Investigating a New Way to Assess Metabolic Risk in Pregnant Females with Prior RYGB Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Laboratory Methods
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Correlation of Ceramide Risk Score/Ceramide Ratio and Glucose Metabolism in the RYGB Cohort
3.3. Correlation of Ceramide Risk Score/Ceramide RATIO and Glucose Metabolism in Individuals without Bariatric Surgery
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017–2018. NCHS Data Brief 2020, 1–8. [Google Scholar]
- Choi, R.H.; Tatum, S.M.; Symons, J.D.; Summers, S.A.; Holland, W.L. Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat. Rev. Cardiol. 2021, 18, 701–711. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Langley-Evans, S.C.; Pearce, J.; Ellis, S. Overweight, obesity and excessive weight gain in pregnancy as risk factors for adverse pregnancy outcomes: A narrative review. J. Hum. Nutr. Diet. 2022, 35, 250–264. [Google Scholar] [CrossRef]
- Hinerman, A.S.; Barinas-Mitchell, E.J.M.; El Khoudary, S.R.; Courcoulas, A.P.; Wahed, A.S.; King, W.C. Change in predicted 10-year and lifetime cardiovascular disease risk after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 2020, 16, 1011–1021. [Google Scholar] [CrossRef]
- Feichtinger, M.; Stopp, T.; Hofmann, S.; Springer, S.; Pils, S.; Kautzky-Willer, A.; Kiss, H.; Eppel, W.; Tura, A.; Bozkurt, L.; et al. Altered glucose profiles and risk for hypoglycaemia during oral glucose tolerance testing in pregnancies after gastric bypass surgery. Diabetologia 2017, 60, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Göbl, C.S.; Bozkurt, L.; Tura, A.; Leutner, M.; Andrei, L.; Fahr, L.; Husslein, P.; Eppel, W.; Kautzky-Willer, A. Assessment of glucose regulation in pregnancy after gastric bypass surgery. Diabetologia 2017, 60, 2504–2513. [Google Scholar] [CrossRef] [PubMed]
- Vaurs, C.; Brun, J.F.; Bertrand, M.; Burcelin, R.; du Rieu, M.C.; Anduze, Y.; Hanaire, H.; Ritz, P. Post-prandial hypoglycemia results from a non-glucose-dependent inappropriate insulin secretion in Roux-en-Y gastric bypassed patients. Metabolism 2016, 65, 18–26. [Google Scholar] [CrossRef]
- Leutner, M.; Klimek, P.; Göbl, C.; Bozkurt, L.; Harreiter, J.; Husslein, P.; Eppel, W.; Baumgartner-Parzer, S.; Pacini, G.; Thurner, S.; et al. Glucagon-like peptide 1 (GLP-1) drives postprandial hyperinsulinemic hypoglycemia in pregnant women with a history of Roux-en-Y gastric bypass operation. Metabolism 2019, 91, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Johansson, K.; Cnattingius, S.; Näslund, I.; Roos, N.; Trolle Lagerros, Y.; Granath, F.; Stephansson, O.; Neovius, M. Outcomes of Pregnancy after Bariatric Surgery. N. Engl. J. Med. 2015, 372, 814–824. [Google Scholar] [CrossRef]
- Lesko, J.; Peaceman, A. Pregnancy outcomes in women after bariatric surgery compared with obese and morbidly obese controls. Obs. Gynecol. 2012, 119, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, L.; Göbl, C.S.; Leutner, M.; Eppel, W.; Kautzky-Willer, A. Bariatric Surgery Impacts Levels of Serum Lipids during Pregnancy. Obes. Facts 2020, 13, 58–65. [Google Scholar] [CrossRef]
- Albaugh, V.L.; Kindel, T.L.; Nissen, S.E.; Aminian, A. Cardiovascular Risk Reduction Following Metabolic and Bariatric Surgery. Surg. Clin. N. Am. 2021, 101, 269–294. [Google Scholar] [CrossRef]
- Ho, Q.W.C.; Zheng, X.; Ali, Y. Ceramide Acyl Chain Length and Its Relevance to Intracellular Lipid Regulation. Int. J. Mol. Sci. 2022, 23, 9697. [Google Scholar] [CrossRef]
- Mayo Clinic. MI Heart Ceramides. Available online: https://www.mayocliniclabs.com/test-catalog/overview/606777#Overview (accessed on 12 December 2023).
- McGurk, K.A.; Keavney, B.D.; Nicolaou, A. Circulating ceramides as biomarkers of cardiovascular disease: Evidence from phenotypic and genomic studies. Atherosclerosis 2021, 327, 18–30. [Google Scholar] [CrossRef]
- Tarasov, K.; Ekroos, K.; Suoniemi, M.; Kauhanen, D.; Sylvänne, T.; Hurme, R.; Gouni-Berthold, I.; Berthold, H.K.; Kleber, M.E.; Laaksonen, R.; et al. Molecular lipids identify cardiovascular risk and are efficiently lowered by simvastatin and PCSK9 deficiency. J. Clin. Endocrinol. Metab. 2014, 99, E45–E52. [Google Scholar] [CrossRef]
- Summers, S.A.; Chaurasia, B.; Holland, W.L. Metabolic Messengers: Ceramides. Nat. Metab. 2019, 1, 1051–1058. [Google Scholar] [CrossRef]
- Poss, A.M.; Summers, S.A. Too Much of a Good Thing? An Evolutionary Theory to Explain the Role of Ceramides in NAFLD. Front. Endocrinol. 2020, 11, 505. [Google Scholar] [CrossRef] [PubMed]
- Holland, W.L.; Brozinick, J.T.; Wang, L.P.; Hawkins, E.D.; Sargent, K.M.; Liu, Y.; Narra, K.; Hoehn, K.L.; Knotts, T.A.; Siesky, A.; et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 2007, 5, 167–179. [Google Scholar] [CrossRef]
- Hojjati, M.R.; Li, Z.; Zhou, H.; Tang, S.; Huan, C.; Ooi, E.; Lu, S.; Jiang, X.C. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J. Biol. Chem. 2005, 280, 10284–10289. [Google Scholar] [CrossRef] [PubMed]
- Park, T.S.; Hu, Y.; Noh, H.L.; Drosatos, K.; Okajima, K.; Buchanan, J.; Tuinei, J.; Homma, S.; Jiang, X.C.; Abel, E.D.; et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J. Lipid Res. 2008, 49, 2101–2112. [Google Scholar] [CrossRef] [PubMed]
- Haus, J.M.; Kashyap, S.R.; Kasumov, T.; Zhang, R.; Kelly, K.R.; Defronzo, R.A.; Kirwan, J.P. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009, 58, 337–343. [Google Scholar] [CrossRef]
- Hilvo, M.; Salonurmi, T.; Havulinna, A.S.; Kauhanen, D.; Pedersen, E.R.; Tell, G.S.; Meyer, K.; Teeriniemi, A.M.; Laatikainen, T.; Jousilahti, P.; et al. Ceramide stearic to palmitic acid ratio predicts incident diabetes. Diabetologia 2018, 61, 1424–1434. [Google Scholar] [CrossRef]
- Mustaniemi, S.; Keikkala, E.; Kajantie, E.; Nurhonen, M.; Jylhä, A.; Morin-Papunen, L.; Öhman, H.; Männistö, T.; Laivuori, H.; Eriksson, J.G.; et al. Serum ceramides in early pregnancy as predictors of gestational diabetes. Sci. Rep. 2023, 13, 13274. [Google Scholar] [CrossRef]
- Jheng, H.F.; Tsai, P.J.; Guo, S.M.; Kuo, L.H.; Chang, C.S.; Su, I.J.; Chang, C.R.; Tsai, Y.S. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol. Cell Biol. 2012, 32, 309–319. [Google Scholar] [CrossRef]
- Huang, H.; Kasumov, T.; Gatmaitan, P.; Heneghan, H.M.; Kashyap, S.R.; Schauer, P.R.; Brethauer, S.A.; Kirwan, J.P. Gastric Bypass Surgery Reduces Plasma Ceramide Subspecies and Improves Insulin Sensitivity in Severely Obese Patients. Obesity 2011, 19, 2235–2240. [Google Scholar] [CrossRef] [PubMed]
- Chaurasia, B.; Tippetts, T.S.; Mayoral Monibas, R.; Liu, J.; Li, Y.; Wang, L.; Wilkerson, J.L.; Sweeney, C.R.; Pereira, R.F.; Sumida, D.H.; et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science 2019, 365, 386–392. [Google Scholar] [CrossRef]
- Stratford, S.; Hoehn, K.L.; Liu, F.; Summers, S.A. Regulation of insulin action by ceramide: Dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J. Biol. Chem. 2004, 279, 36608–36615. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Pyne, S.; Pyne, N.J. Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog. Lipid Res. 2019, 74, 145–159. [Google Scholar] [CrossRef]
- Tura, A.; Sbrignadello, S.; Succurro, E.; Groop, L.; Sesti, G.; Pacini, G. An empirical index of insulin sensitivity from short IVGTT: Validation against the minimal model and glucose clamp indices in patients with different clinical characteristics. Diabetologia 2010, 53, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Kauhanen, D.; Sysi-Aho, M.; Koistinen, K.M.; Laaksonen, R.; Sinisalo, J.; Ekroos, K. Development and validation of a high-throughput LC-MS/MS assay for routine measurement of molecular ceramides. Anal. Bioanal. Chem. 2016, 408, 3475–3483. [Google Scholar] [CrossRef]
- Meeusen, J.W.; Donato, L.J.; Bryant, S.C.; Baudhuin, L.M.; Berger, P.B.; Jaffe, A.S. Plasma Ceramides. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1933–1939. [Google Scholar] [CrossRef]
- Hilvo, M.; Vasile, V.C.; Donato, L.J.; Hurme, R.; Laaksonen, R. Ceramides and Ceramide Scores: Clinical Applications for Cardiometabolic Risk Stratification. Front. Endocrinol. 2020, 11, 570628. [Google Scholar] [CrossRef]
- Hilvo, M.; Wallentin, L.; Ghukasyan Lakic, T.; Held, C.; Kauhanen, D.; Jylhä, A.; Lindbäck, J.; Siegbahn, A.; Granger, C.B.; Koenig, W.; et al. Prediction of Residual Risk by Ceramide-Phospholipid Score in Patients With Stable Coronary Heart Disease on Optimal Medical Therapy. J. Am. Heart Assoc. 2020, 9, e015258. [Google Scholar] [CrossRef]
- Augé, N.; Maupas-Schwalm, F.; Elbaz, M.; Thiers, J.C.; Waysbort, A.; Itohara, S.; Krell, H.W.; Salvayre, R.; Nègre-Salvayre, A. Role for matrix metalloproteinase-2 in oxidized low-density lipoprotein-induced activation of the sphingomyelin/ceramide pathway and smooth muscle cell proliferation. Circulation 2004, 110, 571–578. [Google Scholar] [CrossRef]
- Li, H.; Junk, P.; Huwiler, A.; Burkhardt, C.; Wallerath, T.; Pfeilschifter, J.; Förstermann, U. Dual effect of ceramide on human endothelial cells: Induction of oxidative stress and transcriptional upregulation of endothelial nitric oxide synthase. Circulation 2002, 106, 2250–2256. [Google Scholar] [CrossRef]
- Shimabukuro, M.; Zhou, Y.T.; Levi, M.; Unger, R.H. Fatty acid-induced beta cell apoptosis: A link between obesity and diabetes. Proc. Natl. Acad. Sci. USA 1998, 95, 2498–2502. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Poss, A.M.; Krick, B.; Maschek, J.A.; Haaland, B.; Cox, J.E.; Karra, P.; Ibele, A.R.; Hunt, S.C.; Adams, T.D.; Holland, W.L.; et al. Following Roux-en-Y gastric bypass surgery, serum ceramides demarcate patients that will fail to achieve normoglycemia and diabetes remission. Med 2022, 3, 452–467. [Google Scholar] [CrossRef]
- Visentin, R.; Brodersen, K.; Richelsen, B.; Møller, N.; Dalla Man, C.; Pedersen, A.K.; Abrahamsen, J.; Holst, J.J.; Nielsen, M.F. Increased Insulin Secretion and Glucose Effectiveness in Obese Patients with Type 2 Diabetes following Bariatric Surgery. J. Diabetes Res. 2023, 2023, 7127426. [Google Scholar] [CrossRef]
- Rico, J.E.; Specker, B.; Perry, C.A.; McFadden, J.W. Plasma Ceramides and Triglycerides Are Elevated during Pregnancy in Association with Markers of Insulin Resistance in Hutterite Women. Lipids 2020, 55, 375–386. [Google Scholar] [CrossRef]
- Simonson, D.C.; Halperin, F.; Foster, K.; Vernon, A.; Goldfine, A.B. Clinical and Patient-Centered Outcomes in Obese Patients with Type 2 Diabetes 3 Years After Randomization to Roux-en-Y Gastric Bypass Surgery Versus Intensive Lifestyle Management: The SLIMM-T2D Study. Diabetes Care 2018, 41, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Angelidi, A.M.; Kokkinos, A.; Sanoudou, D.; Connelly, M.A.; Alexandrou, A.; Mingrone, G.; Mantzoros, C.S. Early metabolomic, lipid and lipoprotein changes in response to medical and surgical therapeutic approaches to obesity. Metabolism 2023, 138, 155346. [Google Scholar] [CrossRef]
- Feris, F.; McRae, A.; Kellogg, T.A.; McKenzie, T.; Ghanem, O.; Acosta, A. Mucosal and hormonal adaptations after Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 2023, 19, 37–49. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, Y.; An, Y.; Wang, Q.; Liu, J.; Wang, G. The Changes of Lipidomic Profiles Reveal Therapeutic Effects of Exenatide in Patients with Type 2 Diabetes. Front. Endocrinol. 2022, 13, 677202. [Google Scholar] [CrossRef]
Variable | Ceramide Risk Score Pearson Correlation (p-Value) | Ceramide Risk Score 95% Confidence Interval | Ceramide Ratio Pearson Correlation (p-Value) | Ceramide Ratio 95% Confidence Interval |
---|---|---|---|---|
Matsuda Index | −0.037 (0.883) | −0.50–0.44 | −0.150 (0.553) | −0.58–0.34 |
HOMA-IR | −0.051 (0.842) | −0.51–0.43 | 0.126 (0.620) | −0.36–0.56 |
Sensitivity index (SI Pacini) | −0.243 (0.331) | −0.64–0.25 | −0.347 (0.158) | −0.70–0.14 |
Disposition index (DI Pacini) | −0.122 (0.630) | −0.56–0.37 | 0.480 (0.044) | 0.02–0.77 |
Calculated sensitivity index (CSI) | −0.199 (0.428) | −0.61- 0.29 | −0.281 (0.259) | −0.66–0.21 |
Triglycerides mg/dL | 0.269 (0.485) | −0.48–0.79 | 0.111 (0.776) | −0.60–0.72 |
Cholesterol total mg/dL | 0.354 (0.350) | −0.41–0.82 | 0.019 (0.962) | −0.65–0.67 |
HDL cholesterol mg/dL | −0.091 (0.816) | −0.71–0.61 | −0.543 (0.139) | −0.88–0.20 |
Chol/HDL Quotient | 0.319 (0.402) | −0.44–0.81 | 0.415 (0.266) | −0.34–0.85 |
LDL cholesterol mg/dL | 0.364 (0.336) | −0.40–0.83 | 0.259 (0.501) | −0.49–0.79 |
HbA1c (%) | 0.295 (0.379) | −0.37–0.76 | −0.010 (0.978) | −0.61–0.59 |
Body fat in percentage | 0.650 (0.012) | 0.18–0.88 | 0.345 (0.228) | −0.23–0.74 |
Ultra-sensitive CRP mg/dL | 0.322 (0.335) | −0.34–0.77 | −0.185 (0.586) | −0.71–0.47 |
Area under the Curve GIP | 0.408 (0.092) | −0.07–0.74 | 0.420 (0.083) | −0.06–0.74 |
Area under the Curve GLP | −0.220 (0.380) | −0.62–0.28 | −0.317 (0.200) | −0.68–0.18 |
Area under the curve Glucagon | −0.173 (0.493) | −0.59–0.32 | −0.343 (0.164) | −0.70–0.15 |
Variable | Ceramide Risk Score Pearson Correlation (p-Value) | Ceramide Risk Score 95% Confidence Interval | Ceramide Ratio Pearson Correlation (p-Value) | Ceramide Ratio 95% Confidence Interval |
---|---|---|---|---|
Matsuda Index | −0.376 (0.031) | −0.64–0.04 | −0.455 (0.008) | −0.69–0.13 |
HOMA-IR | 0.115 (0.526) | −0.24–0.44 | 0.519 (0.002) | 0.21–0.73 |
Sensitivity index (SI Pacini) | −0.364 (0.041) | −0.63–0.02 | −0.622 (<0.001) | −0.79–0.35 |
Disposition index (DI Pacini) | −0.114 (0.534) | −0.45–0.24 | −0.515 (0.003) | −0.73–0.20 |
Calculated sensitivity index (CSI) | −0.358 (0.044) | −0.63–0.01 | −0.621 (<0.001) | −0.80–0.35 |
Triglycerides mg/dL | 0.347 (0.052) | −0.01–0.62 | 0.492 (0.004) | 0.17–0.72 |
Cholesterol total mg/dL | 0.062 (0.737) | −0.29–0.40 | −0.301 (0.095) | −0.59–0.05 |
HDL cholesterol mg/dL | −0.199 (0.275) | −0.51–0.16 | −0.452 (0.009) | −0.69–0.12 |
Chol/HDL Quotient | 0.313 (0.081) | −0.04–0.60 | 0.243 (0.181) | −0.12–0.55 |
LDL cholesterol mg/dL | 0.078 (0.671) | −0.28–0.42 | −0.267 (0.139) | −0.56–0.09 |
HbA1c (%) | 0.384 (0.036) | 0.03–0.65 | 0.637 (<0.001) | 0.36–0.81 |
Body fat in percentage | 0.602 (0.001) | 0.27–0.81 | 0.702 (<0.001) | 0.43–0.86 |
Ultra-sensitive CRP mg/dL | 0.271 (0.148) | −0.10–0.58 | 0.330 (0.075) | −0.03–0.62 |
Area under the Curve GIP | −0.066 (0.734) | −0.42–0.31 | −0.324 (0.086) | −0.62–0.05 |
Area under the Curve GLP | −0.020 (0.912) | −0.37–0.33 | −0.082 (0.655) | −0.42–0.27 |
Area under the curve Glucagon | 0.084 (0.643) | −0.27–0.42 | −0.059 (0.742) | −0.39–0.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gisinger, T.; Reiter, B.; Preindl, K.; Stimpfl, T.; Gard, L.-I.; Baumgartner-Parzer, S.; Kautzky-Willer, A.; Leutner, M. Investigating a New Way to Assess Metabolic Risk in Pregnant Females with Prior RYGB Surgery. Nutrients 2024, 16, 2704. https://doi.org/10.3390/nu16162704
Gisinger T, Reiter B, Preindl K, Stimpfl T, Gard L-I, Baumgartner-Parzer S, Kautzky-Willer A, Leutner M. Investigating a New Way to Assess Metabolic Risk in Pregnant Females with Prior RYGB Surgery. Nutrients. 2024; 16(16):2704. https://doi.org/10.3390/nu16162704
Chicago/Turabian StyleGisinger, Teresa, Birgit Reiter, Karin Preindl, Thomas Stimpfl, Liliana-Imi Gard, Sabina Baumgartner-Parzer, Alexandra Kautzky-Willer, and Michael Leutner. 2024. "Investigating a New Way to Assess Metabolic Risk in Pregnant Females with Prior RYGB Surgery" Nutrients 16, no. 16: 2704. https://doi.org/10.3390/nu16162704
APA StyleGisinger, T., Reiter, B., Preindl, K., Stimpfl, T., Gard, L.-I., Baumgartner-Parzer, S., Kautzky-Willer, A., & Leutner, M. (2024). Investigating a New Way to Assess Metabolic Risk in Pregnant Females with Prior RYGB Surgery. Nutrients, 16(16), 2704. https://doi.org/10.3390/nu16162704