Recovery after Exercise-Induced Muscle Damage in Subjects Following a Vegetarian or Mixed Diet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Baseline Measurements
2.2.1. Soreness
2.2.2. Power
2.3. Isometric Strength
2.4. Concentric Contractions
2.5. Muscle Damage Protocol
2.6. Statistical Analysis
3. Results
3.1. Demographics
3.2. Diet
3.3. Strength: Isometric
3.4. Strength: Concentric
3.5. Vertical Jump
3.6. Soreness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kon, M.; Tanabe, K.; Lee, H.; Kimura, F.; Akimoto, T.; Kono, I. Eccentric muscle contractions induce greater oxidative stress than concentric contractions in skeletal muscle. Appl. Physiol. Nutr. Metab. 2007, 32, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Damas, F.; Nosaka, K.; Libardi, C.A.; Chen, T.C.; Ugrinowitsch, C. Susceptibility to Exercise-Induced Muscle Damage: A Cluster Analysis with a Large Sample. Int. J. Sports Med. 2016, 37, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.; Eston, R.G.; Edwards, R.H. Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage. Scand. J. Med. Sci. Sports 2001, 11, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Twist, C.; Eston, R. The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. Eur. J. Appl. Physiol. 2005, 94, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Koba, T.; Hamada, K.; Sakurai, M.; Higuchi, T.; Miyata, H. Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program. J. Sports Med. Phys. Fit. 2009, 49, 424–431. [Google Scholar]
- Doma, K.; Singh, U.; Boullosa, D.; Connor, J.D. The effect of branched-chain amino acid on muscle damage markers and performance following strenuous exercise: A systematic review and meta-analysis. Appl. Physiol. Nutr. Metab. 2021, 46, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Sharp, C.P.; Pearson, D.R. Amino acid supplements and recovery from high-intensity resistance training. J. Strength. Cond. Res. 2010, 24, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Ciuris, C.; Lynch, H.M.; Wharton, C.; Johnston, C.S. A Comparison of Dietary Protein Digestibility, Based on DIAAS Scoring, in Vegetarian and Non-Vegetarian Athletes. Nutrients 2019, 11, 3016. [Google Scholar] [CrossRef] [PubMed]
- Kniskern, M.A.; Johnston, C.S. Protein dietary reference intakes may be inadequate for vegetarians if low amounts of animal protein are consumed. Nutrition 2011, 27, 727–730. [Google Scholar] [CrossRef] [PubMed]
- Tipton, K.D.; Borsheim, E.; Wolf, S.E.; Sanford, A.P.; Wolfe, R.R. Acute response of net muscle protein balance reflects 24-h balance after exercise and amino acid ingestion. Am. J. Physiol.-Endocrinol. Metab. 2003, 284, E76–E89. [Google Scholar] [CrossRef] [PubMed]
- Damas, F.; Phillips, S.M.; Libardi, C.A.; Vechin, F.C.; Lixandrão, M.E.; Jannig, P.R.; Costa, L.A.; Bacurau, A.V.; Snijders, T.; Parise, G. Resistance training-induced changes in integrated myofibrillar protein synthesis are related to hypertrophy only after attenuation of muscle damage. J. Physiol. 2016, 594, 5209–5222. [Google Scholar] [CrossRef] [PubMed]
- Suryawan, A.; Jeyapalan, A.S.; Orellana, R.A.; Wilson, F.A.; Nguyen, H.V.; Davis, T.A. Leucine stimulates protein synthesis in skeletal muscle of neonatal pigs by enhancing mTORC1 activation. Am. J. Physiol.-Endocrinol. Metab. 2008, 295, E868–E875. [Google Scholar] [CrossRef]
- Anthony, J.C.; Anthony, T.G.; Layman, D.K. Leucine supplementation enhances skeletal muscle recovery in rats following exercise. J. Nutr. 1999, 129, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Pinckaers, P.J.; Trommelen, J.; Snijders, T.; van Loon, L.J. The anabolic response to plant-based protein ingestion. Sports Med. 2021, 51, 59–74. [Google Scholar] [CrossRef]
- Gorissen, S.H.; Crombag, J.J.; Senden, J.M.; Waterval, W.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [PubMed]
- Boutros, G.H.; Landry-Duval, M.A.; Garzon, M.; Karelis, A.D. Is a vegan diet detrimental to endurance and muscle strength? Eur. J. Clin. Nutr. 2020, 74, 1550–1555. [Google Scholar] [CrossRef] [PubMed]
- Knez, W.L.; Coombes, J.S.; Jenkins, D.G. Ultra-endurance exercise and oxidative damage: Implications for cardiovascular health. Sports Med. 2006, 36, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Trapp, D.; Knez, W.; Sinclair, W. Could a vegetarian diet reduce exercise-induced oxidative stress? A review of the literature. J. Sports Sci. 2010, 28, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Pohl, A.; Schunemann, F.; Bersiner, K.; Gehlert, S. The Impact of Vegan and Vegetarian Diets on Physical Performance and Molecular Signaling in Skeletal Muscle. Nutrients 2021, 13, 3884. [Google Scholar] [CrossRef] [PubMed]
- Burke, D.G.; Chilibeck, P.D.; Parise, G.; Candow, D.G.; Mahoney, D.; Tarnopolsky, M. Effect of creatine and weight training on muscle creatine and performance in vegetarians. Med. Sci. Sports Exerc. 2003, 35, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
- Kreider, R.B.; Kalman, D.S.; Antonio, J.; Ziegenfuss, T.N.; Wildman, R.; Collins, R.; Candow, D.G.; Kleiner, S.M.; Almada, A.L.; Lopez, H.L. International Society of Sports Nutrition position stand: Safety and efficacy of creatine supplementation in exercise, sport, and medicine. J. Int. Soc. Sports Nutr. 2017, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.C.; da Silva Brandão, M.; Oliveira, D.L.; de Carvalho, F.G.; Costa, M.L.; Aragão-Santos, J.C.; do Nascimento, M.V.S.; Da Silva-Grigoletto, M.E.; Mendes-Netto, R.S. Active Vegetarians Show Better Lower Limb Strength and Power than Active Omnivores. Int. J. Sports Med. 2022, 43, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Nebl, J.; Haufe, S.; Eigendorf, J.; Wasserfurth, P.; Tegtbur, U.; Hahn, A. Exercise capacity of vegan, lacto-ovo-vegetarian and omnivorous recreational runners. J. Int. Soc. Sports Nutr. 2019, 16, 23. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, A.; Tomazini, F.; Bertuzzi, R.; Lima-Silva, A.E. Sprint interval exercise performance in vegans. J. Am. Nutr. Assoc. 2022, 41, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Leach, T. The Impact of Vegan vs Omnivorous Diets on Biomarkers of Inflammation in Muscle Recovery. Master’s Thesis, Massey University, Albany, New Zealand, 2023. [Google Scholar]
- Burke, L.M. Sports Nutrition, 6th ed.; Karpinski, C., Ed.; Academy of Nutrition and Dietetics: Chicago, IL, USA, 2017; pp. 313–327. [Google Scholar]
- Matsui, Y.; Takayanagi, S.; Ohira, T.; Watanabe, M.; Murano, H.; Furuhata, Y.; Miyakawa, S. Effect of a leucine-enriched essential amino acids mixture on muscle recovery. J. Phys. Ther. Sci. 2019, 31, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Waskiw-Ford, M.; Hannaian, S.; Duncan, J.; Kato, H.; Abou Sawan, S.; Locke, M.; Kumbhare, D.; Moore, D. Leucine-Enriched Essential Amino Acids Improve Recovery from Post-Exercise Muscle Damage Independent of Increases in Integrated Myofibrillar Protein Synthesis in Young Men. Nutrients 2020, 12, 1061. [Google Scholar] [CrossRef] [PubMed]
- Rankin, P.; Stevenson, E.; Cockburn, E. The effect of milk on the attenuation of exercise-induced muscle damage in males and females. Eur. J. Appl. Physiol. 2015, 115, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Cockburn, E.; Hayes, P.R.; French, D.N.; Stevenson, E.; St Clair Gibson, A. Acute milk-based protein–CHO supplementation attenuates exercise-induced muscle damage. Appl. Physiol. Nutr. Metab. 2008, 33, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Grubic, T.J.; Sowinski, R.J.; Nevares, B.E.; Jenkins, V.M.; Williamson, S.L.; Reyes, A.G.; Rasmussen, C.; Greenwood, M.; Murano, P.S.; Earnest, C.P. Comparison of ingesting a food bar containing whey protein and isomalto-oligosaccharides to carbohydrate on performance and recovery from an acute bout of resistance-exercise and sprint conditioning: An open label, randomized, counterbalanced, crossover pilot study. J. Int. Soc. Sports Nutr. 2019, 16, 34. [Google Scholar] [PubMed]
- Cooke, M.B.; Rybalka, E.; Stathis, C.G.; Cribb, P.J.; Hayes, A. Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals. J. Int. Soc. Sports Nutr. 2010, 7, 30. [Google Scholar] [CrossRef] [PubMed]
Total (n = 32) | VEG (n = 16) | MIX (n = 16) | |
---|---|---|---|
Age (yr) | 26.0 ± 4.0 | 24.6 ± 2.9 | 26.4 ± 4.9 |
Height (cm) * | 170.3 ± 8.3 | 165.8 ± 7.5 | 174.8 ± 6.7 |
Weight (kg) * | 73.5 ± 21.2 | 62.4 ± 14.8 | 84.6 ± 21 |
BMI (kg/m2) * | 25.1 ± 6.4 | 22.6 ± 5.3 | 27.5 ± 6.6 |
Sex | |||
Male (n=) | 14 | 4 | 10 |
Female (n=) | 18 | 12 | 6 |
Race | |||
White (n=) | 11 | 2 | 9 |
Asian (n=) | 20 | 13 | 7 |
Black (n=) | 1 | 1 | 0 |
Macronutrients | Total (n = 32) | VEG (n = 16) | MIX (n = 16) | p Value |
---|---|---|---|---|
Energy (kcals) * | 1789.7 ± 549.4 | 1532.8 ± 384.6 | 2046.6 ± 579 | p = 0.006 |
Carbohydrates (g) * | 240.1 ± 60.7 | 216.1 ± 40.9 | 264.1 ± 68.6 | p = 0.02 |
Fat (g) | 62.4 ± 27.8 | 55 ± 27.3 | 69.9 ± 27.1 | p = 0.10 |
Total protein (g) * | 73.4 ± 40.1 | 52.4 ± 13.4 | 94.4 ± 46.9 | p < 0.001 |
Plant protein (g) * | 34.9 ± 9.3 | 38.4 ± 9.4 | 31.5 ± 8.0 | p = 0.02 |
Animal protein (g) * | 38.5 ± 39.9 | 14 ± 13.5 | 62.9 ± 42.8 | p < 0.001 |
Essential Amino Acids | ||||
Isoleucine (g) * | 3.3 ± 2.0 | 2.2 ± 0.8 | 4.3 ± 2.2 | p = 0.001 |
Leucine (g) * | 5.7 ± 3.2 | 4.0 ± 1.4 | 7.3 ± 3.7 | p < 0.001 |
Valine (g) * | 4.6 ± 5.1 | 4.4 ± 6.9 | 4.9 ± 2.3 | p = 0.001 |
Threonine (g) * | 2.8 ± 1.7 | 1.8 ± 0.6 | 3.7 ± 2.0 | p < 0.001 |
Lysine (g) * | 4.4 ± 3.3 | 2.6 ± 1.1 | 6.3 ± 3.8 | p < 0.001 |
Methionine (g) * | 2.2 ± 3.5 | 1.0 ± 0.4 | 3.4 ± 4.7 | p = 0.001 |
Phenylalanine (g) * | 3.4 ± 1.6 | 2.5 ± 0.7 | 4.2 ± 1.8 | p = 0.001 |
Histidine (g) * | 1.9 ± 1.1 | 1.3 ± 0.4 | 2.6 ± 1.3 | p = 0.001 |
Tryptophan (g) * | 0.9 ± 0.5 | 0.6 ± 0.2 | 1.1 ± 0.5 | p = 0.001 |
Macronutrients | Total (n = 32) | VEG (n = 16) | MIX (n = 16) | p Values |
---|---|---|---|---|
Energy (kcals/kg) | 24.9 ± 6.3 | 25.4 ± 7.2 | 24.4 ± 5.5 | p = 0.66 |
Carbohydrates (g/kg) | 3.4 ± 0.8 | 3.6 ± 0.9 | 3.1 ± 0.7 | p = 0.15 |
Fat (g/kg) | 0.9 ± 0.4 | 0.9 ± 0.5 | 0.9 ± 0.3 | p = 0.91 |
Protein (g/kg) | 1 ± 0.4 | 0.9 ± 0.2 | 1.1 ± 0.5 | p = 0.31 |
Plant protein (g/kg) * | 0.5 ± 0.2 | 0.6 ± 0.2 | 0.4 ± 0.1 | p = 0.001 |
Animal protein (g/kg) * | 0.5 ± 0.4 | 0.2 ± 0.2 | 0.7 ± 0.5 | p = 0.001 |
Essential Amino Acids | ||||
Isoleucine (g/kg) * | 0.09 ± 0 | 0.1 ± 0 | 0.07 ± 0 | p < 0.001 |
Leucine (g/kg) * | 0.09 ± 0.1 | 0.07 ± 0 | 0.1 ± 0.1 | p = 0.001 |
Valine (g/kg) * | 0.08 ± 0.1 | 0.07 ± 0.1 | 0.08 ± 0 | p = 0.001 |
Threonine (g/kg) * | 0.05 ± 0 | 0.03 ± 0 | 0.06 ± 0 | p = 0.001 |
Lysine (g/kg) * | 0.07 ± 0.1 | 0.04 ± 0 | 0.1 ± 0.1 | p < 0.001 |
Methionine (g/kg) * | 0.03 ± 0 | 0.02 ± 0 | 0.05 ± 0.1 | p < 0.001 |
Phenylalanine (g/kg) * | 0.06 ± 0 | 0.04 ± 0 | 0.1 ± 0 | p = 0.001 |
Histidine (g/kg) * | 0.03 ± 0 | 0.02 ± 0 | 0.04 ± 0 | p = 0.001 |
Tryptophan (g/kg) * | 0.01 ± 0 | 0.01 ± 0 | 0.02 ± 0 | p = 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Presti, N.; Rideout, T.C.; Temple, J.L.; Bratta, B.; Hostler, D. Recovery after Exercise-Induced Muscle Damage in Subjects Following a Vegetarian or Mixed Diet. Nutrients 2024, 16, 2711. https://doi.org/10.3390/nu16162711
Presti N, Rideout TC, Temple JL, Bratta B, Hostler D. Recovery after Exercise-Induced Muscle Damage in Subjects Following a Vegetarian or Mixed Diet. Nutrients. 2024; 16(16):2711. https://doi.org/10.3390/nu16162711
Chicago/Turabian StylePresti, Nicole, Todd C. Rideout, Jennifer L. Temple, Brian Bratta, and David Hostler. 2024. "Recovery after Exercise-Induced Muscle Damage in Subjects Following a Vegetarian or Mixed Diet" Nutrients 16, no. 16: 2711. https://doi.org/10.3390/nu16162711
APA StylePresti, N., Rideout, T. C., Temple, J. L., Bratta, B., & Hostler, D. (2024). Recovery after Exercise-Induced Muscle Damage in Subjects Following a Vegetarian or Mixed Diet. Nutrients, 16(16), 2711. https://doi.org/10.3390/nu16162711