Identification of Psychological Treatment Dropout Predictors Using Machine Learning Models on Italian Patients Living with Overweight and Obesity Ineligible for Bariatric Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- -
- Group 1 (n = 65) consisted of 47 females and 18 males (27.7%), with a mean age of 48.75 years. Regarding psychiatric and psychological disorders, 15 patients (23.1%) had a diagnosis of binge-eating disorder (BED), 1 patient (1.5%) had a diagnosis of Bulimia Nervosa Purging (BNP), 5 patients (7.7%) had a diagnosis of Eating Disorder Not Otherwise Specified (EDNOS), and 44 patients (67.7%) had minor emotional disorders (i.e., depression and anxiety at subclinical levels).
- -
- Group 2-dropout (n = 29) consisted of 24 females and 5 males (17.2%), with an average age of 43.90 years. Regarding psychiatric and psychological disorders, 12 patients (41.4%) had a diagnosis of BED, 1 patient (3.4%) had a diagnosis of BED and NES (i.e., night eating syndrome), 2 patients (6.9%) had a diagnosis of EDNOS, and 14 patients (48.3%) had minor emotional disorders (i.e., depression and anxiety at subclinical levels). All patients were Caucasian. Descriptive statistics of the anthropometric variables of both groups are presented in Table 1.
2.2. Procedures
2.2.1. Psychological Assessment (T0)
2.2.2. Psychotherapeutic Treatment
2.3. Measures
2.3.1. Symptom Checklist-90-Revised (SCL-90-R)
2.3.2. Barratt Impulsiveness Scale-11 (BIS-11)
2.3.3. Binge-Eating Scale (BES)
2.3.4. Obesity-Related Well-Being Questionnaire (ORWELL-97)
2.3.5. Minnesota Multiphasic Personality Inventory-2 (MMPI-2)
3. Statistical Analysis
Predictive Models
4. Results
4.1. Differences in Group 1 between T0 and T1
4.2. Differences between Groups at T0
4.3. Predictive Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Who European Regional Obesity Report—2022. 2022. Available online: https://apps.who.int/iris/bitstream/handle/10665/353747/9789289057738-eng.pdf?utm_source=townandcountrytoday.com&utm_campaign=townandcountrytoday.com%3A%20outbound&utm_medium=referral (accessed on 19 March 2023).
- National Institute of Statistics (Istituto Nazionale di Statistica, ISTAT). Health Risk Factors: Smoking, Obesity, Alcohol, and Sedentary Lifestyle. Available online: https://www.istat.it/it/archivio/270163 (accessed on 19 March 2023).
- Cockerham, W.C. Theoretical Approaches to Research on the Social Determinants of Obesity. Am. J. Prev. Med. 2022, 63 (Suppl. S1), S8–S17. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Lin, S.; Fu, Z.; Yang, N.; Shen, J.; Liu, R.; Liang, H. Five-Year Physical and Psychosocial Outcomes in Obese Adolescents with and without Metabolic Bariatric Surgery. J. Adolesc. Health 2023, 73, 784–789. [Google Scholar] [CrossRef] [PubMed]
- Arterburn, D.E.; Telem, D.A.; Kushner, R.F.; Courcoulas, A.P. Benefits and Risks of Bariatric Surgery in Adults: A Review. JAMA 2020, 324, 879–887. [Google Scholar] [CrossRef]
- Fink, J.; Seifert, G.; Blüher, M.; Fichtner-Feigl, S.; Marjanovic, G. Obesity Surgery: Weight Loss, Metabolic Changes, Oncological Effects, and Follow-Up. Dtsch. Arztebl. Int. 2022, 119, 70. [Google Scholar] [CrossRef]
- National Institute of Health (NIH). NIH Conference: Gastrointestinal Surgery for Severe Obesity. Consensus Development Conference Panel. Ann. Intern. Med. 1991, 115, 956–961. [Google Scholar] [CrossRef]
- Italian Society of Surgery of Obesity and Metabolic Diseases (Società Italiana di Chirurgia dell’Obesità e delle Malattie Metaboliche, S.I.C.Ob.). Obesity Surgery Guidelines (Linee Guida di Chirurgia dell’Obesità). Available online: https://www.sicob.org/00_materiali/linee_guida_2016.pdf (accessed on 23 September 2023).
- Italian Society of Surgery of Obesity and Metabolic Diseases (Società Italiana di Chirurgia dell’Obesità e delle Malattie Metaboliche, S.I.C.Ob.). The Surgical Treatment of Obesity and Associated Complications (La Terapia Chirurgica dell’Obesità e delle Complicanze Associate). Available online: https://www.sicob.org/00_materiali/Linee_Guida_SICOB_2023.pdf (accessed on 19 February 2024).
- Zappa, M.A.; Iossa, A.; Busetto, L.; Chiappetta, S.; Greco, F.; Lucchese, M.; Micanti, F.; Mingrone, G.; Navarra, G.; Raffaelli, M.; et al. SICOB-endorsed National Delphi Consensus on Obesity Treatment Optimization: Focus on Diagnosis, Pre-operative Management, and Weight Regain/Insufficient Weight Loss Approach. Eat Weight Disord. 2023, 28, 5. [Google Scholar] [CrossRef] [PubMed]
- Rius Acebes, L.; Sánchez-Pacheco-Tardon, M.; Orozco Beltrán, D. ¿Cuándo derivar a endocrinología el paciente con obesidad? Indicaciones actuales de la cirugía bariátrica [When should a patient with obesity be referred to endocrinology? Current indications for bariatric surgery]. Aten. Primaria 2024, 56, 102961. [Google Scholar] [CrossRef]
- McElroy, S.L.; Keck, P.E., Jr. Obesity in Bipolar Disorder: An Overview. Curr. Psychiatry Rep. 2012, 14, 650–658. [Google Scholar] [CrossRef]
- Saules, K.K.; Wiedemann, A.; Ivezaj, V.; Hopper, J.A.; Foster-Hartsfield, J.; Schwarz, D. Bariatric Surgery History Among Substance Abuse Treatment Patients: Prevalence and Associated Features. Surg. Obes. Relat. Dis. 2010, 6, 615–621. [Google Scholar] [CrossRef]
- Meany, G.; Conceição, E.; Mitchell, J.E. Binge Eating, Binge Eating Disorder and Loss of Control Eating: Effects on Weight Outcomes after Bariatric Surgery. Eur. Eat. Disord. Rev. 2014, 22, 87–91. [Google Scholar] [CrossRef]
- Colles, S.L.; Dixon, J.B. Night Eating Syndrome: Impact on Bariatric Surgery. Obes. Surg. 2006, 16, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Edwards-Hampton, S.A.; Madan, A.; Wedin, S.; Borckardt, J.J.; Crowley, N.; Byrne, K.T. A Closer Look at the Nature of Anxiety in Weight Loss Surgery Candidates. Int. J. Psychiatry Med. 2014, 47, 105–113. [Google Scholar] [CrossRef] [PubMed]
- de Zwaan, M.; Enderle, J.; Wagner, S.; Mühlhans, B.; Ditzen, B.; Gefeller, O.; Mitchell, J.E.; Müller, A. Anxiety and Depression in Bariatric Surgery Patients: A Prospective, Follow-Up Study Using Structured Clinical Interviews. J. Affect. Disorders 2011, 133, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Kalarchian, M.A.; Marcus, M.D.; Levine, M.D.; Courcoulas, A.P.; Pilkonis, P.A.; Ringham, R.M.; Soulakova, J.N.; Weissfeld, L.A.; Rofey, D.L. Psychiatric Disorders Among Bariatric Surgery Candidates: Relationship to Obesity and Functional Health Status. Am. J. Psychiatry 2007, 164, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Mühlhans, B.; Horbach, T.; de Zwaan, M. Psychiatric Disorders in Bariatric Surgery Candidates: A Review of the Literature and Results of a German Prebariatric Surgery Sample. Gen. Hosp. Psychiatry 2009, 31, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Sarwer, D.B.; Cohn, N.I.; Gibbons, L.M.; Magee, L.; Crerand, C.E.; Raper, S.E.; Rosato, E.F.; Williams, N.N.; Wadden, T.A. Psychiatric Diagnoses and Psychiatric Treatment Among Bariatric Surgery Candidates. Obes. Surg. 2004, 14, 1148–1156. [Google Scholar] [CrossRef] [PubMed]
- Amiri, S.; Behnezhad, S. Obesity and Anxiety Symptoms: A Systematic Review and Meta-Analysis. Neuropsychiatrie 2019, 33, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Fulton, S.; Décarie-Spain, L.; Fioramonti, X.; Guiard, B.; Nakajima, S. The Menace of Obesity to Depression and Anxiety Prevalence. Trends Endocrinol. Metab. 2022, 33, 18–35. [Google Scholar] [CrossRef]
- Moroshko, I.; Brennan, L.; O’Brien, P. Predictors of Dropout in Weight Loss Interventions: A Systematic Review of the Literature. Obes. Rev. 2011, 12, 912–934. [Google Scholar] [CrossRef]
- Ponzo, V.; Scumaci, E.; Goitre, I.; Beccuti, G.; Benso, A.; Belcastro, S.; Crespi, C.; De Michieli, F.; Pellegrini, M.; Scuntero, P.; et al. Predictors of Attrition from a Weight Loss Program: A Study of Adult Patients with Obesity in a Community Setting. Eat Weight Disord. 2021, 26, 1729–1736. [Google Scholar] [CrossRef]
- Neri, L.D.C.L.; Mariotti, F.; Guglielmetti, M.; Fiorini, S.; Tagliabue, A.; Ferraris, C. Dropout in Cognitive Behavioral Treatment in Adults Living with Overweight and Obesity: A Systematic Review. Front. Nutr. 2024, 11, 1250683. [Google Scholar] [CrossRef] [PubMed]
- Perna, S.; Salman, M.; Gasparri, C.; Cavioni, A.; Faliva, M.A.; Mansueto, F.; Naso, M.; Patelli, Z.; Peroni, G.; Tartara, A.; et al. Two, Six, and Twelve-Month Dropout Rate and Predictor Factors after a Multidisciplinary Residential Program for Obesity Treatment: A Prospective Cohort Study. Front. Nutr. 2022, 9, 851802. [Google Scholar] [CrossRef] [PubMed]
- Verhaak, A.M.; Ferrand, J.; Puhl, R.M.; Tishler, D.S.; Papasavas, P.K.; Umashanker, D. Experienced Weight Stigma, Internalized Weight Bias, and Clinical Attrition in a Medical Weight Loss Patient Sample. Int. J. Obes. 2022, 46, 1241–1243. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.M.; Brennan, L. Measuring and Reporting Attrition from Obesity Treatment Programs: A Call to Action! Obes. Res. Clin. Pract. 2015, 9, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Paolino, L.; Le Fouler, A.; Epaud, S.; Bathaei, S.; Mokhtari, N.; Lazzati, A. Preoperative Follow-up in Bariatric Surgery: Why They Give Up? Rate, Causes, and Economic Impact of Dropout. Obes. Surg. 2023, 33, 2652–2657. [Google Scholar] [CrossRef] [PubMed]
- Gillieron, E. Short Psychotherapeutic Interventions (Four Sessions). Psychother. Psychosom. 1989, 51, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Gilliéron, E. Le Premier Entretien en Psychothérapie; Dunod: Paris, France, 1994. [Google Scholar]
- Gilliéron, E. Manuel de Psychothérapies Brèves; Dunod: Paris, France, 1997. [Google Scholar]
- Derogatis, L.R.; Unger, R. Symptom Checklist-90-Revised. In The Corsini Encyclopedia of Psychology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 1–2. [Google Scholar] [CrossRef]
- Sarno, I.; Preti, E.; Prunas, A.; Madeddu, F. SCL-90-R, Adattamento Italiano; Organizzazioni Speciali: Firenze, Italy, 2011. [Google Scholar]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor Structure of the Barratt Impulsiveness Scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Reise, S.P.; Moore, T.M.; Sabb, F.W.; Brown, A.K.; London, E.D. The Barratt Impulsiveness Scale–11: Reassessment of Its Structure in a Community Sample. Psychol. Assess. 2013, 25, 631. [Google Scholar] [CrossRef] [PubMed]
- Fossati, A.; Di Ceglie, A.; Acquarini, E.; Barratt, E.S. Psychometric Properties of an Italian Version of the Barratt Impulsiveness Scale-11 (BIS-11) in Nonclinical Subjects. J. Clin. Psychol. 2001, 57, 815–828. [Google Scholar] [CrossRef]
- Gormally, J.I.M.; Black, S.; Daston, S.; Rardin, D. The Assessment of Binge Eating Severity Among Obese Persons. Addict. Behav. 1982, 7, 47–55. [Google Scholar] [CrossRef]
- Ricca, V.; Mannucci, E.; Moretti, S.; Di Bernardo, M.; Zucchi, T.; Cabras, P.L.; Rotella, C.M. Screening for Binge Eating Disorder in Obese Outpatients. Compr. Psychiatry 2000, 41, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, E.; Ricca, V.; Barciulli, E.; Di Bernardo, M.; Travaglini, R.; Cabras, P.L.; Rotella, C.M. Quality of Life and Overweight: The Obesity Related Well-being (Orwell 97) Questionnaire. Addict. Behav. 1999, 24, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, E.; Ricca, V.; Barciulli, E.; Di Bernardo, M.; Travaglini, R.; Cabras, P.L.; Rotella, C.M. Obesity-Related WELL-being Questionnaire (ORWELL 97). In Clinica Psicologica dell’Obesità; Molinari, E., Castelnuovo, G., Eds.; Springer Verlag Italia: Milano, Italy, 2012; pp. 293–297. [Google Scholar]
- Butcher, J.N. Minnesota Multiphasic Personality Inventory-2: Manual for Administration, Scoring, and Interpretation; University of Minnesota Press: Minneapolis, MN, USA, 2001. [Google Scholar]
- Pancheri, P.; Sirigatti, S. Minnesota Multiphasic Personality Inventory-2; Giunti Organizzazioni Speciali: Firenze, Italy, 1995. [Google Scholar]
- Sirigatti, S.; Stefanile, C. MMPI-2: Aggiornamento All’adattamento Italiano; Giunti Organizzazioni Speciali: Firenze, Italy, 2011. [Google Scholar]
- Tellegen, A.; Ben-Porath, Y.S. The New Uniform T-Scores for the MMPI-2: Rationale, Derivation, and Appraisal. Psychol. Assess. 1992, 4, 145. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1988. [Google Scholar]
- IBM Corp. IBM SPSS Statistics for Windows, Version 28.0; IBM Corp.: Armonk, NY, USA, 2021.
- Hastie, T.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Dwork, C.; Feldman, V.; Hardt, M.; Pitassi, T.; Reingold, O.; Roth, A. The Reusable Holdout: Preserving Validity in Adaptive Data Analysis. Science 2015, 349, 636–638. [Google Scholar] [CrossRef] [PubMed]
- Dwyer, D.B.; Efallkai, P.; Koutsouleris, N. Machine Learning Approaches for Clinical Psychology and Psychiatry. Annu. Rev. Clin. Psychol. 2018, 14, 91–118. [Google Scholar] [CrossRef] [PubMed]
- Orrù, G.; Monaro, M.; Conversano, C.; Gemignani, A.; Sartori, G. Machine Learning in Psychometrics and Psychological Research. Front. Psychol. 2020, 10, 2970. [Google Scholar] [CrossRef]
- Bermingham, M.L.; Pong-Wong, R.; Spiliopoulou, A.; Hayward, C. Application of High-Dimensional Feature Selection: Evaluation for Genomic Prediction in Man. Sci. Rep. 2015, 5, 10321. [Google Scholar] [CrossRef] [PubMed]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Kohavi, R. A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QB, Canada, 20–25 August 1995; pp. 1137–1143. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Chambers, J.M.; Hastie, T.J. Statistical Models in S.; Wadsworth & Brooks/Cole: Pacific Grove, CA, USA, 1992. [Google Scholar]
- le Cessie, S.; van Houwelingen, J.C. Ridge Estimators in Logistic Regression. Appl. Stat. 1992, 41, 191–201. [Google Scholar] [CrossRef]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- John, G.H.; Langley, P. Estimating Continuous Distributions in Bayesian Classifiers. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, Montreal, QB, Canada, 18–20 August 1995; pp. 338–345. [Google Scholar]
- Mitchell, T. Decision Tree Learning. In Machine Learning; Mitchell, T., Ed.; McGraw Hill: New York, NY, USA, 1997. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 23 September 2023).
- Abbate, L.; Roma, P. MMPI-2: Manuale per l’Interpretazione e Nuove Prospettive di Utilizzo; Raffaello Cortina Editore: Milan, Italy, 2014. [Google Scholar]
- Zoccali, R.; Bruno, A.; Muscatello, M.R.; Micò, U.; Corica, F.; Meduri, M. Defense Mechanisms in a Sample of Non-psychiatric Obese Subjects. Eat. Behav. 2008, 9, 120–123. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR™); American Psychiatric Association Publishing: Washington, DC, USA, 2021. [Google Scholar]
- Jensen, H.H.; Mortensen, E.L.; Lotz, M. Scl-90-R Symptom Profiles and Outcome of Short-term Psychodynamic Group Therapy. Int. Sch. Res. Not. 2013, 2013, 540134. [Google Scholar] [CrossRef] [PubMed]
- Van Hout, G.C.; Verschure, S.K.; Van Heck, G.L. Psychosocial Predictors of Success Following Bariatric Surgery. Obes. Surg. 2005, 15, 552–560. [Google Scholar] [CrossRef] [PubMed]
- Fidelix, Y.L.; Farias, J.C.D.; Lofrano-Prado, M.C.; Guerra, R.L.F.; Cardel, M.; Prado, W.L.D. Multidisciplinary Intervention in Obese Adolescents: Predictors of Dropout. Einstein 2015, 13, 388–394. [Google Scholar] [CrossRef]
- Wu, Y.K.; Berry, D.C. Impact of Weight Stigma on Physiological and Psychological Health Outcomes for Overweight and Obese Adults: A Systematic Review. J. Adv. Nurs. 2018, 74, 1030–1042. [Google Scholar] [CrossRef]
Variables | Group 1 (n = 65) M (SD) | Group 2-Dropout (n = 29) M (SD) | Min-Max | |
---|---|---|---|---|
Anthropometric Variables | Weight (kg) | 109.24 (27.01) | 107.91 (15.37) | 80–200 |
Height (m) | 1.67 (0.09) | 1.66 (0.08) | 1.49–1.92 | |
BMI (kg/m2) | 39.11 (7.49) | 39.32 (5.29) | 27.40–60.38 | |
Age | 48.75 (12.00) | 43.90 (14.17) | 18–75 |
Variables | Group 1 (n = 65) M (SD) | Group 2-Dropout (n = 29) M (SD) | Min-Max | |
---|---|---|---|---|
SCL-90-R Psychopathological Symptoms | Somatization (SOM) | 1.41 (0.78) | 1.80 (0.83) | 0–3.25 |
Obsessive–Compulsive (O-C) | 1.32 (0.73) | 1.58 (0.82) | 0–3.10 | |
Interpersonal Sensitivity (I-S) | 1.19 (0.80) | 1.70 (1.04) | 0–3.78 | |
Depression (DEP) | 1.41 (0.82) | 1.86 (0.78) | 0–3.80 | |
Anxiety (ANX) | 1.05 (0.63) | 1.28 (0.75) | 0–2.90 | |
Hostility (HOS) | 0.89 (0.75) | 1.16 (0.79) | 0–3.17 | |
Phobic Anxiety (PHOB) | 0.51 (0.58) | 0.77 (0.50) | 0–2.14 | |
Paranoid Ideation (PAR) | 1.14 (0.75) | 1.53 (0.96) | 0–3.33 | |
Psychoticism (PSY) | 0.67 (0.58) | 1.01 (0.79) | 0–3.60 | |
Global Severity Index (GSI) | 1.12 (0.56) | 1.49 (0.61) | 0.17–2.97 | |
MMPI-2 | MMPI-2 Validity scales | |||
Infrequency (F) | 59.29 (10.96) | 59.21 (10.02) | 40–101 | |
Lie (L) | 50.15 (7.88) | 49.93 (9.86) | 30–69 | |
Correction (K) | 44.92 (8.27) | 47.76 (10.60) | 30–67 | |
MMPI-2 Clinical scales | ||||
Hypochondriasis (1-Hs) | 64.37 (12.77) | 65.38 (9.77) | 36–91 | |
Depression (2-D) | 62.88 (12.66) | 67.17 (10.20) | 40–90 | |
Hysteria (3-Hy) | 59.02 (11.70) | 65.00 (9.94) | 34–85 | |
Psychopathic Deviate (4-Pd) | 61.89 (13.26) | 63.83 (7.72) | 32–88 | |
Masculinity/Femininity (5-MF) | 48.94 (11.52) | 50.55 (12.05) | 30–77 | |
Paranoia (6-Pa) | 58.94 (11.57) | 58.31 (9.74) | 36–88 | |
Psychasthenia (7-Pt) | 57.15 (11.76) | 57.72 (9.44) | 31–81 | |
Schizophrenia (8-Sc) | 58.31 (10.64) | 57.34 (8.39) | 30–87 | |
Hypomania (9-Ma) | 50.29 (10.02) | 51.07 (10.60) | 35–78 | |
Social Introversion (0-Si) | 56.77 (10.27) | 55.86 (12.09) | 31–80 | |
MMPI-2 Content scales | ||||
Anxiety (ANX) | 60.68 (11.98) | 63.79 (10.23) | 36–86 | |
Fears (FRS) | 53.77 (11.53) | 55.45 (10.05) | 33–84 | |
Obsessiveness (OBS) | 55.06 (11.23) | 53.31 (9.95) | 36–86 | |
Depression (DEP) | 59.05 (11.30) | 65.17 (11.15) | 36–89 | |
Health Concerns (HEA) | 63.77 (11.41) | 64.07 (10.75) | 47–103 | |
Bizarre Mentation (BIZ) | 54.17 (9.03) | 52.83 (9.93) | 34–86 | |
Anger (ANG) | 54.20 (12.40) | 54.24 (13.49) | 33–87 | |
Cynicism (CYN) | 54.00 (10.48) | 58.00 (13.72) | 37–82 | |
Antisocial Practices (ASP) | 49.89 (7.60) | 50.52 (10.59) | 33–80 | |
Type A (TPA) | 52.42 (11.49) | 49.07 (9.54) | 32–84 | |
Low Self-Esteem (LSE) | 58.80 (10.29) | 57.93 (9.32) | 40–88 | |
Social Discomfort (SOD) | 55.14 (10.29) | 53.97 (9.26) | 37–83 | |
Family Problems (FAM) | 58.25 (10.88) | 56.79 (8.94) | 42–87 | |
Work Interference (WRK) | 58.08 (12.20) | 57.31 (9.41) | 39–84 | |
Negative Treatment Indicators (TRT) | 57.74 (10.54) | 59.17 (10.11) | 35–82 | |
BIS–11 Impulsivity | Attentional Impulsivity (A) | 1.90 (0.36) | 1.98 (0.46) | 1.12–3.00 |
Non-Planning Impulsivity (NP) | 2.43 (0.41) | 2.50 (0.37) | 1.09–3.27 | |
Motor Impulsivity (M) | 1.96 (0.42) | 2.09 (0.45) | 1.54–3.27 | |
Impulsivity Total | 2.10 (0.31) | 2.20 (0.33) | 1.43–2.90 | |
BES Binge-Eating Episodes | 19.00 (9.71) | 23.66 (10.22) | 1–42 | |
ORWELL-97 Quality of Life | 69.27 (23.07) | 85.78 (21.94) | 26.0–120.5 |
Variable | Mean | SD | Difference | |
---|---|---|---|---|
Weight kg | T0 T1 | 109.24 104.73 | 27.00 26.43 | 4.51 |
BMI kg/m2 | T0 T1 | 39.11 37.46 | 7.49 7.66 | 1.65 |
SCL-90-R Somatization (SOM) | T0 T1 | 1.41 1.13 | 0.78 0.76 | 0.29 |
Obsessive–Compulsive (O-C) | T0 T1 | 1.32 1.16 | 0.73 0.74 | 0.15 |
Interpersonal Sensitivity (I-S) | T0 T1 | 1.19 1.11 | 0.80 0.80 | 0.08 |
Depression (DEP) | T0 T1 | 1.41 1.37 | 0.82 0.86 | 0.03 |
Anxiety (ANX) | T0 T1 | 1.05 0.94 | 0.63 0.73 | 0.12 |
Hostility (HOS) | T0 T1 | 0.89 0.69 | 0.75 0.70 | 0.21 |
Phobic Anxiety (PHOB) | T0 T1 | 0.52 0.38 | 0.58 0.49 | 0.13 |
Paranoid Ideation (PAR) | T0 T1 | 1.14 1.09 | 0.75 0.75 | 0.05 |
Psychoticism (PSY) | T0 T1 | 0.67 0.54 | 0.58 0.50 | 0.13 |
Global Severity Index (GSI) | T0 T1 | 1.12 0.97 | 0.57 0.61 | 0.15 |
BIS-11 Attentional Impulsivity (A) | T0 T1 | 1.90 1.84 | 0.36 0.45 | 0.06 |
Motor Impulsivity (M) | T0 T1 | 1.96 1.83 | 0.42 0.40 | 0.13 |
Non-Planning Impulsivity (NP) | T0 T1 | 2.44 2.45 | 0.41 0.47 | −0.009 |
Impulsivity Total | T0 T1 | 2.10 2.07 | 0.31 0.32 | 0.03 |
BES | T0 T1 | 19.00 14.83 | 9.71 10.96 | 4.17 |
ORWELL-97 | T0 T1 | 69.17 65.80 | 23.07 22.82 | 3.47 |
Variable | Group 1 (n = 65) | Group 2-Dropout (n = 29) | p-Value |
---|---|---|---|
Gender | 0.276 | ||
Male | 18 (27.7%) | 5 (17.2%) | |
Female | 47 (72.3%) | 24 (82.8%) | |
Eating and nutritional disorder | 0.18 | ||
BED | 15 (23.1%) | 12 (41.4%) | |
BED and NES | 0 (0%) | 1 (3.4%) | |
BNP | 1 (1.5%) | 0 (0%) | |
EDNOS | 5 (7.7%) | 2 (6.9%) | |
None | 44 (67.7%) | 14 (48.3%) | |
Age of onset of overweight | 0.36 | ||
Under 6 years | 20 (30.8%) | 12 (41.4%) | |
6–13 years | 8 (12.3%) | 7 (24.1%) | |
14–19 years | 12 (18.5%) | 5 (17.2%) | |
20–29 years | 11 (16.9%) | 1 (3.4%) | |
30–39 years | 5 (7.7%) | 3 (10.3%) | |
40–49 years | 6 (9.2%) | 1 (3.4%) | |
50–59 years | 2 (3.1%) | 0 (0%) | |
Over 60 years | 1 (1.5%) | 0 (0%) | |
Other psychiatric complications | 0.74 | ||
Yes | 16 (24.6%) | 6 (21.4%) | |
No | 49 (75.4%) | 22 (78.6%) |
Variable | Median Group 1 (n = 65) | Median Group 2-Dropout (n = 29) | Mann–Whitney U Test | p-Value |
---|---|---|---|---|
Age | 50.00 | 46.00 | 1134.00 | 0.117 |
Weight | 102.00 | 106.00 | 831.50 | 0.363 |
Height | 1.65 | 1.65 | 961.00 | 0.879 |
BMI | 36.65 | 36.98 | 855.00 | 0.474 |
SCL-90-R | ||||
Somatization (SOM) | 1.42 | 1.92 | 681.50 | 0.033 |
Obsessive–Compulsive (O-C) | 1.30 | 1.50 | 762.50 | 0.140 |
Interpersonal Sensitivity (I-S) | 1.00 | 1.78 | 673.00 | 0.027 |
Depression (DEP) | 1.38 | 1.92 | 630.50 | 0.011 |
Anxiety (ANX) | 1.00 | 1.20 | 799.00 | 0.239 |
Hostility (HOS) | 0.67 | 1.00 | 745.50 | 0.106 |
Phobic Anxiety (PHOB) | 0.29 | 0.71 | 620.00 | 0.008 |
Paranoid Ideation (PAR) | 1.00 | 1.50 | 703.50 | 0.050 |
Psychoticism (PSY) | 0.60 | 1.00 | 681.00 | 0.032 |
Global Severity Index (GSI) | 1.04 | 1.47 | 619.00 | 0.008 |
BIS | ||||
Attentional (A) | 1.87 | 2.00 | 814.50 | 0.293 |
Motor (M) | 1.90 | 2.09 | 801.00 | 0.246 |
Non-planning (NP) | 2.45 | 2.54 | 890.50 | 0.670 |
Total | 2.10 | 2.16 | 798.50 | 0.238 |
BES | 17.00 | 25.00 | 696.00 | 0.043 |
ORWELL-97 | 68.50 | 93.00 | 555.00 | 0.002 |
MMPI-2 Validity Scales | ||||
Infrequency (F) | 59 | 59 | 915.00 | 0.822 |
Lie (L) | 50 | 52 | 928.00 | 0.905 |
Correction (K) | 46 | 51 | 784.50 | 0.195 |
MMPI-2 Clinical Scales | ||||
Hypochondriasis (1-Hs) | 62 | 65 | 865.00 | 0.525 |
Depression (2-D) | 62 | 68 | 753.00 | 0.120 |
Hysteria (3-Hy) | 57 | 67 | 641.00 | 0.013 |
Psychopathic Deviate (4-Pd) | 63 | 63 | 873.50 | 0.572 |
Masculinity/Femininity (5-MF) | 48 | 50 | 848.50 | 0.441 |
Paranoia (6-Pa) | 59 | 58 | 987.50 | 0.712 |
Psychasthenia (7-Pt) | 56 | 57 | 905.50 | 0.762 |
Schizophrenia (8-Sc) | 55 | 57 | 983.50 | 0.737 |
Hypomania (9-Ma) | 48 | 48 | 908.50 | 0.780 |
Social Introversion (0-Si) | 59 | 57 | 1004.00 | 0.614 |
MMPI-2 Content Scales | 59 | 64 | 778.00 | 0.177 |
Anxiety (ANX) | ||||
Fears (FRS) | 52 | 57 | 833.50 | 0.371 |
Obsessiveness (OBS) | 51 | 51 | 984.50 | 0.730 |
Depression (DEP) | 56 | 67 | 658.50 | 0.020 |
Health Concerns (HEA) | 62 | 62 | 918.00 | 0.841 |
Bizarre Mentation (BIZ) | 54 | 50 | 1018.00 | 0.535 |
Anger (ANG) | 51 | 48 | 970.50 | 0.818 |
Cynicism (CYN) | 51 | 60 | 825.50 | 0.338 |
Antisocial Practices (ASP) | 49 | 48 | 979.00 | 0.765 |
Type A (TPA) | 50 | 47 | 1109.50 | 0.171 |
Low Self-Esteem (LSE) | 55 | 57 | 963.00 | 0.866 |
Social Discomfort (SOD) | 53 | 52 | 1003.50 | 0.617 |
Family Problems (FAM) | 57 | 53 | 1014.50 | 0.555 |
Work Interference (WRK) | 54 | 59 | 905.00 | 0.759 |
Negative Treatment Indicators (TRT) | 56 | 58 | 868.50 | 0.544 |
Algorithm | Accuracy | Precision | Recall | F-Measure | |
---|---|---|---|---|---|
Logistic regression | 10-fold cross-validation | 75.71% | 0.958 | 0.754 | 0.844 |
Test set | 83.33% | 0.800 | 0.571 | 0.666 | |
Random forest | 10-fold cross-validation | 70% | 0.813 | 0.765 | 0.788 |
Test set | 70.83% | 0.500 | 0.571 | 0.533 | |
Naïve Bayes | 10-fold cross-validation | 77.14% | 0.958 | 0.767 | 0.852 |
Test set | 79.17% | 0.600 | 0.857 | 0.706 | |
Classification tree | 10-fold cross-validation | 80% | 0.958 | 0.793 | 0.868 |
Test set | 79.17% | 0.625 | 0.714 | 0.667 |
Reference | |||
---|---|---|---|
Predicted | Group 2-Dropout (n = 7) | Group 1 (n = 17) | |
Logistic regression | Group 2-dropout | 4 | 1 |
Group 1 | 3 | 16 | |
Random forest | Group 2-dropout | 4 | 4 |
Group 1 | 3 | 13 | |
Naïve Bayes | Group 2-dropout | 6 | 4 |
Group 1 | 1 | 13 | |
Classification tree | Group 2-dropout | 5 | 3 |
Group 1 | 2 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchitelli, S.; Mazza, C.; Ricci, E.; Faia, V.; Biondi, S.; Colasanti, M.; Cardinale, A.; Roma, P.; Tambelli, R. Identification of Psychological Treatment Dropout Predictors Using Machine Learning Models on Italian Patients Living with Overweight and Obesity Ineligible for Bariatric Surgery. Nutrients 2024, 16, 2605. https://doi.org/10.3390/nu16162605
Marchitelli S, Mazza C, Ricci E, Faia V, Biondi S, Colasanti M, Cardinale A, Roma P, Tambelli R. Identification of Psychological Treatment Dropout Predictors Using Machine Learning Models on Italian Patients Living with Overweight and Obesity Ineligible for Bariatric Surgery. Nutrients. 2024; 16(16):2605. https://doi.org/10.3390/nu16162605
Chicago/Turabian StyleMarchitelli, Serena, Cristina Mazza, Eleonora Ricci, Valentina Faia, Silvia Biondi, Marco Colasanti, Alessandra Cardinale, Paolo Roma, and Renata Tambelli. 2024. "Identification of Psychological Treatment Dropout Predictors Using Machine Learning Models on Italian Patients Living with Overweight and Obesity Ineligible for Bariatric Surgery" Nutrients 16, no. 16: 2605. https://doi.org/10.3390/nu16162605
APA StyleMarchitelli, S., Mazza, C., Ricci, E., Faia, V., Biondi, S., Colasanti, M., Cardinale, A., Roma, P., & Tambelli, R. (2024). Identification of Psychological Treatment Dropout Predictors Using Machine Learning Models on Italian Patients Living with Overweight and Obesity Ineligible for Bariatric Surgery. Nutrients, 16(16), 2605. https://doi.org/10.3390/nu16162605