Red and Processed Meat Intake, Polygenic Risk and the Prevalence of Colorectal Neoplasms: Results from a Screening Colonoscopy Population
Highlights
- In this cross-sectional study of 4774 patients undergoing screening colonoscopy, processed meat intake and a polygenic risk score were independently associated with a prevalence of colorectal neoplasms.
- The risk of colorectal neoplasms associated with processed meat intake >1 time/week was equivalent to having a 19-percentile higher polygenic risk score.
- The findings may help communicate the health benefits of limiting processed meat intake.
- The findings suggest that a less frequent consumption of processed meat might have the potential to compensate for a substantial share of genetically increased risk.
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Study Population
2.2. Assessment of Red and Processed Meat Intake
2.3. Derivation of Polygenic Risk Score
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. Associations between Red and Processed Meat Intake, PRS, and Prevalence of Colorectal Neoplasms
3.3. Genetic Risk Equivalents for High Frequency of Processed Meat Intake
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Johnston, B.C.; Zeraatkar, D.; Han, M.A.; Vernooij, R.W.M.; Valli, C.; El Dib, R.; Marshall, C.; Stover, P.J.; Fairweather-Taitt, S.; Wójcik, G.; et al. Unprocessed Red Meat and Processed Meat Consumption: Dietary Guideline Recommendations From the Nutritional Recommendations (NutriRECS) Consortium. Ann. Intern. Med. 2019, 171, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. International Agency for Research on Cancer Monograph Working Group Carcinogenicity of Consumption of Red and Processed Meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [PubMed]
- Farvid, M.S.; Sidahmed, E.; Spence, N.D.; Mante Angua, K.; Rosner, B.A.; Barnett, J.B. Consumption of Red Meat and Processed Meat and Cancer Incidence: A Systematic Review and Meta-Analysis of Prospective Studies. Eur. J. Epidemiol. 2021, 36, 937–951. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal Cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef]
- Thrumurthy, S.G.; Thrumurthy, S.S.D.; Gilbert, C.E.; Ross, P.; Haji, A. Colorectal Adenocarcinoma: Risks, Prevention and Diagnosis. BMJ 2016, 354, i3590. [Google Scholar] [CrossRef]
- Hunter, D.J. Gene-Environment Interactions in Human Diseases. Nat. Rev. Genet. 2005, 6, 287–298. [Google Scholar] [CrossRef]
- Weigl, K.; Thomsen, H.; Balavarca, Y.; Hellwege, J.N.; Shrubsole, M.J.; Brenner, H. Genetic Risk Score Is Associated With Prevalence of Advanced Neoplasms in a Colorectal Cancer Screening Population. Gastroenterology 2018, 155, 88–98.e10. [Google Scholar] [CrossRef]
- Huyghe, J.R.; Bien, S.A.; Harrison, T.A.; Kang, H.M.; Chen, S.; Schmit, S.L.; Conti, D.V.; Qu, C.; Jeon, J.; Edlund, C.K.; et al. Discovery of Common and Rare Genetic Risk Variants for Colorectal Cancer. Nat. Genet. 2019, 51, 76–87. [Google Scholar] [CrossRef]
- Thomas, M.; Sakoda, L.C.; Hoffmeister, M.; Rosenthal, E.A.; Lee, J.K.; van Duijnhoven, F.J.B.; Platz, E.A.; Wu, A.H.; Dampier, C.H.; de la Chapelle, A.; et al. Genome-Wide Modeling of Polygenic Risk Score in Colorectal Cancer Risk. Am. J. Hum. Genet. 2020, 107, 432–444. [Google Scholar] [CrossRef]
- Chen, X.; Hoffmeister, M.; Brenner, H. Red and Processed Meat Intake, Polygenic Risk Score, and Colorectal Cancer Risk. Nutrients 2022, 14, 1077. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Guo, F.; Hoffmeister, M.; Brenner, H. Alcohol Consumption, Polygenic Risk Score, and Early- and Late-Onset Colorectal Cancer Risk. EClinicalMedicine 2022, 49, 101460. [Google Scholar] [CrossRef]
- Gies, A.; Cuk, K.; Schrotz-King, P.; Brenner, H. Direct Comparison of Diagnostic Performance of 9 Quantitative Fecal Immunochemical Tests for Colorectal Cancer Screening. Gastroenterology 2018, 154, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Niedermaier, T.; Heisser, T.; Cardoso, R.; Hoffmeister, M.; Brenner, H. Colonoscopy-Ascertained Prevalence of Advanced Neoplasia According to Fecal Hemoglobin Concentration in a Large Cohort of Fecal Immunochemical Test–Negative Screening Participants. Ann. Intern. Med. 2023, 176, 1569–1571. [Google Scholar] [CrossRef] [PubMed]
- van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Brenner, H.; Gefeller, O.; Greenland, S. Risk and Rate Advancement Periods as Measures of Exposure Impact on the Occurrence of Chronic Diseases. Epidemiol. Camb. Mass 1993, 4, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Geiker, N.R.W.; Bertram, H.C.; Mejborn, H.; Dragsted, L.O.; Kristensen, L.; Carrascal, J.R.; Bügel, S.; Astrup, A. Meat and Human Health—Current Knowledge and Research Gaps. Foods 2021, 10, 1556. [Google Scholar] [CrossRef] [PubMed]
- Cascella, M.; Bimonte, S.; Barbieri, A.; Del Vecchio, V.; Caliendo, D.; Schiavone, V.; Fusco, R.; Granata, V.; Arra, C.; Cuomo, A. Dissecting the Mechanisms and Molecules Underlying the Potential Carcinogenicity of Red and Processed Meat in Colorectal Cancer (CRC): An Overview on the Current State of Knowledge. Infect. Agent. Cancer 2018, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Mejborn, H.; Møller, S.P.; Thygesen, L.C.; Biltoft-Jensen, A. Dietary Intake of Red Meat, Processed Meat, and Poultry and Risk of Colorectal Cancer and All-Cause Mortality in the Context of Dietary Guideline Compliance. Nutrients 2020, 13, 32. [Google Scholar] [CrossRef]
- Knuppel, A.; Papier, K.; Fensom, G.K.; Appleby, P.N.; Schmidt, J.A.; Tong, T.Y.N.; Travis, R.C.; Key, T.J.; Perez-Cornago, A. Meat Intake and Cancer Risk: Prospective Analyses in UK Biobank. Int. J. Epidemiol. 2020, 49, 1540–1552. [Google Scholar] [CrossRef]
- Qian, F.; Riddle, M.C.; Wylie-Rosett, J.; Hu, F.B. Red and Processed Meats and Health Risks: How Strong Is the Evidence? Diabetes Care 2020, 43, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yu, E.; Gao, X.; Song, N.; Liu, L.; Wei, X.; Zhang, W.; Fu, C. Red and Processed Meat Intake and Risk of Colorectal Adenomas: A Meta-Analysis of Observational Studies. Int. J. Cancer 2013, 132, 437–448. [Google Scholar] [CrossRef]
- Carr, P.R.; Holleczek, B.; Stegmaier, C.; Brenner, H.; Hoffmeister, M. Meat Intake and Risk of Colorectal Polyps: Results from a Large Population-Based Screening Study in Germany. Am. J. Clin. Nutr. 2017, 105, 1453–1461. [Google Scholar] [CrossRef]
- Zhao, Z.; Yin, Z.; Hang, Z.; Zhang, C.; Zhao, Q. Association between Red and Processed Meat Intake and Colorectal Adenoma Incidence and Recurrence: A Systematic Review and Meta-Analysis. Oncotarget 2018, 9, 32373–32382. [Google Scholar] [CrossRef] [PubMed]
- Farah, E.; Hutchinson, J.M.; Ruan, Y.; O’Sullivan, D.E.; Hilsden, R.J.; Brenner, D.R. The Association between Red Meat Consumption and Advanced Colorectal Adenomas in a Population Undergoing a Screening-Related Colonoscopy in Alberta, Canada. Cancers 2024, 16, 495. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Mandic, M.; Hoffmeister, M.; Brenner, H. Assessment of Body Mass Index, Polygenic Risk Score, and Development of Colorectal Cancer. JAMA Netw. Open 2022, 5, e2248447. [Google Scholar] [CrossRef] [PubMed]
Characteristics | No Finding, N (%) | Any Neoplasm, N (%) | p-Value f | |
---|---|---|---|---|
Overall | Advanced Neoplasm | |||
Total | 2559 | 2215 | 867 | |
Sex | <0.0001 | |||
Female | 1436 (56.1%) | 830 (37.5%) | 333 (38.4%) | |
Male | 1123 (43.9%) | 1385 (62.5%) | 534 (61.6%) | |
Age (year, Median (Q25, Q75)) | 60 (56, 66) | 62 (57, 68) | 62 (57, 68.5) | <0.0001 |
Education (year) | 0.0023 | |||
<10 | 1297 (50.7%) | 1227 (55.4%) | 479 (55.2%) | |
10–11 | 659 (25.8%) | 532 (24.0%) | 193 (22.3%) | |
>11 | 581 (22.7%) | 432 (19.5%) | 184 (21.2%) | |
BMI (kg/m2) | <0.0001 | |||
<25 | 963 (37.6%) | 625 (28.2%) | 260 (30.0%) | |
25–<30 | 1047 (40.9%) | 1034 (46.7%) | 387 (44.6%) | |
≥30 | 505 (19.7%) | 526 (23.7%) | 209 (24.1%) | |
Smoking status | <0.0001 | |||
Never | 1304 (51.0%) | 937 (42.3%) | 336 (38.8%) | |
Former | 921 (36.0%) | 842 (38.0%) | 324 (37.4%) | |
Current | 304 (11.9%) | 417 (18.8%) | 201 (23.2%) | |
PRS a | <0.0001 | |||
T1 | 853 (33.3%) | 521 (23.5%) | 179 (20.6%) | |
T2 | 853 (33.3%) | 690 (31.2%) | 263 (30.3%) | |
T3 | 853 (33.3%) | 1004 (45.3%) | 425 (49.0%) | |
Alcohol consumption b | <0.0001 | |||
None | 646 (25.2%) | 459 (20.7%) | 188 (21.7%) | |
Low | 954 (37.3%) | 752 (34.0%) | 264 (30.4%) | |
Low-moderate | 497 (19.4%) | 509 (23.0%) | 199 (23.0%) | |
Moderate-high | 282 (11.0%) | 321 (14.5%) | 143 (16.5%) | |
High | 77 (3.0%) | 96 (4.3%) | 46 (5.3%) | |
Physical activity c | 0.7066 | |||
<30 min/day | 74 (2.9%) | 69 (3.1%) | 26 (3.0%) | |
≥30 min/day | 2451 (95.8%) | 2113 (95.4%) | 829 (95.6%) | |
Red meat intake d | 0.0001 | |||
≤1 time/week | 1193 (46.6%) | 897 (40.5%) | 353 (40.7%) | |
>1 time/week | 1366 (53.4%) | 1318 (59.5%) | 514 (59.3%) | |
Processed meat intake d | <0.0001 | |||
≤1 time/week | 597 (23.3%) | 359 (16.2%) | 142 (16.4%) | |
>1 time/week | 1962 (76.7%) | 1856 (83.8%) | 725 (83.6%) | |
>1 time/week and <1 time/day | 999 (39.0%) | 919 (41.5%) | 375 (43.3%) | |
≥1 time/day | 963 (37.6%) | 937 (42.3%) | 350 (40.4%) | |
History of HRT e | 538 (21.0%) | 297 (13.4%) | 111 (12.8%) | 0.4804 |
History of diabetes | 221 (8.6%) | 269 (12.1%) | 108 (12.5%) | 0.0001 |
Family history of CRC | 308 (12.0%) | 298 (13.5%) | 122 (14.1%) | 0.1545 |
Use of NSAIDs | 431 (16.8%) | 379 (17.1%) | 145 (16.7%) | 0.7942 |
History of colonoscopy | 824 (32.2%) | 566 (25.6%) | 189 (21.8%) | <0.0001 |
Whole grain intake d (<1 time/day) | 1446 (56.5%) | 1340 (60.5%) | 525 (60.6%) | 0.0041 |
Fruit intake d (<1 time/day) | 970 (37.9%) | 909 (41.0%) | 372 (42.9%) | 0.0362 |
Vegetable intake d (<1 time/day) | 1180 (46.1%) | 1116 (50.4%) | 451 (52.0%) | 0.0036 |
Poultry meat intake d (<1 time/week) | 1022 (39.9%) | 881 (39.8%) | 353 (40.7%) | 1.0000 |
Compared Groups, N (%) a | OR (95% CI) b | OR (95% CI) c | ||
---|---|---|---|---|
Red meat intake | ||||
No finding | Any neoplasm | |||
≤1 time/week | 1193 (46.6%) | 897 (40.5%) | Ref. | Ref. |
>1 time/week | 1366 (53.4%) | 1318 (59.5%) | 1.11 (0.98, 1.25) | 1.07 (0.94, 1.21) |
No finding | Advanced neoplasm | |||
≤1 time/week | 1193 (46.6%) | 353 (40.7%) | Ref. | Ref. |
>1 time/week | 1366 (53.4%) | 514 (59.3%) | 1.12 (0.95, 1.32) | 1.07 (0.90, 1.28) |
Processed meat intake | ||||
No finding | Any neoplasm | |||
≤1 time/week | 597 (23.3%) | 359 (16.2%) | Ref. | Ref. |
>1 time/week | 1962 (76.7%) | 1856 (83.8%) | 1.32 (1.13, 1.53) | 1.22 (1.04, 1.43) |
>1 time/week and <1 time/day | 999 (39.0%) | 919 (41.5%) | 1.34 (1.13, 1.57) | 1.26 (1.07, 1.50) |
≥1 time/day | 963 (37.6%) | 937 (42.3%) | 1.29 (1.10, 1.53) | 1.17 (0.98, 1.39) |
No finding | Advanced neoplasm | |||
≤1 time/week | 597 (23.3%) | 142 (16.4%) | Ref. | Ref. |
>1 time/week | 1962 (76.7%) | 725 (83.6%) | 1.33 (1.08, 1.64) | 1.23 (0.99, 1.54) |
>1 time/week and <1 time/day | 999 (39.0%) | 375 (43.3%) | 1.40 (1.12, 1.75) | 1.33 (1.05, 1.68) |
≥1 time/day | 963 (37.6%) | 350 (40.4%) | 1.25 (1.00, 1.58) | 1.12 (0.88, 1.43) |
PRS a | Compared Groups, N (%) | OR (95% CI) b | OR (95% CI) c | |
---|---|---|---|---|
No finding | Any neoplasm | |||
T1 | 853 (33.3%) | 521 (23.5%) | Ref. | Ref. |
T2 | 853 (33.3%) | 690 (31.2%) | 1.30 (1.12, 1.52) | 1.30 (1.12, 1.52) |
T3 | 853 (33.3%) | 1004 (45.3%) | 1.94 (1.68, 2.25) | 1.95 (1.68, 2.26) |
Per tertile | 1.40 (1.30, 1.51) | 1.40 (1.30, 1.51) | ||
No finding | Advanced neoplasm | |||
T1 | 853 (33.3%) | 179 (20.6%) | Ref. | Ref. |
T2 | 853 (33.3%) | 263 (30.3%) | 1.47 (1.18, 1.82) | 1.46 (1.17, 1.82) |
T3 | 853 (33.3%) | 425 (49.0%) | 2.42 (1.98, 2.97) | 2.47 (2.00, 3.04) |
Per tertile | 1.57 (1.42, 1.73) | 1.58 (1.43, 1.76) |
Processed Meat Intake | PRS a | Compared Groups, N (%) | OR (95% CI) b | OR (95% CI) c | |
---|---|---|---|---|---|
No finding | Any neoplasm | ||||
≤1 time/week | T1 | 197 (33.0) | 87 (24.2) | Ref. | Ref. |
T2 | 191 (32.0) | 115 (32.0) | 1.32 (0.93, 1.86) | 1.34 (0.93, 1.91) | |
T3 | 209 (35.0) | 157 (43.7) | 1.69 (1.22, 2.36) | 1.75 (1.25, 2.46) | |
Per tertile | 1.30 (1.10, 1.53) | 1.32 (1.12, 1.57) | |||
>1 time/week | T1 | 654 (33.4) | 434 (23.4) | Ref. | Ref. |
T2 | 662 (33.7) | 575 (31.0) | 1.30 (1.10, 1.54) | 1.29 (1.09, 1.54) | |
T3 | 644 (32.8) | 847 (45.6) | 2.01 (1.71, 2.37) | 2.01 (1.70, 2.37) | |
Per tertile | 1.43 (1.31, 1.55) | 1.42 (1.31, 1.55) | |||
p value for interaction with PRS d = | 0.54 | 0.64 | |||
No finding | Advanced neoplasm | ||||
≤1 time/week | T1 | 197 (33.0) | 23 (16.2) | Ref. | Ref. |
T2 | 191 (32.0) | 47 (33.1) | 2.05 (1.19, 3.51) | 2.10 (1.20, 3.69) | |
T3 | 209 (35.0) | 72 (50.7) | 2.96 (1.77, 4.93) | 3.14 (1.85, 5.35) | |
Per tertile | 1.67 (1.31, 2.13) | 1.73 (1.34, 2.22) | |||
>1 time/week | T1 | 656 (33.4) | 156 (21.5) | Ref. | Ref. |
T2 | 662 (33.7) | 216 (29.8) | 1.39 (1.09, 1.76) | 1.36 (1.07, 1.74) | |
T3 | 644 (32.8) | 353 (48.7) | 2.36 (1.89, 2.94) | 2.36 (1.88, 2.97) | |
Per tertile | 1.55 (1.39, 1.73) | 1.56 (1.39, 1.74) | |||
p value for interaction with PRS d = | 0.45 | 0.40 |
Processed Meat Intake | Polygenic Risk Score | ||
---|---|---|---|
T1 | T2 | T3 | |
Any neoplasm vs. No finding | |||
≤1 time/week | Ref. | 1.32 (0.93, 1.89) | 1.75 (1.25, 2.45) |
>1 time/week | 1.16 (0.87, 1.56) | 1.51 (1.13, 2.01) | 2.33 (1.75, 3.09) |
Advanced neoplasm vs. No finding | |||
≤1 time/week | Ref. | 2.05 (1.18, 3.57) | 3.13 (1.86, 5.29) |
>1 time/week | 1.61 (0.99, 2.60) | 2.19 (1.36, 3.51) | 3.79 (2.38, 6.04) |
Frequency | Compared Groups, N (%) | OR (95% CI) a | GRE (95% CI) | |
---|---|---|---|---|
No finding | Any neoplasm | |||
≤1 time/week | 597 (23.3%) | 359 (16.2%) | Ref. | Ref. |
>1 time/week | 1962 (76.7%) | 1856 (83.8%) | 1.22 (1.04, 1.42) | 19.0 (3.2, 34.7) |
No finding | Advanced neoplasm | |||
≤1 time/week | 597 (23.3%) | 142 (16.4%) | Ref. | Ref. |
>1 time/week | 1962 (76.7%) | 725 (83.6%) | 1.22 (0.98, 1.52) | 14.1 (−1.8, 30.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, R.; Chen, X.; Seum, T.; Hoffmeister, M.; Brenner, H. Red and Processed Meat Intake, Polygenic Risk and the Prevalence of Colorectal Neoplasms: Results from a Screening Colonoscopy Population. Nutrients 2024, 16, 2609. https://doi.org/10.3390/nu16162609
Fu R, Chen X, Seum T, Hoffmeister M, Brenner H. Red and Processed Meat Intake, Polygenic Risk and the Prevalence of Colorectal Neoplasms: Results from a Screening Colonoscopy Population. Nutrients. 2024; 16(16):2609. https://doi.org/10.3390/nu16162609
Chicago/Turabian StyleFu, Ruojin, Xuechen Chen, Teresa Seum, Michael Hoffmeister, and Hermann Brenner. 2024. "Red and Processed Meat Intake, Polygenic Risk and the Prevalence of Colorectal Neoplasms: Results from a Screening Colonoscopy Population" Nutrients 16, no. 16: 2609. https://doi.org/10.3390/nu16162609
APA StyleFu, R., Chen, X., Seum, T., Hoffmeister, M., & Brenner, H. (2024). Red and Processed Meat Intake, Polygenic Risk and the Prevalence of Colorectal Neoplasms: Results from a Screening Colonoscopy Population. Nutrients, 16(16), 2609. https://doi.org/10.3390/nu16162609