Drug Consumption and Hydration Status: Analysis of the Associations in an Elder Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Health Information Compilation
2.3. Hydration Status Evaluation
2.3.1. Validated Questionnaire
2.3.2. Body Composition Analysis
2.3.3. Urinary Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto Nacional de Estadística INE. Una Población Envejecida. Available online: https://www.ine.es/prodyser/demografia_UE/bloc-1c.html?lang=es#:~:text=En%20primer%20lugar%2C%20la%20evoluci%C3%B3n,5%20puntos%20porcentuales%20(p.p.) (accessed on 24 June 2024).
- Instituto Nacional de Estadística INE. Indicadores de Estructura de la Población. Available online: https://www.ine.es/jaxiT3/Datos.htm?t=1488 (accessed on 24 June 2024).
- Panda, A.; Booth, S.L. Nutritional Aspects of Healthy Aging. Med. Clin. N. Am. 2022, 106, 853–863. [Google Scholar] [CrossRef]
- Roberts, S.B.; Silver, R.E.; Das, S.K.; Fielding, R.A.; Gilhooly, C.H.; Jacques, P.F.; Kelly, J.M.; Mason, J.B.; McKeown, N.M.; Reardon, M.A.; et al. Healthy Aging-Nutrition Matters: Start Early and Screen Often. Adv. Nutr. 2021, 12, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Petraccia, L.; Liberati, G.; Masciullo, S.G.; Grassi, M.; Fraioli, A. Water, mineral waters and health. Clin. Nutr. 2006, 25, 377–385. [Google Scholar] [CrossRef]
- Garrett, D.C.; Rae, N.; Fletcher, J.R.; Zarnke, S.; Thorson, S.; Hogan, D.B.; Fear, E.C. Engineering Approaches to Assessing Hydration Status. IEEE Rev. Biomed. Eng. 2018, 11, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Jéquier, E.; Constant, F. Water as an essential nutrient: The physiological basis of hydration. Eur. J. Clin. Nutr. 2010, 64, 115–123. [Google Scholar] [CrossRef]
- Lacey, J.; Corbett, J.; Forni, L.; Hooper, L.; Hughes, F.; Minto, G.; Moss, C.; Price, S.; Whyte, G.; Woodcock, T.; et al. A multidisciplinary consensus on dehydration: Definitions, diagnostic methods and clinical implications. Ann. Med. 2019, 51, 232–251. [Google Scholar] [CrossRef] [PubMed]
- Sanson, G.; Marzinotto, I.; De Matteis, D.; Boscutti, G.; Barazzoni, R.; Zanetti, M. Impaired hydration status in acutely admitted older patients: Prevalence and impact on mortality. Age Ageing 2021, 50, 1151–1158. [Google Scholar] [CrossRef]
- El-Sharkawy, A.M.; Watson, P.; Neal, K.R.; Ljungqvist, O.; Maughan, R.J.; Sahota, O.; Lobo, D.N. Hydration and outcome in older patients admitted to hospital (The HOOP prospective cohort study). Age Ageing 2015, 44, 943–947. [Google Scholar] [CrossRef]
- Stookey, J.D.; Pieper, C.F.; Cohen, H.J. Is the prevalence of dehydration among community-dwelling older adults really low? Informing current debate over the fluid recommendation for adults aged 70+ years. Public Health Nutr. 2005, 8, 1275–1285. [Google Scholar] [CrossRef]
- Hooper, L.; Bunn, D.K.; Downing, A.; Jimoh, F.O.; Groves, J.; Free, C.; Cowap, V.; Potter, J.F.; Hunter, P.R.; Shepstone, L. Which Frail Older People Are Dehydrated? The UK DRIE Study. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1341–1347. [Google Scholar] [CrossRef]
- Marra, M.V.; Simmons, S.F.; Shotwell, M.S.; Hudson, A.; Hollingsworth, E.K.; Long, E.; Kuertz, B.; Silver, H.J. Elevated Serum Osmolality and Total Water Deficit Indicate Impaired Hydration Status in Residents of Long-Term Care Facilities Regardless of Low or High Body Mass Index. J. Acad. Nutr. Diet. 2016, 116, 828–836.e822. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Medication Safety in Polypharmacy. Technical Report. Available online: https://iris.who.int/bitstream/handle/10665/325454/WHO-UHC-SDS-2019.11-eng.pdf?sequence=1 (accessed on 11 June 2024).
- Molokhia, M.; Majeed, A. Current and future perspectives on the management of polypharmacy. BMC Fam. Pract. 2017, 18, 70. [Google Scholar] [CrossRef] [PubMed]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef]
- Wauters, M.; Elseviers, M.; Vaes, B.; Degryse, J.; Dalleur, O.; Vander Stichele, R.; Van Bortel, L.; Azermai, M. Polypharmacy in a Belgian cohort of community-dwelling oldest old (80+). Acta Clin. Belg. 2016, 71, 158–166. [Google Scholar] [CrossRef]
- Herr, M.; Robine, J.M.; Pinot, J.; Arvieu, J.J.; Ankri, J. Polypharmacy and frailty: Prevalence, relationship, and impact on mortality in a French sample of 2350 old people. Pharmacoepidemiol. Drug Saf. 2015, 24, 637–646. [Google Scholar] [CrossRef]
- Hovstadius, B.; Petersson, G.; Hellström, L.; Ericson, L. Trends in inappropriate drug therapy prescription in the elderly in Sweden from 2006 to 2013: Assessment using national indicators. Drugs Aging 2014, 31, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, F.; Orlando, V.; Tari, D.U.; Di Giorgio, A.; Cittadini, A.; Trifirò, G.; Menditto, E. How healthy is community-dwelling elderly population? Results from Southern Italy. Transl. Med. UniSa 2015, 13, 59–64. [Google Scholar]
- Błeszyńska, E.; Wierucki, Ł.; Zdrojewski, T.; Renke, M. Pharmacological Interactions in the Elderly. Medicina 2020, 56, 320. [Google Scholar] [CrossRef]
- Mohn, E.S.; Kern, H.J.; Saltzman, E.; Mitmesser, S.H.; McKay, D.L. Evidence of Drug-Nutrient Interactions with Chronic Use of Commonly Prescribed Medications: An Update. Pharmaceutics 2018, 10, 36. [Google Scholar] [CrossRef]
- Puga, A.M.; Lopez-Oliva, S.; Trives, C.; Partearroyo, T.; Varela-Moreiras, G. Effects of Drugs and Excipients on Hydration Status. Nutrients 2019, 11, 669. [Google Scholar] [CrossRef]
- Michenot, F.; Sommet, A.; Bagheri, H.; Lapeyre-Mestre, M.; Montastruc, J.L. Adverse drug reactions in patients older than 70 years during the heat wave occurred in France in summer 2003: A study from the French PharmacoVigilance Database. Pharmacoepidemiol. Drug Saf. 2006, 15, 735–740. [Google Scholar] [CrossRef]
- Mecawi, A.S.; Araujo, I.G.; Rocha, F.F.; Coimbra, T.M.; Antunes-Rodrigues, J.; Reis, L.C. Ontogenetic role of angiontensin-converting enzyme in rats: Thirst and sodium appetite evaluation. Physiol. Behav. 2010, 99, 118–124. [Google Scholar] [CrossRef]
- Sakai, K.; Agassandian, K.; Morimoto, S.; Sinnayah, P.; Cassell, M.D.; Davisson, R.L.; Sigmund, C.D. Local production of angiotensin II in the subfornical organ causes elevated drinking. J. Clin. Investig. 2007, 117, 1088–1095. [Google Scholar] [CrossRef]
- Liamis, G.; Rodenburg, E.M.; Hofman, A.; Zietse, R.; Stricker, B.H.; Hoorn, E.J. Electrolyte disorders in community subjects: Prevalence and risk factors. Am. J. Med. 2013, 126, 256–263. [Google Scholar] [CrossRef]
- Khow, K.S.; Lau, S.Y.; Li, J.Y.; Yong, T.Y. Diuretic-associated electrolyte disorders in the elderly: Risk factors, impact, management and prevention. Curr. Drug Saf. 2014, 9, 2–15. [Google Scholar] [CrossRef]
- Puga, A.M.; Partearroyo, T.; Varela-Moreiras, G. Hydration status, drug interactions, and determinants in a Spanish elderly population: A pilot study. J. Physiol. Biochem. 2018, 74, 139–151. [Google Scholar] [CrossRef]
- Hoen, L.; Pfeffer, D.; Zapf, R.; Raabe, A.; Hildebrand, J.; Kraft, J.; Kalkhof, S. Association of Drug Application and Hydration Status in Elderly Patients. Nutrients 2021, 13, 1929. [Google Scholar] [CrossRef]
- Baron, S.; Courbebaisse, M.; Lepicard, E.M.; Friedlander, G. Assessment of hydration status in a large population. Br. J. Nutr. 2015, 113, 147–158. [Google Scholar] [CrossRef]
- Hooper, L.; Bunn, D.; Jimoh, F.O.; Fairweather-Tait, S.J. Water-loss dehydration and aging. Mech. Ageing Dev. 2014, 136–137, 50–58. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística INE. Principales Series de Población Desde 1998. Comunidades Autónomas. Available online: https://www.ine.es/jaxi/Tabla.htm?path=/t20/e245/p08/l0/&file=02002.px&L=0 (accessed on 24 July 2024).
- Agencia Estatal de Meteorología. Resúmenes Climatológicos. Comunidad de Madrid. Available online: https://www.aemet.es/es/serviciosclimaticos/vigilancia_clima/resumenes?w=1&datos=-1&n=5&k=mad (accessed on 11 June 2024).
- WHO Collaborating Centre for Drug Statistics Methodology. Structure and Principles. Available online: https://www.whocc.no/atc/structure_and_principles/ (accessed on 11 June 2024).
- Laja García, A.I.; Samaniego Vaesken, M.L.; Partearroyo, T.; Varela Moreiras, G. Validated questionnaire to assess the hydration status in a healthy adult Spanish population: A cross sectional study. Nutr. Hosp. 2019, 36, 875–883. [Google Scholar] [CrossRef]
- Marfell-Jones, M.; Olds, T.; Stewart, A.; Carter, L. International Standards for Anthropometric Assessment (2006); International Society for the Advancement of Kinanthropometry (ISAK). Available online: https://researchportal.vub.be/en/publications/international-standards-for-anthropometric-assessment-2006 (accessed on 11 June 2024).
- Khosla, T.; Lowe, C.R. Indices of obesity derived from body weight and height. Br. J. Prev. Soc. Med. 1967, 21, 122–128. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. Available online: https://iris.who.int/handle/10665/42330 (accessed on 11 June 2024).
- Armstrong, L.E.; Maresh, C.M.; Castellani, J.W.; Bergeron, M.F.; Kenefick, R.W.; LaGasse, K.E.; Riebe, D. Urinary indices of hydration status. Int. J. Sport. Nutr. 1994, 4, 265–279. [Google Scholar] [CrossRef]
- Panteghini, M. Enzymatic assays for creatinine: Time for action. Clin. Chem. Lab. Med. 2008, 46, 567–572. [Google Scholar] [CrossRef]
- ARUP laboratories Laboratory Test Directory. Creatinine 24-Hour Urine. Available online: https://ltd.aruplab.com/Tests/Pub/0020473 (accessed on 2 July 2024).
- Stuver, S.O.; Lyons, J.; Coviello, A.; Fredman, L. Feasibility of 24-hr Urine Collection for Measurement of Biomarkers in Community-Dwelling Older Adults. J. Appl. Gerontol. 2017, 36, 1393–1408. [Google Scholar] [CrossRef]
- Białecka-Dębek, A.; Pietruszka, B. The association between hydration status and cognitive function among free-living elderly volunteers. Aging Clin. Exp. Res. 2019, 31, 695–703. [Google Scholar] [CrossRef]
- Li, S.; Xiao, X.; Zhang, X. Hydration Status in Older Adults: Current Knowledge and Future Challenges. Nutrients 2023, 15, 2609. [Google Scholar] [CrossRef]
- Cebrino, J.; Portero de la Cruz, S. Polypharmacy and associated factors: A gender perspective in the elderly Spanish population (2011–2020). Front. Pharmacol. 2023, 14, 1189644. [Google Scholar] [CrossRef]
- Nissensohn, M.; Sánchez-Villegas, A.; Ortega, R.M.; Aranceta-Bartrina, J.; Gil, Á.; González-Gross, M.; Varela-Moreiras, G.; Serra-Majem, L. Beverage Consumption Habits and Association with Total Water and Energy Intakes in the Spanish Population: Findings of the ANIBES Study. Nutrients 2016, 8, 232. [Google Scholar] [CrossRef]
- Malisova, O.; Poulia, K.A.; Kolyzoi, K.; Lysandropoulos, A.; Sfendouraki, K.; Kapsokefalou, M. Evaluation of water balance in a population of older adults. A case control study. Clin. Nutr. ESPEN 2018, 24, 95–99. [Google Scholar] [CrossRef]
- Begg, D.P. Disturbances of thirst and fluid balance associated with aging. Physiol. Behav. 2017, 178, 28–34. [Google Scholar] [CrossRef]
- Archer, E.; Marlow, M.L.; Lavie, C.J. Controversy and debate: Memory-Based Methods Paper 1: The fatal flaws of food frequency questionnaires and other memory-based dietary assessment methods. J. Clin. Epidemiol. 2018, 104, 113–124. [Google Scholar] [CrossRef]
- Leib, D.E.; Zimmerman, C.A.; Knight, Z.A. Thirst. Curr. Biol. 2016, 26, R1260–R1265. [Google Scholar] [CrossRef]
- Houston, M.C. Nonsteroidal anti-inflammatory drugs and antihypertensives. Am. J. Med. 1991, 90, 42s–47s. [Google Scholar] [CrossRef]
- Arndt, T. Urine-creatinine concentration as a marker of urine dilution: Reflections using a cohort of 45,000 samples. Forensic Sci. Int. 2009, 186, 48–51. [Google Scholar] [CrossRef]
- Carrieri, M.; Trevisan, A.; Bartolucci, G.B. Adjustment to concentration-dilution of spot urine samples: Correlation between specific gravity and creatinine. Int. Arch. Occup. Environ. Health 2001, 74, 63–67. [Google Scholar] [CrossRef]
- Franz, S.; Skopp, G.; Boettcher, M.; Musshoff, F. Creatinine excretion in consecutive urine samples after controlled ingestion of water. Drug Test. Anal. 2019, 11, 435–440. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Pumerantz, A.C.; Fiala, K.A.; Roti, M.W.; Kavouras, S.A.; Casa, D.J.; Maresh, C.M. Human hydration indices: Acute and longitudinal reference values. Int. J. Sport. Nutr. Exerc. Metab. 2010, 20, 145–153. [Google Scholar] [CrossRef]
- Sands, J.M. Urine concentrating and diluting ability during aging. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 1352–1357. [Google Scholar] [CrossRef]
- Rowe, J.W.; Shock, N.W.; DeFronzo, R.A. The influence of age on the renal response to water deprivation in man. Nephron 1976, 17, 270–278. [Google Scholar] [CrossRef]
- Lambert, K.; Carey, S. Dehydration in geriatrics: Consequences and practical guidelines. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 36–41. [Google Scholar] [CrossRef]
- Queremel Milani, D.A.; Jialal, I. Urinalysis. Available online: https://www.ncbi.nlm.nih.gov/books/NBK557685/ (accessed on 4 July 2023).
- Burger, M.; Betz, D.; Hampel, C.; Vogel, M. Efficacy and tolerability of solifenacin in men with overactive bladder: Results of an observational study. World J. Urol. 2014, 32, 1041–1047. [Google Scholar] [CrossRef]
- Zhou, R.; Che, X.; Zhou, Z.; Ma, Y. A Systematic Review and Meta-Analysis of the Efficacy and Safety of Tamsulosin Plus Tadalafil Compared with Tamsulosin Alone in Treating Males with Lower Urinary Tract Symptoms Secondary to Benign Prostrate Hyperplasia. Am. J. Mens. Health 2023, 17, 15579883231155096. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.G.; Waldréus, N. An Aggregate Urine Analysis Tool to Detect Acute Dehydration. Int. J. Sport. Nutr. Exerc. Metab. 2013, 23, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Needleman, S.B.; Porvaznik, M.; Ander, D. Creatinine analysis in single collection urine specimens. J. Forensic Sci. 1992, 37, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.T. Urine creatinine excretion: Variability and volume dependency during sleep deprivation. Psychosom. Med. 1971, 33, 539–543. [Google Scholar] [CrossRef]
- Masento, N.A.; Golightly, M.; Field, D.T.; Butler, L.T.; van Reekum, C.M. Effects of hydration status on cognitive performance and mood. Br. J. Nutr. 2014, 111, 1841–1852. [Google Scholar] [CrossRef]
Total Population (n = 144) | Men (n = 61) | Women (n = 83) | |
---|---|---|---|
Non-drug users (%) | 11.1 | 9.8 | 12.0 |
Drug users (%) | 88.9 | 90.2 | 88.0 |
Total Population (n = 144) | Men (n = 61) | Women (n = 83) | |
---|---|---|---|
Cardiovascular (%) | 68.1 | 73.8 | 63.9 |
Gastrointestinal (%) | 36.8 | 42.6 | 32.5 |
Endocrine (%) | 32.6 | 32.8 | 32.5 |
Nervous (%) | 31.3 | 23 | 37.3 * |
Diuretics (%) | 25.7 | 27.9 | 24.1 |
Musculoskeletal (%) | 20.1 | 23.0 | 18.1 |
Genito-urinary (%) | 15.3 | 31.1 | 3.6 *** |
Respiratory (%) | 9.0 | 11.5 | 7.2 |
Total Population (n = 144) | Men (n = 61) | Women (n = 83) | |
---|---|---|---|
Water intake (L/day) | 1.00 (0.60–1.50) | 1.00 (0.60–1.40) | 1.00 (0.75–1.50) |
Water intake from beverages (L/day) | 1.67 (1.27–2.1) | 1.68 (1.37–2.01) | 1.63 (1.21–2.30) |
Water intake from food (L/day) | 0.61 (0.43–0.89) | 0.69 * (0.48–0.89) | 0.50 (0.42–0.89) |
Total water intake (L/day) | 2.31 (1.82–2.91) | 2.31 (2.03–2.90) | 2.30 (1.71–2.93) |
Total water elimination (L/day) | 2.21 (1.89–2.63) | 2.15 (1.84–2.54) | 2.24 (1.97–2.75) |
Water balance (L/day) | 0.04 (−0.43–0.54) | 0.14 (−0.17–0.72) | −0.08 (−0.61–0.49) |
Water intake/body weight (mL/Kg) | 13.03 (8.99–19.43) | 11.98 * (7.50–16.51) | 14.99 (9.77–21.19) |
Water intake from beverages/weight (mL/Kg) | 23.35 (16.65–30.33) | 21.20 * (16.82–24.88) | 25.00 (16.26–32.62) |
Water intake from food/weight (mL/Kg) | 7.78 (6.07–11.89) | 8.73 (6.55–11.67) | 7.06 (5.59–12.36) |
Total water intake/body weight (mL/Kg) | 31.45 (24.28–42.11) | 30.60 (24.53–36.96) | 32.50 (24.23–43.95) |
Water intake/free fat mass (mL/Kg) | 22.47 (14.96–33.33) | 17.85 *** (11.07–25.64) | 26.81 (18.82–42.86) |
Water intake from beverages/free fat mass (mL/Kg) | 37.24 (29.04–53.17) | 32.27 *** (26.57–38.53) | 48.23 (31.72–63.94) |
Water intake from food/free fat mass (mL/Kg) | 13.91 (10.39–19.87) | 13.49 (9.93–18.40) | 14.33 (10.64–24.30) |
Total water intake/free fat mass (mL/Kg) | 53.85 (41.50–73.45) | 45.97 *** (37.83–56.02) | 66.87 (45.90–80.88) |
Men | ||||||||
---|---|---|---|---|---|---|---|---|
Non-Adjusted | Adjusted by Age | |||||||
Total drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | −0.038 | 0.048 | 0.773 | −0.016 | −0.074 | 0.046 | 0.557 | 0.076 |
Total cardiovascular drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | −0.271 | 0.019 | 0.034 | 0.058 | −0.282 | 0.020 | 0.029 | 0.052 |
Total gastrointestinal drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | 0.139 | 0.008 | 0.284 | 0.003 | 0.101 | 0.008 | 0.414 | 0.112 |
Total endocrine drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | −0.195 | 0.011 | 0.132 | 0.022 | −0.210 | 0.011 | 0.107 | 0.025 |
Total diuretic drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | −0.105 | 0.006 | 0.419 | −0.006 | −0.112 | 0.007 | 0.398 | −0.020 |
Total musculoskeletal drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | 0.109 | 0.008 | 0.403 | −0.005 | 0.074 | 0.008 | 0.557 | 0.082 |
Total genito-urinary drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | 0.205 | 0.009 | 0.113 | 0.026 | 0.165 | 0.008 | 0.176 | 0.145 |
Total respiratory drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | 0.110 | 0.010 | 0.399 | 0.005 | −0.089 | 0.015 | 0.498 | −0.014 |
Total drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | 0.178 | 0.129 | 0.107 | 0.020 | 0.184 | 0.026 | 0.065 | 0.209 |
Total cardiovascular drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | 0.179 | 0.011 | 0.105 | 0.020 | 0.183 | 0.010 | 0.081 | 0.119 |
Total gastrointestinal drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | 0.023 | 0.005 | 0.838 | −0.012 | 0.027 | 0.004 | 0.804 | 0.066 |
Total endocrine drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | −0.039 | 0.007 | 0.728 | −0.011 | −0.038 | 0.007 | 0.735 | −0.019 |
Total diuretic drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | 0.095 | 0.005 | 0.392 | −0.003 | 0.098 | 0.004 | 0.362 | 0.046 |
Total musculoskeletal drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | 0.245 | 0.006 | 0.025 | 0.049 | 0.249 | 0.006 | 0.018 | 0.135 |
Total genito-urinary drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | 0.194 | 0.002 | 0.079 | 0.026 | 0.195 | 0.002 | 0.079 | 0.020 |
Total respiratory drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total water intake/body weight (mL/Kg) | −0.018 | 0.005 | 0.870 | −0.012 | −0.016 | 0.005 | 0.886 | 0.016 |
Total Population (n = 144) | Men (n = 61) | Women (n = 83) | |
---|---|---|---|
Total urine volume (L/24 h) | 1.6 (1.2–2.0) | 1.6 (1.2–2.0) | 1.7 (1.2–1.9) |
Urine colour | 4.0 (3.0–6.0) | 4.0 (3.0–6.0) | 3.0 (3.0–6.0) |
pH | 6.1 (5.7–6.5) | 6.0 (5.7–6.5) | 6.1 (5.7–6.5) |
Specific gravity (g/L) | 1.013 (1.010–1.016) | 1.013 (1.011–1.017) | 1.012 (1.001–1.016) |
Sodium (mEq/24 h) | 1855.1 (1289.7–2642.9) | 1951.4 (1289.7–2704.3) | 1805.8 (1280.7–2402.5) |
Potassium (mEq/24 h) | 1282.1 (975.4–1709.5) | 1312.7 (1067.2–1823.6) | 1273.0 (935.7–1679.7) |
Sodium/potassium ratio | 1.44 (1.09–1.87) | 1.30 (1.07–1.87) | 1.52 (1.11–1.87) |
Osmolality (mOsm/kg) | 433.5 (333.0–548.0) | 471.0 (340.5–590.3) | 422.0 (319.5–520.3) |
Creatinine (mg/24 h) | 829.8 (570.5–1378.1) | 1128.3 *** (724.2–1757.7) | 732.8 (542.7–1049.0) |
Non-Adjusted | Adjusted by Age and Total Urine Volume | |||||||
---|---|---|---|---|---|---|---|---|
Total drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
pH | −0.381 | 0.727 | 0.001 | 0.260 | −0.422 | 0.721 | <0.001 | 0.310 |
Creatinine (mg/24 h) | −0.375 | 0.001 | 0.001 | −0.373 | 0.001 | 0.004 | ||
Total cardiovascular drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
pH | −0.291 | 0.339 | 0.021 | 0.111 | −0.316 | 0.348 | 0.014 | 0.118 |
Creatinine (mg/24 h) | −0.238 | 0.000 | 0.057 | −0.213 | 0.000 | 0.132 | ||
Total gastrointestinal drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
pH | −0.093 | 0.131 | 0.445 | 0.144 | −0.098 | 0.127 | 0.425 | 0.163 |
Creatinine (mg/24 h) | −0.405 | 0.000 | 0.001 | −0.360 | 0.000 | 0.010 | ||
Total endocrine drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
pH | −0.414 | 0.188 | <0.001 | 0.161 | −0.482 | 0.182 | <0.001 | 0.260 |
Creatinine (mg/24 h) | −0.136 | 0.000 | 0.259 | −0.291 | 0.000 | 0.026 | ||
Total diuretic drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
pH | −0.333 | 0.108 | 0.008 | 0.126 | −0.372 | 0.110 | 0.004 | 0.138 |
Creatinine (mg/24 h) | −0.213 | 0.000 | 0.086 | −0.305 | 0.000 | 0.031 | ||
Total musculoskeletal drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
pH | −0.287 | 0.132 | 0.023 | 0.115 | −0.323 | 0.130 | 0.010 | 0.176 |
Creatinine (mg/24 h) | −0.250 | 0.000 | 0.046 | −0.238 | 0.000 | 0.083 | ||
Total genito-urinary drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
pH | 0.345 | 0.149 | 0.007 | 0.095 | 0.296 | 0.148 | 0.019 | 0.173 |
Creatinine (mg/24 h) | −0.083 | 0.000 | 0.507 | −0.077 | 0.000 | 0.577 | ||
Total respiratory drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
pH | −0.297 | 0.167 | 0.021 | 0.070 | −0.300 | 0.174 | 0.024 | 0.055 |
Creatinine (mg/24 h) | −0.115 | 0.000 | 0.393 | −0.114 | 0.000 | 0.433 |
Men (n = 61) | Women (n = 83) | |
---|---|---|
Weight (kg) | 78.4 *** (70.8–85.3) | 68.5 (62.4–75.9) |
Height (m) | 1.68 *** (1.65–1.73) | 1.58 (1.53–1.61) |
Body mass index (kg/m2) | 27.4 (24.9–29.4) | 27.5 (25.0–31.2) |
Waist circumference (cm) | 100.0 *** (94.0–105.8) | 94.0 (85.8–100.9) |
Hip circumference (cm) | 104.0 (100.2–108.0) | 106.0 (100.0–112.0) |
Waist-to-hip ratio | 0.97 *** (0.93–1.01) | 0.89 (0.83–0.93) |
Body fat (kg) | 25.4 *** (22.5–30.5) | 33.2 (27.6–37.7) |
Body fat (%) | 33.8 *** (30.3–36.8) | 47.5 (43.5–50.7) |
Total body water (L) | 39.6 *** (35.9–42.1) | 29.9 (27.9–31.5) |
Total body water (%) | 50.1 *** (46.6–54.0) | 43.1 (40.4–46.0) |
Non-Adjusted | Adjusted by Age | |||||||
---|---|---|---|---|---|---|---|---|
Total drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total body water (%) | −0.123 | 0.095 | 0.348 | −0.002 | −0.281 | 0.089 | 0.024 | 0.217 |
Total cardiovascular drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total body water (%) | −0.228 | 0.040 | 0.080 | 0.036 | −0.297 | 0.042 | 0.029 | 0.064 |
Total gastrointestinal drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total body water (%) | 0.129 | 0.017 | 0.324 | 0.000 | −0.004 | 0.016 | 0.974 | 0.152 |
Total endocrine drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total body water (%) | −0.115 | 0.022 | 0.380 | −0.004 | −0.202 | 0.022 | 0.137 | 0.050 |
Total diuretic drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total body water (%) | −0.332 | 0.012 | 0.010 | 0.095 | −0.408 | 0.013 | 0.002 | 0.134 |
Total musculoskeletal drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total body water (%) | −0.036 | 0.017 | 0.783 | −0.016 | −0.164 | 0.017 | 0.208 | 0.121 |
Total genito-urinary drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total body water (%) | 0.395 | 0.018 | 0.002 | 0.142 | 0.298 | 0.018 | 0.017 | 0.217 |
Total respiratory drug consumption | ||||||||
Variable | β | SEM | p-value | r2 adjusted | β | SEM | p-value | r2 adjusted |
Total body water (%) | −0.207 | 0.021 | 0.113 | 0.026 | −0.201 | 0.022 | 0.147 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Oliva, S.; Morais-Moreno, C.; Carretero-Krug, A.; Samaniego-Vaesken, M.d.L.; López-Sobaler, A.M.; Partearroyo, T.; Puga, A.M. Drug Consumption and Hydration Status: Analysis of the Associations in an Elder Population. Nutrients 2024, 16, 2632. https://doi.org/10.3390/nu16162632
López Oliva S, Morais-Moreno C, Carretero-Krug A, Samaniego-Vaesken MdL, López-Sobaler AM, Partearroyo T, Puga AM. Drug Consumption and Hydration Status: Analysis of the Associations in an Elder Population. Nutrients. 2024; 16(16):2632. https://doi.org/10.3390/nu16162632
Chicago/Turabian StyleLópez Oliva, Sara, Carmen Morais-Moreno, Alejandra Carretero-Krug, María de Lourdes Samaniego-Vaesken, Ana M. López-Sobaler, Teresa Partearroyo, and Ana M. Puga. 2024. "Drug Consumption and Hydration Status: Analysis of the Associations in an Elder Population" Nutrients 16, no. 16: 2632. https://doi.org/10.3390/nu16162632
APA StyleLópez Oliva, S., Morais-Moreno, C., Carretero-Krug, A., Samaniego-Vaesken, M. d. L., López-Sobaler, A. M., Partearroyo, T., & Puga, A. M. (2024). Drug Consumption and Hydration Status: Analysis of the Associations in an Elder Population. Nutrients, 16(16), 2632. https://doi.org/10.3390/nu16162632