Personalized Nutrition: Tailoring Dietary Recommendations through Genetic Insights
Abstract
:1. Introduction
2. Genetic Variability and Nutrient Metabolism
3. Current Research in Nutrigenomics
4. Methods in Personalized Nutrition Research
5. Practical Applications of Personalized Nutrition
6. Impact on Disease Prevention and Management
7. Challenges and Controversies
8. Future Perspectives
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bush, C.L.; Blumberg, J.B.; El-Sohemy, A.; Minich, D.M.; Ordovás, J.M.; Reed, D.G.; Behm, V.A.Y. Toward the Definition of Personalized Nutrition: A Proposal by the American Nutrition Association. J. Am. Coll. Nutr. 2020, 39, 5–15. [Google Scholar] [CrossRef]
- Ferguson, L.R.; De Caterina, R.; Görman, U.; Allayee, H.; Kohlmeier, M.; Prasad, C.; Choi, M.S.; Curi, R.; De Luis, D.A.; Gil, Á. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1-Fields of Precision Nutrition. Lifestyle Genom. 2016, 9, 12–27. [Google Scholar] [CrossRef]
- Gibney, M.J.; Walsh, M.C. The Future Direction of Personalised Nutrition: My Diet, My Phenotype, My Genes. Proc. Nutr. Soc. 2013, 72, 219–225. [Google Scholar] [CrossRef]
- Harper, A.E. Dietary Guidelines in Perspective. J. Nutr. 1996, 126, 1042S–1048S. [Google Scholar] [CrossRef]
- Hite, A.H.; Feinman, R.D.; Guzman, G.E.; Satin, M.; Schoenfeld, P.A.; Wood, R.J. In the Face of Contradictory Evidence: Report of the Dietary Guidelines for Americans Committee. Nutrition 2010, 26, 915–924. [Google Scholar] [CrossRef]
- Byers, T. The Role of Epidemiology in Developing Nutritional Recommendations: Past, Present, and Future. Am. J. Clin. Nutr. 1999, 69, 1304S–1308S. [Google Scholar] [CrossRef]
- Nestle, M. Animal v. Plant Foods in Human Diets and Health: Is the Historical Record Unequivocal? Proc. Nutr. Soc. 1999, 58, 211–218. [Google Scholar] [CrossRef]
- Archer, E.; Marlow, M.L.; Lavie, C.J. Controversy and Debate: Memory-Based Methods Paper 1: The Fatal Flaws of Food Frequency Questionnaires and Other Memory-Based Dietary Assessment Methods. J. Clin. Epidemiol. 2018, 104, 113–124. [Google Scholar] [CrossRef]
- Mullins, V.A.; Bresette, W.; Johnstone, L.; Hallmark, B.; Chilton, F.H. Genomics in Personalized Nutrition: Can You “Eat for Your Genes”? Nutrients 2020, 12, 3118. [Google Scholar] [CrossRef]
- Stover, P.J. Nutritional Genomics. Physiol. Genom. 2004, 16, 161–165. [Google Scholar] [CrossRef]
- Sinha, R.; Kachru, D.; Ricchetti, R.R.; Singh-Rambiritch, S.; Muthukumar, K.M.; Singaravel, V.; Irudayanathan, C.; Reddy-Sinha, C.; Junaid, I.; Sharma, G. Leveraging Genomic Associations in Precision Digital Care for Weight Loss: Cohort Study. J. Med. Internet Res. 2021, 23, e25401. [Google Scholar] [CrossRef]
- Kohlmeier, M.; De Caterina, R.; Ferguson, L.R.; Görman, U.; Allayee, H.; Prasad, C.; Kang, J.X.; Nicoletti, C.F.; Martinez, J.A. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalized Nutrition: Part 2-Ethics, Challenges and Endeavors of Precision Nutrition. Lifestyle Genom. 2016, 9, 28–46. [Google Scholar] [CrossRef] [PubMed]
- Murgia, C.; Adamski, M.M. Translation of Nutritional Genomics into Nutrition Practice: The next Step. Nutrients 2017, 9, 366. [Google Scholar] [CrossRef]
- Trost, B.; Loureiro, L.O.; Scherer, S.W. Discovery of Genomic Variation across a Generation. Hum. Mol. Genet. 2021, 30, R174–R186. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium. An Integrated Map of Genetic Variation from 1,092 Human Genomes. Nature 2012, 491, 56. [Google Scholar]
- 1000 Genomes Project Consortium. A Map of Human Genome Variation from Population Scale Sequencing. Nature 2010, 467, 1061. [Google Scholar]
- Crawford, D.C.; Akey, D.T.; Nickerson, D.A. The Patterns of Natural Variation in Human Genes. Annu. Rev. Genom. Hum. Genet. 2005, 6, 287–312. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Z.; Absher, D.M.; Tang, H.; Southwick, A.M.; Casto, A.M.; Ramachandran, S.; Cann, H.M.; Barsh, G.S.; Feldman, M.; Cavalli-Sforza, L.L. Worldwide Human Relationships Inferred from Genome-Wide Patterns of Variation. Science 2008, 319, 1100–1104. [Google Scholar] [CrossRef]
- Hinds, D.A.; Stuve, L.L.; Nilsen, G.B.; Halperin, E.; Eskin, E.; Ballinger, D.G.; Frazer, K.A.; Cox, D.R. Whole-Genome Patterns of Common DNA Variation in Three Human Populations. Science 2005, 307, 1072–1079. [Google Scholar] [CrossRef]
- Lietz, G.; Hesketh, J. A Network Approach to Micronutrient Genetics: Interactions with Lipid Metabolism. Curr. Opin. Lipidol. 2009, 20, 112–120. [Google Scholar] [CrossRef]
- Loktionov, A. Common Gene Polymorphisms and Nutrition: Emerging Links with Pathogenesis of Multifactorial Chronic Diseases. J. Nutr. Biochem. 2003, 14, 426–451. [Google Scholar] [CrossRef] [PubMed]
- Haggarty, P. B-Vitamins, Genotype and Disease Causality. Proc. Nutr. Soc. 2007, 66, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Zumaraga, M.P.P.; Arquiza, J.M.R.A.; Concepcion, M.A.; Perlas, L.; Alcudia-Catalma, M.N.; Rodriguez, M. Genotype Effects on β-Carotene Conversion to Vitamin A: Implications on Reducing Vitamin A Deficiency in the Philippines. Food Nutr. Bull. 2022, 43, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Tomita, M. Genetic Variations of Vitamin A-Absorption and Storage-Related Genes, and Their Potential Contribution to Vitamin A Deficiency Risks among Different Ethnic Groups. Front. Nutr. 2022, 9, 861619. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, J.; Zhang, Y.; Ma, X.; Dai, Q.; Zhi, H.; Wang, B.; Wang, L. Apolipoprotein E Gene Variants and Risk of Coronary Heart Disease: A Meta-analysis. BioMed Res. Int. 2016, 2016, 3912175. [Google Scholar] [CrossRef]
- Wilson, P.W.; Schaefer, E.J.; Larson, M.G.; Ordovas, J.M. Apolipoprotein E Alleles and Risk of Coronary Disease: A Meta-Analysis. Arterioscler. Thromb. Vasc. Biol. 1996, 16, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Lumsden, A.L.; Mulugeta, A.; Zhou, A.; Hyppönen, E. Apolipoprotein E (APOE) Genotype-Associated Disease Risks: A Phenome-Wide, Registry-Based, Case-Control Study Utilising the UK Biobank. EBioMedicine 2020, 59, 102954. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H. Diet-Gene Interactions Underlie Metabolic Individuality and Influence Brain Development: Implications for Clinical Practice Derived from Studies on Choline Metabolism. Ann. Nutr. Metab. 2012, 60, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.Y.; Moore, J.B.; Bai, L.; Tang, G.; Gong, Y.Y. In the Context of the Triple Burden of Malnutrition: A Systematic Review of Gene-Diet Interactions and Nutritional Status. Crit. Rev. Food Sci. Nutr. 2024, 64, 3235–3263. [Google Scholar] [CrossRef]
- Li, S.X.; Imamura, F.; Ye, Z.; Schulze, M.B.; Zheng, J.; Ardanaz, E.; Arriola, L.; Boeing, H.; Dow, C.; Fagherazzi, G. Interaction between Genes and Macronutrient Intake on the Risk of Developing Type 2 Diabetes: Systematic Review and Findings from European Prospective Investigation into Cancer (EPIC)-InterAct. Am. J. Clin. Nutr. 2017, 106, 263–275. [Google Scholar] [CrossRef]
- Drabsch, T.; Holzapfel, C. A Scientific Perspective of Personalised Gene-Based Dietary Recommendations for Weight Management. Nutrients 2019, 11, 617. [Google Scholar] [CrossRef]
- Rozga, M.; Latulippe, M.E.; Steiber, A. Advancements in Personalized Nutrition Technologies: Guiding Principles for Registered Dietitian Nutritionists. J. Acad. Nutr. Diet. 2020, 120, 1074–1085. [Google Scholar] [CrossRef]
- Favara, G.; Maugeri, A.; Magnano San Lio, R.; Barchitta, M.; Agodi, A. Exploring Gene–Diet Interactions for Mother–Child Health: A Systematic Review of Epidemiological Studies. Nutrients 2024, 16, 994. [Google Scholar] [CrossRef]
- De Olazarra, A.; Wang, S. Advances in Point-of-Care Genetic Testing for Personalized Medicine Applications. Biomicrofluidics 2023, 17, 031501. [Google Scholar] [CrossRef]
- Plichta, J.K.; Griffin, M.; Thakuria, J.; Hughes, K.S. What’s New in Genetic Testing for Cancer Susceptibility? Oncology 2016, 30, 787. [Google Scholar]
- Korf, B.R.; Rehm, H.L. New Approaches to Molecular Diagnosis. JAMA 2013, 309, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.D. Diagnostic Applications of High-Throughput DNA Sequencing. Annu. Rev. Pathol. Mech. Dis. 2013, 8, 381–410. [Google Scholar] [CrossRef]
- Aradhya, S.; Facio, F.M.; Metz, H.; Manders, T.; Colavin, A.; Kobayashi, Y.; Nykamp, K.; Johnson, B.; Nussbaum, R.L. Applications of Artificial Intelligence in Clinical Laboratory Genomics; Wiley Online Library: Hoboken, NJ, USA, 2023; Volume 193, p. e32057. [Google Scholar]
- Sedlazeck, F.J.; Lee, H.; Darby, C.A.; Schatz, M.C. Piercing the Dark Matter: Bioinformatics of Long-Range Sequencing and Mapping. Nat. Rev. Genet. 2018, 19, 329–346. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Ngwa, J.S.; Van Rooij, F.J.; Zillikens, M.C.; Wojczynski, M.K.; Frazier-Wood, A.C.; Houston, D.K.; Kanoni, S.; Lemaitre, R.N.; Luan, J. Genome-Wide Meta-Analysis of Observational Studies Shows Common Genetic Variants Associated with Macronutrient Intake. Am. J. Clin. Nutr. 2013, 97, 1395–1402. [Google Scholar] [CrossRef]
- Kwon, Y.-J.; Park, D.H.; Choi, J.-E.; Lee, D.; Hong, K.-W.; Lee, J.-W. Identification of the Interactions between Specific Genetic Polymorphisms and Nutrient Intake Associated with General and Abdominal Obesity in Middle-Aged Adults. Clin. Nutr. 2022, 41, 543–551. [Google Scholar] [CrossRef]
- Wittwer, J.; Rubio-Aliaga, I.; Hoeft, B.; Bendik, I.; Weber, P.; Daniel, H. Nutrigenomics in Human Intervention Studies: Current Status, Lessons Learned and Future Perspectives. Mol. Nutr. Food Res. 2011, 55, 341–358. [Google Scholar] [CrossRef]
- García-Cañas, V.; Simó, C.; León, C.; Cifuentes, A. Advances in Nutrigenomics Research: Novel and Future Analytical Approaches to Investigate the Biological Activity of Natural Compounds and Food Functions. J. Pharm. Biomed. Anal. 2010, 51, 290–304. [Google Scholar] [CrossRef]
- Kussmann, M.; Krause, L.; Siffert, W. Nutrigenomics: Where Are We with Genetic and Epigenetic Markers for Disposition and Susceptibility? Nutr. Rev. 2010, 68, S38–S47. [Google Scholar] [CrossRef] [PubMed]
- Afman, L.A.; Müller, M. Human Nutrigenomics of Gene Regulation by Dietary Fatty Acids. Prog. Lipid Res. 2012, 51, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Masotti, A.; Da Sacco, L.; Bottazzo, G.F.; Alisi, A. Microarray Technology: A Promising Tool in Nutrigenomics. Crit. Rev. Food Sci. Nutr. 2010, 50, 693–698. [Google Scholar] [CrossRef]
- Zhang, X.; Yap, Y.; Wei, D.; Chen, G.; Chen, F. Novel Omics Technologies in Nutrition Research. Biotechnol. Adv. 2008, 26, 169–176. [Google Scholar] [CrossRef]
- Cocozza, S. Methodological Aspects of the Assessment of Gene–Nutrient Interactions at the Population Level. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Tucker, K.L. Assessment of Usual Dietary Intake in Population Studies of Gene–Diet Interaction. Nutr. Metab. Cardiovasc. Dis. 2007, 17, 74–81. [Google Scholar] [CrossRef]
- Wareham, N.J.; Young, E.H.; Loos, R.J. Epidemiological Study Designs to Investigate Gene–Behavior Interactions in the Context of Human Obesity. Obesity 2008, 16, S66–S71. [Google Scholar] [CrossRef]
- Liu, C.; Maity, A.; Lin, X.; Wright, R.O.; Christiani, D.C. Design and Analysis Issues in Gene and Environment Studies. Environ. Health 2012, 11, 93. [Google Scholar] [CrossRef]
- Pirastu, N.; McDonnell, C.; Grzeszkowiak, E.J.; Mounier, N.; Imamura, F.; Merino, J.; Day, F.R.; Zheng, J.; Taba, N.; Concas, M.P. Using Genetic Variation to Disentangle the Complex Relationship between Food Intake and Health Outcomes. PLoS Genet. 2022, 18, e1010162. [Google Scholar] [CrossRef] [PubMed]
- Motsinger-Reif, A.A.; Reif, D.M.; Fanelli, T.J.; Ritchie, M.D. A Comparison of Analytical Methods for Genetic Association Studies. Genet. Epidemiol. Off. Publ. Int. Genet. Epidemiol. Soc. 2008, 32, 767–778. [Google Scholar] [CrossRef]
- Pasaniuc, B.; Price, A.L. Dissecting the Genetics of Complex Traits Using Summary Association Statistics. Nat. Rev. Genet. 2017, 18, 117–127. [Google Scholar] [CrossRef]
- Schaid, D.J.; McDonnell, S.K.; Sinnwell, J.P.; Thibodeau, S.N. Multiple Genetic Variant Association Testing by Collapsing and Kernel Methods with Pedigree or Population Structured Data. Genet. Epidemiol. 2013, 37, 409–418. [Google Scholar] [CrossRef]
- Zhu, Y.; Xiong, M. Family-Based Association Studies for next-Generation Sequencing. Am. J. Hum. Genet. 2012, 90, 1028–1045. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Liu, H. Statistical Analysis of Big Data on Pharmacogenomics. Adv. Drug Deliv. Rev. 2013, 65, 987–1000. [Google Scholar] [CrossRef]
- Kuo, S.-E.; Lai, H.-S.; Hsu, J.-M.; Yu, Y.-C.; Zheng, D.-Z.; Hou, T.-W. A Clinical Nutritional Information System with Personalized Nutrition Assessment. Comput. Methods Progr. Biomed. 2018, 155, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.; Nitschke, E.; Tovar, A.; Mattar, L.; Gottesman, K.; Hamlett, P.; Rozga, M. Nutrition and Physical Activity Interventions Provided by Nutrition and Exercise Practitioners for the General Population: An Evidence-Based Practice Guideline from the Academy of Nutrition and Dietetics and American Council on Exercise. J. Acad. Nutr. Diet. 2023, 123, 1215–1237. [Google Scholar] [CrossRef]
- Araujo Almeida, V.; Littlejohn, P.; Cop, I.; Brown, E.; Afroze, R.; Davison, K.M. Comparison of Nutrigenomics Technology Interface Tools for Consumers and Health Professionals: A Sequential Explanatory Mixed Methods Investigation. J. Med. Internet Res. 2019, 21, e12580. [Google Scholar] [CrossRef]
- Wischmeyer, P.E.; Bear, D.E.; Berger, M.M.; De Waele, E.; Gunst, J.; McClave, S.A.; Prado, C.M.; Puthucheary, Z.; Ridley, E.J.; Van den Berghe, G. Personalized Nutrition Therapy in Critical Care: 10 Expert Recommendations. Crit. Care 2023, 27, 261. [Google Scholar] [CrossRef]
- Floris, M.; Cano, A.; Porru, L.; Addis, R.; Cambedda, A.; Idda, M.L.; Steri, M.; Ventura, C.; Maioli, M. Direct-to-Consumer Nutrigenetics Testing: An Overview. Nutrients 2020, 12, 566. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bailo, B.; El-Sohemy, A. Recent Advances and Current Controversies in Genetic Testing for Personalized Nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Hu, F.B. Precision Nutrition for Prevention and Management of Type 2 Diabetes. Lancet Diabetes Endocrinol. 2018, 6, 416–426. [Google Scholar] [CrossRef]
- Konstantinidou, V.; Ruiz, L.A.D.; Ordovás, J.M. Personalized Nutrition and Cardiovascular Disease Prevention: From Framingham to PREDIMED. Adv. Nutr. 2014, 5, 368S–371S. [Google Scholar] [CrossRef] [PubMed]
- Palmnäs, M.; Brunius, C.; Shi, L.; Rostgaard-Hansen, A.; Torres, N.E.; González-Domínguez, R.; Zamora-Ros, R.; Ye, Y.L.; Halkjær, J.; Tjønneland, A. Perspective: Metabotyping—A Potential Personalized Nutrition Strategy for Precision Prevention of Cardiometabolic Disease. Adv. Nutr. 2020, 11, 524–532. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Milagro, F.I.; Allayee, H.; Chmurzynska, A.; Choi, M.S.; Curi, R.; De Caterina, R.; Ferguson, L.R.; Goni, L.; Kang, J.X. Guide for Current Nutrigenetic, Nutrigenomic, and Nutriepigenetic Approaches for Precision Nutrition Involving the Prevention and Management of Chronic Diseases Associated with Obesity. Lifestyle Genom. 2017, 10, 43–62. [Google Scholar] [CrossRef]
- Laddu, D.; Hauser, M. Addressing the Nutritional Phenotype through Personalized Nutrition for Chronic Disease Prevention and Management. Prog. Cardiovasc. Dis. 2019, 62, 9–14. [Google Scholar] [CrossRef]
- Joffe, Y.T.; Houghton, C.A. A Novel Approach to the Nutrigenetics and Nutrigenomics of Obesity and Weight Management. Curr. Oncol. Rep. 2016, 18, 43. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Milton-Laskibar, I.; Martínez, J.A. Precision Nutrition Based on Phenotypical Traits and the (Epi) Genotype: Nutrigenetic and Nutrigenomic Approaches for Obesity Care. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 315–325. [Google Scholar] [CrossRef]
- Lau, F.C.; Bagchi, M.; Sen, C.; Roy, S.; Bagchi, D. Nutrigenomic Analysis of Diet-Gene Interactions on Functional Supplements for Weight Management. Curr. Genom. 2008, 9, 239–251. [Google Scholar] [CrossRef]
- Ramos-Lopez, O.; Riezu-Boj, J.I.; Milagro, F.I. Genetic and Epigenetic Nutritional Interactions Influencing Obesity Risk and Adiposity Outcomes. Curr. Opin. Clin. Nutr. Metab. Care 2022, 25, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.R.; Gilliland, J.A.; O’Connor, C.P.; Seabrook, J.A.; Madill, J. Change in Weight, BMI, and Body Composition in a Population-Based Intervention Versus Genetic-Based Intervention: The NOW Trial. Obesity 2020, 28, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Arkadianos, I.; Valdes, A.M.; Marinos, E.; Florou, A.; Gill, R.D.; Grimaldi, K.A. Improved Weight Management Using Genetic Information to Personalize a Calorie Controlled Diet. Nutr. J. 2007, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Cuervo, M.; Goni, L.; Milagro, F.I.; Riezu-Boj, J.I.; Martinez, J.A. Modeling of an Integrative Prototype Based on Genetic, Phenotypic, and Environmental Information for Personalized Prescription of Energy-Restricted Diets in Overweight/Obese Subjects. Am. J. Clin. Nutr. 2020, 111, 459–470. [Google Scholar] [CrossRef] [PubMed]
- San-Cristobal, R.; Navas-Carretero, S.; Livingstone, K.M.; Celis-Morales, C.; Macready, A.L.; Fallaize, R.; O’Donovan, C.B.; Lambrinou, C.P.; Moschonis, G.; Marsaux, C.F. Mediterranean Diet Adherence and Genetic Background Roles within a Web-Based Nutritional Intervention: The Food4Me Study. Nutrients 2017, 9, 1107. [Google Scholar] [CrossRef] [PubMed]
- De Roos, B. Personalised Nutrition: Ready for Practice? Proc. Nutr. Soc. 2013, 72, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Stewart-Knox, B.; Rankin, A.; Kuznesof, S.; Poínhos, R.; de Almeida, M.D.V.; Fischer, A.; Frewer, L.J. Promoting Healthy Dietary Behaviour through Personalised Nutrition: Technology Push or Technology Pull? Proc. Nutr. Soc. 2015, 74, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Stewart-Knox, B.; Kuznesof, S.; Robinson, J.; Rankin, A.; Orr, K.; Duffy, M.; Poínhos, R.; de Almeida, M.D.V.; Macready, A.; Gallagher, C. Factors Influencing European Consumer Uptake of Personalised Nutrition. Results of a Qualitative Analysis. Appetite 2013, 66, 67–74. [Google Scholar] [CrossRef]
- Adams, S.H.; Anthony, J.C.; Carvajal, R.; Chae, L.; Khoo, C.S.H.; Latulippe, M.E.; Matusheski, N.V.; McClung, H.L.; Rozga, M.; Schmid, C.H. Perspective: Guiding Principles for the Implementation of Personalized Nutrition Approaches That Benefit Health and Function. Adv. Nutr. 2020, 11, 25–34. [Google Scholar] [CrossRef]
- Ronteltap, A.; Van Trijp, J.; Renes, R. Consumer Acceptance of Nutrigenomics-Based Personalised Nutrition. Br. J. Nutr. 2008, 101, 132–144. [Google Scholar] [CrossRef]
- Stewart-Knox, B.J.; Bunting, B.P.; Gilpin, S.; Parr, H.J.; Pinhao, S.; Strain, J.; de Almeida, M.D.; Gibney, M. Attitudes toward Genetic Testing and Personalised Nutrition in a Representative Sample of European Consumers. Br. J. Nutr. 2008, 101, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Fournier, T.; Poulain, J.-P. Eating According to One’s Genes? Exploring the French Public’s Understanding of and Reactions to Personalized Nutrition. Qual. Health Res. 2018, 28, 2195–2207. [Google Scholar] [CrossRef] [PubMed]
- Holzapfel, C.; Waldenberger, M.; Lorkowski, S.; Daniel, H.; Working Group “Personalized Nutrition” of the German Nutrition Society. Genetics and Epigenetics in Personalized Nutrition: Evidence, Expectations, and Experiences. Mol. Nutr. Food Res. 2022, 66, 2200077. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.B. From Personalised Nutrition to Precision Medicine: The Rise of Consumer Genomics and Digital Health. Proc. Nutr. Soc. 2020, 79, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Gan, J.; Siegel, J.B.; German, J.B. Molecular Annotation of Food–Towards Personalized Diet and Precision Health. Trends Food Sci. Technol. 2019, 91, 675–680. [Google Scholar] [CrossRef]
- Sawicki, C.; Haslam, D.; Bhupathiraju, S. Utilising the Precision Nutrition Toolkit in the Path towards Precision Medicine. Proc. Nutr. Soc. 2023, 82, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Sempionatto, J.R.; Montiel, V.R.-V.; Vargas, E.; Teymourian, H.; Wang, J. Wearable and Mobile Sensors for Personalized Nutrition. ACS Sens. 2021, 6, 1745–1760. [Google Scholar] [CrossRef] [PubMed]
- O’sullivan, A.; Henrick, B.; Dixon, B.; Barile, D.; Zivkovic, A.; Smilowitz, J.; Lemay, D.; Martin, W.; German, J.B.; Schaefer, S.E. 21st Century Toolkit for Optimizing Population Health through Precision Nutrition. Crit. Rev. Food Sci. Nutr. 2018, 58, 3004–3015. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Robinson, E.; Raphaeli, O. The Future of Artificial Intelligence in Clinical Nutrition. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 200–206. [Google Scholar] [CrossRef]
- Theodore Armand, T.P.; Nfor, K.A.; Kim, J.-I.; Kim, H.-C. Applications of Artificial Intelligence, Machine Learning, and Deep Learning in Nutrition: A Systematic Review. Nutrients 2024, 16, 1073. [Google Scholar] [CrossRef]
- Kirk, D.; Catal, C.; Tekinerdogan, B. Precision Nutrition: A Systematic Literature Review. Comput. Biol. Med. 2021, 133, 104365. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Karvela, M.; Sohbati, M.; Shinawatra, T.; Toumazou, C. PERSON—Personalized Expert Recommendation System for Optimized Nutrition. IEEE Trans. Biomed. Circuits Syst. 2017, 12, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M. Personalized Nutrition by Prediction of Glycemic Responses. Cell 2015, 163, 1079–1094. [Google Scholar] [CrossRef] [PubMed]
Traditional Nutrition | Personalized Nutrition | |
---|---|---|
| Advantages |
|
| Limitations |
|
Gene Name | Function | Associated Nutritional Influence | Relevant Studies and Findings |
---|---|---|---|
MTHFR | Methylenetetrahydrofolate reductase | Folate metabolism | Variations affect folate metabolism and cardiovascular risk [20,21,22] |
APOE | Apolipoprotein E | Lipid metabolism | Influences lipid levels and cardiovascular disease risk [25,26,27] |
TCF7L2 | Transcription factor 7-like 2 | Type 2 diabetes risk | Associated with increased risk of type 2 diabetes and response to dietary carbohydrates [29,30] |
BCMO1 | Beta-carotene oxygenase 1 | Beta-carotene metabolism | Variations affect vitamin A levels and carotenoid metabolism [23,24] |
FTO | Fat mass and obesity-associated protein | Obesity, energy balance | Linked to increased risk of obesity and response to dietary fats [31,32] |
Intervention Type | Target Population | Genetic Markers Used | Dietary Adjustments | Health Outcomes |
---|---|---|---|---|
Dietary modification | Obese individuals | FTO, MC4R | Reduced fat intake, increased physical activity | Weight loss, improved metabolic health |
Supplementation | Individuals with folate deficiency | MTHFR | Increased folate intake | Reduced cardiovascular risk |
Lifestyle changes | People at risk of cardiovascular disease | APOE | Modified fat intake, increased omega-3 fatty acids | Improved lipid profile |
Medical nutrition therapy | Diabetics | TCF7L2, PPARG | Controlled carbohydrate intake | Better blood sugar control |
Technological integration | General population | Various | Personalized meal plans based on genetic tests | Overall health improvement |
Technology Type | Description | Application in Nutritional Assessment | Advantages and Limitations |
---|---|---|---|
Genomic Sequencing | Analyzing genetic variations | Identifying genetic predispositions | High accuracy, cost-intensive |
Wearable Sensors | Monitoring physical activity and health metrics | Tracking lifestyle factors | Real-time data, privacy concerns |
Bioinformatics Tools | Interpreting genetic data | Integrating multi-omics data | Comprehensive analysis, complex interpretation |
AI and Machine Learning | Predicting health outcomes | Customizing nutrition plans | Predictive capabilities, ethical issues |
Mobile Health Apps | Providing dietary recommendations | Engaging users in dietary changes | User-friendly, variable reliability |
Potential Benefits | Associated Risks | Mitigation Strategies | Ethical Considerations |
---|---|---|---|
Optimized health outcomes | Data privacy concerns | Robust data security measures | Informed consent |
Reduced risk of chronic diseases | Potential for misuse of genetic information | Strict regulatory frameworks | Transparency in data use |
Improved dietary adherence | Ethical issues | Ethical guidelines | Fair access to PN services |
Tailored interventions | Accessibility and cost | Insurance coverage, subsidies | Avoidance of genetic discrimination |
Enhanced patient engagement | Over-reliance on genetic data | Comprehensive health assessment | Holistic approach to health |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singar, S.; Nagpal, R.; Arjmandi, B.H.; Akhavan, N.S. Personalized Nutrition: Tailoring Dietary Recommendations through Genetic Insights. Nutrients 2024, 16, 2673. https://doi.org/10.3390/nu16162673
Singar S, Nagpal R, Arjmandi BH, Akhavan NS. Personalized Nutrition: Tailoring Dietary Recommendations through Genetic Insights. Nutrients. 2024; 16(16):2673. https://doi.org/10.3390/nu16162673
Chicago/Turabian StyleSingar, Saiful, Ravinder Nagpal, Bahram H. Arjmandi, and Neda S. Akhavan. 2024. "Personalized Nutrition: Tailoring Dietary Recommendations through Genetic Insights" Nutrients 16, no. 16: 2673. https://doi.org/10.3390/nu16162673
APA StyleSingar, S., Nagpal, R., Arjmandi, B. H., & Akhavan, N. S. (2024). Personalized Nutrition: Tailoring Dietary Recommendations through Genetic Insights. Nutrients, 16(16), 2673. https://doi.org/10.3390/nu16162673