 1.66 |
Energy intake, kcal/kg/d | 38.5 (9.5) [23–61] | 59.0 (13.1) [38–83] *** | <0.001 | 1.83 |
CHO, g/d | 69 (25) [37–115] *** | 655 (184) [358–941] *** | <0.001 | 5.58 |
CHO, g/kg/d | 1.0 (0.4) [0.5–1.5] *** | 9.7 (2.6) [5.4–13.4] *** | <0.001 | 5.80 |
Fiber (indigestible CHO), g/d | 19.1 (8.1) [5.1–30.5] * | 33.4 (10.4) [7.2–45.5] * | <0.001 | 1.55 |
Net CHO, g/d | 50 (20) [27–91] | 621 (177) [350–895] | <0.001 | 5.80 |
Net CHO, g/kg/d | 0.7 (0.3) [0.4–1.1] | 9.2 (2.4) [5.3–12.7] | <0.001 | 6.30 |
Fat, g/d | 202.3 (56.8) [117–326] *** | 114.0 (42.0) [64–204] | 0.001 | 1.80 |
Fat, g/kg/d | 3.0 (0.8) [2.1–4.9] *** | 1.7 (0.6) [0.7–2.8] | 0.001 | 1.86 |
Protein, g/d | 137.4 (45.1) [47–208] | 108.7 (21.6) [72–150] | 0.038 | 0.87 |
Protein, g/kg/d | 2.1 (0.7) [0.8–3.1] | 1.6 (0.3) [1.1–2.2] | 0.044 | 1.00 |
Water, L/d | 2.7 (1.4) [1.0–5.0] * | 3.4 (1.5) [1.8–5.6] | <0.001 | 0.48 |
Water, mL/kg/d | 41.5 (23.7) [15–90] * | 50.7 (23.4) [27–98] | <0.001 | 0.39 |
Low-CHO Diet | High-CHO Diet | p Value | Effect Size (Cohen’s d) | |
---|---|---|---|---|
1500 m time, s | 279.9 (16.9) | 275.4 (18.7) | 0.009 | 0.98 |
100 m split, s | 17.9 (1.2) | 17.6 (1.4) | 0.173 | 0.23 |
200 m split, s | 35.9 (2.4) | 35.7 (2.7) | 0.498 | 0.08 |
400 m split, s | 72.0 (4.8) | 71.7 (5.5) | 0.586 | 0.06 |
600 m split, s | 108.5 (6.9) | 107.9 (8.2) | 0.462 | 0.09 |
800 m split, s | 145.8 (8.7) | 144.6 (10.7) | 0.280 | 0.12 |
1000 m split, s | 184.0 (10.7) | 182.0 (13.0) | 0.104 | 0.17 |
1200 m split, s | 223.1 (13.7) | 220.1 (15.4) | 0.087 | 0.20 |
1400 m split, s | 261.3 (16.3) | 257.5 (17.8) | 0.061 | 0.22 |
Rating of perceived exertion | 16.9 (2.1) | 15.7 (2.0) | <0.001 | 0.56 |
Flight phase time, ms | 133.1 (5.0) | 135.0 (4.8) | 0.186 | 0.39 |
Stance phase time, ms | 188.9 (8.1) | 187.6 (8.0) | 0.323 | 0.12 |
Step frequency, /min | 186.8 (1.9) | 186.4 (2.1) | 0.586 | 0.19 |
Step length, cm | 176.6 (5.3) | 178.5 (5.1) | 0.086 | 0.36 |
Low-CHO Diet | High-CHO Diet | Difference between Diets | ||
p Value | Effect Size (Cohen’s d) | |||
Lactate, mmol/L | ||||
Baseline (pre-TT) | 1.7 (0.5) | 2.2 (0.7) | 0.022 | 0.82 |
1 min post-TT | 14.1 (3.6) *** | 16.0 (2.6) *** | 0.047 | 0.60 |
3 min post-TT | 13.5 (4.5) *** | 15.1 (4.1) *** | 0.059 | 0.37 |
5 min post-TT | 12.9 (4.1) *** | 14.4 (3.1) *** | 0.370 | 0.41 |
15 min post-TT | 9.5 (3.7) *** | 11.4 (3.4) *** | 0.116 | 0.53 |
Peak value | 14.5 (4.2) *** | 16.7 (3.1) *** | 0.039 | 0.59 |
Delta (response) | 12.7 (3.8) | 14.5 (2.6) | 0.072 | 0.55 |
Delta (fold) | 8.4 (1.8) | 8.0 (1.9) | 0.672 | 0.21 |
Glucose, mmol/L | ||||
Baseline (pre-TT) | 5.4 (0.7) | 5.9 (0.8) | 0.007 | 0.67 |
1 min post-TT | 7.8 (1.4) *** | 7.5 (1.3) *** | 0.795 | 0.21 |
3 min post-TT | 8.7 (1.2) *** | 8.8 (1.5) *** | 0.138 | 0.07 |
5 min post-TT | 8.5 (1.1) *** | 9.0 (1.5) *** | 0.182 | 0.38 |
15 min post-TT | 7.8 (1.3) *** | 8.0 (1.2) *** | 0.618 | 0.16 |
Peak value | 8.7 (1.2) *** | 9.0 (1.4) *** | 0.193 | 0.23 |
Delta (response) | 3.3 (0.7) | 3.1 (1.0) | 0.466 | 0.24 |
Delta (response), % | 61.1 (11.3) | 52.6 (17.0) | 0.112 | 0.60 |
MDA, nmol/mL | ||||
Baseline | 16.2 (9.2) | 15.4 (8.9) | 0.212 | 0.04 # |
15 min post-TT | 18.7 (11.5) * | 17.8 (10.1) ** | 0.427 | 0.04 # |
Delta (response) | 2.4 (3.0) | 2.4 (2.0) | 0.975 | 0.00 # |
Delta (response), % | 15.6 (20.4) | 14.9 (12.3) | 0.942 | 0.02 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venckunas, T.; Minderis, P.; Silinskas, V.; Buliuolis, A.; Maughan, R.J.; Kamandulis, S. Effect of Low vs. High Carbohydrate Intake after Glycogen-Depleting Workout on Subsequent 1500 m Run Performance in High-Level Runners. Nutrients 2024, 16, 2763. https://doi.org/10.3390/nu16162763
Venckunas T, Minderis P, Silinskas V, Buliuolis A, Maughan RJ, Kamandulis S. Effect of Low vs. High Carbohydrate Intake after Glycogen-Depleting Workout on Subsequent 1500 m Run Performance in High-Level Runners. Nutrients. 2024; 16(16):2763. https://doi.org/10.3390/nu16162763
Chicago/Turabian StyleVenckunas, Tomas, Petras Minderis, Viktoras Silinskas, Alfonsas Buliuolis, Ronald J. Maughan, and Sigitas Kamandulis. 2024. "Effect of Low vs. High Carbohydrate Intake after Glycogen-Depleting Workout on Subsequent 1500 m Run Performance in High-Level Runners" Nutrients 16, no. 16: 2763. https://doi.org/10.3390/nu16162763
APA StyleVenckunas, T., Minderis, P., Silinskas, V., Buliuolis, A., Maughan, R. J., & Kamandulis, S. (2024). Effect of Low vs. High Carbohydrate Intake after Glycogen-Depleting Workout on Subsequent 1500 m Run Performance in High-Level Runners. Nutrients, 16(16), 2763. https://doi.org/10.3390/nu16162763