Genetically Determined Circulating Saturated and Unsaturated Fatty Acids and the Occurrence and Exacerbation of Chronic Obstructive Pulmonary Disease—A Two-Sample Mendelian Randomization Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Sources for Exposure Factors and Outcomes
2.3. Selection of Instrumental Variables
2.4. Statistical Analysis by Mendelian Randomization
3. Results
Visualized Results and Sensitivity Analyses
4. Discussion
4.1. Summary of Current Findings and Implications
4.2. Results Explanation of SFA and Omega-6 FA with COPD Outcomes
5. Strengths and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; Montes de Oca, M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Eur. Respir. J. 2023, 61, 2300239. [Google Scholar] [CrossRef] [PubMed]
- Global burden of chronic respiratory diseases and risk factors, 1990–2019: An update from the Global Burden of Disease Study 2019. eClinicalMedicine 2023, 59, 101936. [CrossRef] [PubMed]
- Gold Science Committee. Global Initiative for Chronic Obstructive Lung Disease—2024 Report; Global Initiative for Chronic Obstructive Lung Disease, Inc.: Deer Park, IL, USA, 2024. [Google Scholar]
- Wilson, N.; Turner, S. Targeting malnutrition in patients with COPD in the community. Br. J. Nurs. 2023, 32, S6–S12. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Csípő, T.; Fazekas-Pongor, V.; Bálint, M.; Csizmadia, Z.; Tarantini, S.; Varga, J.T. The Possible Role of Food and Diet in the Quality of Life in Patients with COPD-A State-of-the-Art Review. Nutrients 2023, 15, 3902. [Google Scholar] [CrossRef] [PubMed]
- Seyedrezazadeh, E.; Moghaddam, M.P.; Ansarin, K.; Asghari Jafarabadi, M.; Sharifi, A.; Sharma, S.; Kolahdooz, F. Dietary Factors and Risk of Chronic Obstructive Pulmonary Disease: A Systemic Review and Meta-Analysis. Tanaffos 2019, 18, 294–309. [Google Scholar] [PubMed]
- Varraso, R.; Chiuve, S.E.; Fung, T.T.; Barr, R.G.; Hu, F.B.; Willett, W.C.; Camargo, C.A. Alternate Healthy Eating Index 2010 and risk of chronic obstructive pulmonary disease among US women and men: Prospective study. BMJ 2015, 350, h286. [Google Scholar] [CrossRef] [PubMed]
- de Batlle, J.; Sauleda, J.; Balcells, E.; Gómez, F.P.; Méndez, M.; Rodriguez, E.; Barreiro, E.; Ferrer, J.J.; Romieu, I.; Gea, J.; et al. Association between Ω3 and Ω6 fatty acid intakes and serum inflammatory markers in COPD. J. Nutr. Biochem. 2012, 23, 817–821. [Google Scholar] [CrossRef] [PubMed]
- Patchen, B.K.; Balte, P.; Bartz, T.M.; Barr, R.G.; Fornage, M.; Graff, M.; Jacobs, D.R., Jr.; Kalhan, R.; Lemaitre, R.N.; O’Connor, G.; et al. Investigating Associations of Omega-3 Fatty Acids, Lung Function Decline, and Airway Obstruction. Am. J. Respir. Crit. Care Med. 2023, 208, 846–857. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Lehoczki, A.; Tarantini, S.; Varga, J.T. Effects of omega-3 supplementation on quality of life, nutritional status, inflammatory parameters, lipid profile, exercise tolerance and inhaled medications in chronic obstructive pulmonary disease. Ann. Palliat. Med. 2022, 11, 2819–2829. [Google Scholar] [CrossRef]
- Adams, S.; Lopata, A.L.; Smuts, C.M.; Baatjies, R.; Jeebhay, M.F. Relationship between Serum Omega-3 Fatty Acid and Asthma Endpoints. Int. J. Env. Res. Public Health 2018, 16, 43. [Google Scholar] [CrossRef]
- Almqvist, C.; Garden, F.; Xuan, W.; Mihrshahi, S.; Leeder, S.R.; Oddy, W.; Webb, K.; Marks, G.B. Omega-3 and omega-6 fatty acid exposure from early life does not affect atopy and asthma at age 5 years. J. Allergy Clin. Immunol. 2007, 119, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Logan, C.A.; Brandt, S.; Wabitsch, M.; Brenner, H.; Wiens, F.; Stahl, B.; Marosvölgyi, T.; Decsi, T.; Rothenbacher, D.; Genuneit, J. New approach shows no association between maternal milk fatty acid composition and childhood wheeze or asthma. Allergy 2017, 72, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, S.C.; Brigham, E.P.; Woo, H.; Hanson, C.K.; McCormack, M.C.; Koch, A.; Putcha, N.; Hansel, N.N. Omega-3 fatty acid intake and prevalent respiratory symptoms among U.S. adults with COPD. BMC Pulm. Med. 2019, 19, 97. [Google Scholar] [CrossRef] [PubMed]
- Frontela-Saseta, C.; González-Bermúdez, C.A.; García-Marcos, L. Diet: A Specific Part of the Western Lifestyle Pack in the Asthma Epidemic. J. Clin. Med. 2020, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Thomashow, M.A.; Yip, N.H.; Burkart, K.M.; Lo Cascio, C.M.; Shimbo, D.; Barr, R.G. Randomization to Omega-3 Fatty Acid Supplementation and Endothelial Function in COPD: The COD-Fish Randomized Controlled Trial. Chronic Obs. Pulm. Dis. 2021, 8, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.R.; Johns, C.B.; Palumbo, M.L.; Murphy, K.C.; Cahill, K.N.; Laidlaw, T.M. Dietary Fatty Acid Modification for the Treatment of Aspirin-Exacerbated Respiratory Disease: A Prospective Pilot Trial. J. Allergy Clin. Immunol. Pract. 2018, 6, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Reisman, J.; Schachter, H.M.; Dales, R.E.; Tran, K.; Kourad, K.; Barnes, D.; Sampson, M.; Morrison, A.; Gaboury, I.; Blackman, J. Treating asthma with omega-3 fatty acids: Where is the evidence? A systematic review. BMC Complement. Altern. Med. 2006, 6, 26. [Google Scholar] [CrossRef]
- Muley, P.; Shah, M.; Muley, A. Omega-3 Fatty Acids Supplementation in Children to Prevent Asthma: Is It Worthy?-A Systematic Review and Meta-Analysis. J. Allergy 2015, 2015, 312052. [Google Scholar] [CrossRef] [PubMed]
- Fonseca Wald, E.L.A.; van den Borst, B.; Gosker, H.R.; Schols, A. Dietary fibre and fatty acids in chronic obstructive pulmonary disease risk and progression: A systematic review. Respirology 2014, 19, 176–184. [Google Scholar] [CrossRef]
- Lai, K.Z.H.; Yehia, N.A.; Semnani-Azad, Z.; Mejia, S.B.; Boucher, B.A.; Malik, V.; Bazinet, R.P.; Hanley, A.J. Lifestyle Factors Associated with Circulating Very Long-Chain Saturated Fatty Acids in Humans: A Systematic Review of Observational Studies. Adv. Nutr. 2023, 14, 99–114. [Google Scholar] [CrossRef]
- Agustí, A.; Melén, E.; DeMeo, D.L.; Breyer-Kohansal, R.; Faner, R. Pathogenesis of chronic obstructive pulmonary disease: Understanding the contributions of gene-environment interactions across the lifespan. Lancet Respir. Med. 2022, 10, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Collins, R. What makes UK Biobank special? Lancet 2012, 379, 1173–1174. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, S.C.; Surendran, P.; Karthikeyan, S.; Lambert, S.A.; Bolton, T.; Pennells, L.; Danesh, J.; Di Angelantonio, E.; Butterworth, A.S.; Inouye, M. Quality control and removal of technical variation of NMR metabolic biomarker data in ~120,000 UK Biobank participants. Sci. Data 2023, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Burgess, S.; Thompson, S.G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 2011, 40, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Fauman, E.B.; Petersen, A.K.; Krumsiek, J.; Santos, R.; Huang, J.; Arnold, M.; Erte, I.; Forgetta, V.; Yang, T.P.; et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 2014, 46, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Long, Y.; Ou, Y.; Li, J.; Huang, Y.; Gao, J. Association between circulating fatty acid metabolites and asthma risk: A two-sample bidirectional Mendelian randomization study. BMC Med. Genom. 2023, 16, 112. [Google Scholar] [CrossRef]
- Hanson, C.; Ponce, J.; Isaak, M.; Heires, A.; Nordgren, T.; Wichman, C.; Furtado, J.D.; LeVan, T.; Romberger, D. Fatty Acids, Amphiregulin Production, and Lung Function in a Cohort of Midwestern Veterans. Front. Rehabil. Sci. 2022, 3, 773835. [Google Scholar] [CrossRef] [PubMed]
- Cornell, K.; Alam, M.; Lyden, E.; Wood, L.; LeVan, T.D.; Nordgren, T.M.; Bailey, K.; Hanson, C. Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007–2012. Nutrients 2019, 11, 317. [Google Scholar] [CrossRef]
- Jiménez-Cepeda, A.; Dávila-Said, G.; Orea-Tejeda, A.; González-Islas, D.; Elizondo-Montes, M.; Pérez-Cortes, G.; Keirns-Davies, C.; Castillo-Aguilar, L.F.; Verdeja-Vendrell, L.; Peláez-Hernández, V.; et al. Dietary intake of fatty acids and its relationship with FEV(1)/FVC in patients with chronic obstructive pulmonary disease. Clin. Nutr. ESPEN 2019, 29, 92–96. [Google Scholar] [CrossRef]
- Root, M.M.; Houser, S.M.; Anderson, J.J.; Dawson, H.R. Healthy Eating Index 2005 and selected macronutrients are correlated with improved lung function in humans. Nutr. Res. 2014, 34, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Rutting, S.; Zakarya, R.; Bozier, J.; Xenaki, D.; Horvat, J.C.; Wood, L.G.; Hansbro, P.M.; Oliver, B.G. Dietary Fatty Acids Amplify Inflammatory Responses to Infection through p38 MAPK Signaling. Am. J. Respir. Cell Mol. Biol. 2019, 60, 554–568. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Jacobs, D.R.; He, K.; Hoffman, E.; Hankinson, J.; Nettleton, J.A.; Barr, R.G. Associations of dairy intake with CT lung density and lung function. J. Am. Coll. Nutr. 2010, 29, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Zong, G.; Li, Y.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Willett, W.C.; Hu, F.B.; Sun, Q. Intake of individual saturated fatty acids and risk of coronary heart disease in US men and women: Two prospective longitudinal cohort studies. BMJ 2016, 355, i5796. [Google Scholar] [CrossRef] [PubMed]
- Innes, J.K.; Calder, P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids 2018, 132, 41–48. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial Outcomes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids on Human Health: An Update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Kim, H.K.; Kang, E.Y.; Go, G.W. Recent insights into dietary ω-6 fatty acid health implications using a systematic review. Food Sci. Biotechnol. 2022, 31, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
- De Cosmi, V.; Mazzocchi, A.; Turolo, S.; Syren, M.L.; Milani, G.P.; Agostoni, C. Long-Chain Polyunsaturated Fatty Acids Supplementation and Respiratory Infections. Ann. Nutr. Metab. 2022, 78, 8–15. [Google Scholar] [CrossRef]
- Miles, E.A.; Childs, C.E.; Calder, P.C. Long-Chain Polyunsaturated Fatty Acids (LCPUFAs) and the Developing Immune System: A Narrative Review. Nutrients 2021, 13, 247. [Google Scholar] [CrossRef] [PubMed]
- Coltell, O.; Sorlí, J.V.; Asensio, E.M.; Barragán, R.; González, J.I.; Giménez-Alba, I.M.; Zanón-Moreno, V.; Estruch, R.; Ramírez-Sabio, J.B.; Pascual, E.C.; et al. Genome-Wide Association Study for Serum Omega-3 and Omega-6 Polyunsaturated Fatty Acids: Exploratory Analysis of the Sex-Specific Effects and Dietary Modulation in Mediterranean Subjects with Metabolic Syndrome. Nutrients 2020, 12, 310. [Google Scholar] [CrossRef]
- Juan, J.; Huang, H.; Jiang, X.; Ardisson Korat, A.V.; Song, M.; Sun, Q.; Willett, W.C.; Jensen, M.K.; Kraft, P. Joint effects of fatty acid desaturase 1 polymorphisms and dietary polyunsaturated fatty acid intake on circulating fatty acid proportions. Am. J. Clin. Nutr. 2018, 107, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Schenk, J.M.; Diep, P.; Murphy, R.A.; Harris, T.B.; Eiriksdottir, G.; Gudnason, V.; Casper, C.; Lampe, J.W.; Neuhouser, M.L. Measurement of Circulating Phospholipid Fatty Acids: Association between Relative Weight Percentage and Absolute Concentrations. J. Am. Coll. Nutr. 2016, 35, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Welty, F.K.; Daher, R.; Garelnabi, M. Fish and Omega-3 Fatty Acids: Sex and Racial Differences in Cardiovascular Outcomes and Cognitive Function. Arter. Thromb. Vasc. Biol. 2024, 44, 89–107. [Google Scholar] [CrossRef] [PubMed]
GWAS ID | Trait | Year | Population | Sample Size (Case/Control) | Number of SNPs | PMID/Consortium |
---|---|---|---|---|---|---|
Fatty acids | ||||||
ebi-a-GCST90092981 | SFA/TFA | 2022 | European | 115,006 | 11,590,399 | 35213538/UKbiobank |
ebi-a-GCST90092929 | MUFA/TFA | 2022 | European | 115,006 | 11,590,399 | 35213538/UKbiobank |
ebi-a-GCST90092941 | PUFA/TFA | 2022 | European | 115,006 | 11,590,399 | 35213538/UKbiobank |
ebi-a-GCST90092932 | Omega-3/TFA | 2022 | European | 115,006 | 11,590,399 | 35213538/UKbiobank |
ebi-a-GCST90092935 | Omega-6/TFA | 2022 | European | 115,006 | 11,590,399 | 35213538/UKbiobank |
ebi-a-GCST90092934 | Omega-6/omega-3 | 2022 | European | 115,006 | 11,590,399 | 35213538/UKbiobank |
ebi-a-GCST90092881 | LA/TFA | 2022 | European | 115,006 | 11,590,399 | 35213538/UKbiobank |
met-d-DHA_pct | DHA/TFA | 2020 | European | 114,999 | 12,321,875 | UKbiobank |
COPD-related outcomes | ||||||
finn-b-J10_COPD | COPD | 2021 | European | (6915/186,723) | 16,380,382 | FinnGen |
finn-b-COPD_HOSPITAL | COPD, hospital admissions | 2021 | European | (6500/212,292) | 16,380,466 | FinnGen |
finn-b-COPD_ASTHMA_INFECTIONS | COPD/asthma-related infections | 2021 | European | (58,925/159,867) | 16,380,466 | FinnGen |
finn-b-COPD_INSUFFICIENCY | COPD-related respiratory insufficiency | 2021 | European | (1031/186,723) | 16,380,365 | FinnGen |
finn-b-PULM_PNEUMONIA_SEPSIS | COPD/asthma/ILD-related pneumonia or pneumonia-derived septicemia | 2021 | European | (27,715/159,867) | 16,380,352 | FinnGen |
Outcome/Exposure | No. SNPs | MR-PRESSO | MR-Egger Pleiotropy | Heterogeneity (IVW) | IVW | WM (Weighted Median) | |||
---|---|---|---|---|---|---|---|---|---|
COPD/FAs | p | Intercept (p) | Q-Value (p) | OR (95%CI) | p (FDR) | OR (95%CI) | p (FDR) | ||
COPD | |||||||||
SFA/TFA | 21 | 0.237 | 0.021 (0.310) | 24.74 (0.211) | FE | 1.254 (0.960–1.637) | 0.097 (0.162) | 1.475 (1.059–2.054) | 0.022 (0.044) |
MUFA/TFA | 48 | 0.069 | 0.0016 (0.808) | 64.90 (0.043) | RE | 1.015 (0.884–1.165), | 0.832 | 0.930 (0.774–1.117) | 0.437 |
PUFA/TFA | 38 | >0.05 (NA) | −0.005 (0.574) | 56.35 (0.022) | RE | 0.944 (0.781–1.141) | 0.552 | 0.962 (0.752–1.232) | 0.761 |
omega-3/TFA | 28 | 0.928 | −0.006 (0.319) | 18.85 (0.875) | FE | 1.044 (0.962–1.134) | 0.301 | 1.051 (0.958–1.153) | 0.293 |
omega-6/TFA | 39 | 0.173 | −0.002 (0.789) | 45.44 (0.190) | FE | 0.948 (0.794–1.113) | 0.558 | 0.854 (0.661–1.104) | 0.228 |
omega-6/omega-3 | 24 | 0.837 | 0.003 (0.628) | 18.01 (0.757) | FE | 0.956 (0.879–1.040) | 0.299 | 0.950 (0.862–1.047) | 0.301 |
LA/TFA | 28 | 0.107 | −0.0167 (0.032) | 39.55 (0.05) | RE | 0.900 (0.752–1.077) | 0.250 | 0.911 (0.755–1.099) | 0.330 |
DHA/TFA | 21 | 0.164 | −0.016 (0.112) | 37.05 (0.012) | RE | 0.999 (0.850–1.174) | 0.991 | 1.059 (0.929–1.207) | 0.390 |
COPD, hospital admissions | |||||||||
SFA/TFA | 21 | 0.195 | 0.024 (0.265) | 25.68 (0.177) | RE | 1.227 (0.929–1.622) | 0.149 | 1.294 (0.908–1.845) | 0.154 |
MUFA/TFA | 49 | 0.115 | 0.003 (0.694) | 60.46 (0.107) | FE | 1.029 (0.900–1.176) | 0.678 | 0.949 (0.792–1.137) | 0.571 |
PUFA/TFA | 39 | 0.065 | −0.006 (0.494) | 52.06 (0.064) | FE | 0.938 (0.781–1.127) | 0.494 | 0.982 (0.774–1.245) | 0.880 |
omega-3/TFA | 28 | 0.937 | −0.006 (0.266) | 18.25 (0.895) | FE | 1.030 (0.947–1.120) | 0.493 | 1.037 (0.943–1.142) | 0.453 |
omega-6/TFA | 40 | 0.169 | −0.005 (0.510) | 47.39 (0.168) | FE | 0.932 (0.777–1.118) | 0.450 | 0.905 (0.689–1.187) | 0.470 |
omega-6/omega-3 | 24 | 0.780 | 0.004 (0.571) | 19.62 (0.664) | FE | 0.972 (0.892–1.060) | 0.524 | 0.962 (0.874–1.059) | 0.433 |
LA/TFA | 28 | 0.051 | −0.018 (0.028) | 41.69 (0.035) | RE | 0.911 (0.754–1.100) | 0.332 | 0.920 (0.756–1.119) | 0.406 |
DHA/TFA | 20 | 0.937 | −0.011 (0.567) | 31.79 (0.033) | RE | 0.778 (0. 556–1.088) | 0.143 | 0.850 (0.570–1.267) | 0.426 |
COPD/asthma-related infections | |||||||||
SFA/TFA | 21 | NA | 0.00027 (0.978) | 37.71 (0.010) | RE | 1.087 (0.955–1.236) | 0.206 | 1.042 (0.902–1.205) | 0.575 |
MUFA/TFA | 49 | 0.061 | 0.001 (0.640) | 65.06 (0.051) | FE | 1.030 (0.976–1.086) | 0.282 | 1.005 (0.937–1.077) | 0.895 |
PUFA/TFA | 39 | 0.193 | 0.003 (0.251) | 44.79 (0.208) | FE | 0.978 (0.916–1.043) | 0.496 | 0.992 (0.902–1.091) | 0.873 |
omega-3/TFA | 28 | 0.294 | −0.0002 (0.930) | 34.72 (0.146) | FE | 1.011 (0.975–1.048) | 0.563 | 1.007 (0.970–1.045) | 0.714 |
omega-6/TFA | 40 | 0.261 | 0.0001 (0.970) | 43.49 (0.286) | FE | 0.940 (0.879–1.004) | 0.065 (0.113) | 0.892 (0.806–0.987) | 0.027 (0.051) |
omega-6/omega-3 | 24 | 0.168 | −0.0005 (0.870) | 33.71 (0.069) | FE | 0.991 (0.952–1.031) | 0.651 | 0.993 (0.958–1.029) | 0.693 |
LA/TFA | 28 | 0.269 | 0.0005 (0.852) | 32.85 (0.202) | FE | 0.981 (0.920–1.046) | 0.549 | 0.985 (0.915–1.061) | 0.690 |
DHA/TFA | 21 | 0.065 | −0.001 (0.775) | 41.05 (0.004) | RE | 0.999 (0.935–1.068) | 0.976 | 1.009 (0.959–1.061) | 0.729 |
COPD-related respiratory insufficiency | |||||||||
SFA/TFA | 21 | 0.234 | 0.028 (0.572) | 24.54 (0.220) | FE | 1.291 (0.677–2.459) | 0.438 | 1.379 (0.621–3.064) | 0.742 |
MUFA/TFA | 49 | 0.259 | −0.006 (0.677) | 53.96 (0.257) | FE | 1.157 (0.858–1.560) | 0.339 | 0.968 (0.642–1.459) | 0.877 |
PUFA/TFA | 39 | 0.118 | −0.0002 (0.991) | 48.57 (0.117) | FE | 0.919 (0.604–1.397) | 0.692 | 1.032 (0.574–1.855) | 0.917 |
omega-3/TFA | 28 | 0.951 | −0.013 (0.352) | 17.44 (0.920) | FE | 1.031 (0.844–1.258) | 0.766 | 1.054 (0.844–1.315) | 0.644 |
omega-6/TFA | 40 | 0.328 | 0.007 (0.700) | 43.08 (0.301) | FE | 0.805 (0.535–1.213) | 0.300 | 0.708 (0.393–1.278) | 0.252 |
omega-6/omega-3 | 24 | 0.965 | 0.002 (0.904) | 13.23 (0.947) | FE | 0.943 (0.747–1.190) | 0.547 | 0.943 (0.747–1.190) | 0.620 |
LA/TFA | 28 | 0.157 | −0.025 (0.180) | 36.78 (0.099) | FE | 0.798 (0.524–1.215) | 0.293 | 0.922 (0.591–1.440) | 0.722 |
DHA/TFA | 21 | 0.618 | −0.025 (0.178) | 14.68 (0.794) | FE | 0.952 (0.714–1.269) | 0.738 | 1.062 (0.776–1.454) | 0.708 |
COPD/asthma/ILD-related pneumonia | |||||||||
SFA/TFA | 21 | 0.158 | −0.007 (0.503) | 26.64 (0.146) | FE | 1.275 (1.103–1.474) | 0.001 (0.002) | 1.186 (0.987–1.425) | 0.069 (0.120) |
MUFA/TFA | 49 | 0.505 | 0.0013 (0.646) | 45.99 (0.555) | FE | 0.984 (0.926–1.046) | 0.607 | 0.942 (0.858–1.035) | 0.212 |
PUFA/TFA | 39 | 0.328 | 0.0007 (0.843) | 39.47 (0.404) | FE | 1.002 (0.924–1.087) | 0.965 | 1.088 (0.960–1.232) | 0.186 |
omega-3/TFA | 28 | 0.617 | 0.001 (0.636) | 25.30 (0.557) | FE | 1.041 (0.998–1.087) | 0.065 | 1.034 (0.986–1.085) | 0.164 |
omega-6/TFA | 40 | 0.300 | −0.0002 (0.958) | 42.00 (0.342) | FE | 0.908 (0.832–0.990) | 0.029 (0.055) | 0.873 (0.765–0.996) | 0.043 (0.078) |
omega-6/omega-3 | 24 | 0.324 | 0.0016 (0.678) | 28.55 (0.196) | FE | 0.967 (0.921–1.015) | 0.177 | 0.966 (0.919–1.017) | 0.187 |
LA/TFA | 28 | 0.100 | −0.002 (0.606) | 38.73 (0.067) | FE | 0.928 (0.846–1.018) | 0.114 | 0.937 (0.849–1.034) | 0.193 |
DHA/TFA | 21 | 0.554 | 0.001 (0.796) | 21.88 (0.347) | FE | 1.048 (0.983–1.118) | 0.153 | 1.051 (0.984–1.122) | 0.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.-M.; Chen, Y.-M.; Chen, C.-G.; Wang, C.; Li, M.-M.; Guo, Y.-B. Genetically Determined Circulating Saturated and Unsaturated Fatty Acids and the Occurrence and Exacerbation of Chronic Obstructive Pulmonary Disease—A Two-Sample Mendelian Randomization Study. Nutrients 2024, 16, 2691. https://doi.org/10.3390/nu16162691
Liu Z-M, Chen Y-M, Chen C-G, Wang C, Li M-M, Guo Y-B. Genetically Determined Circulating Saturated and Unsaturated Fatty Acids and the Occurrence and Exacerbation of Chronic Obstructive Pulmonary Disease—A Two-Sample Mendelian Randomization Study. Nutrients. 2024; 16(16):2691. https://doi.org/10.3390/nu16162691
Chicago/Turabian StyleLiu, Zhao-Min, Yu-Ming Chen, Chao-Gang Chen, Cheng Wang, Min-Min Li, and Yu-Biao Guo. 2024. "Genetically Determined Circulating Saturated and Unsaturated Fatty Acids and the Occurrence and Exacerbation of Chronic Obstructive Pulmonary Disease—A Two-Sample Mendelian Randomization Study" Nutrients 16, no. 16: 2691. https://doi.org/10.3390/nu16162691
APA StyleLiu, Z.-M., Chen, Y.-M., Chen, C.-G., Wang, C., Li, M.-M., & Guo, Y.-B. (2024). Genetically Determined Circulating Saturated and Unsaturated Fatty Acids and the Occurrence and Exacerbation of Chronic Obstructive Pulmonary Disease—A Two-Sample Mendelian Randomization Study. Nutrients, 16(16), 2691. https://doi.org/10.3390/nu16162691