Impact of a Mediterranean-Inspired Diet on Cardiovascular Disease Risk Factors: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Eligibility
2.2. Randomization and Study Groups
2.3. Intervention Strategy
2.4. Studied Outcomes
2.4.1. Anthropometric Parameters and Body Composition Assessment
2.4.2. Dietary Assessment
2.4.3. Analytical and Biochemical Assessment
2.4.4. Evaluation of Cardiovascular Disease Risk
2.5. Power Analysis and Sample Size
2.6. Statistical Analysis
3. Results
3.1. Baseline Sample Characterization
3.2. Effect of the Intervention on the Body Composition and Anthropometry Assessment
3.3. Effect of the Intervention on the Biochemical Parameters
3.4. Effect of the Intervention on the Adherence to the Proposed Diet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Statistics 2023: Monitoring health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2023; Available online: https://www.who.int/publications/book-orders (accessed on 4 March 2024).
- Institute for Health Metrics and Evaluation (IHME). Global Burden of Diseases (GBD) Compare. Available online: https://vizhub.healthdata.org/gbd-compare/ (accessed on 4 March 2024).
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular disease statistics 2021. Eur. Heart J. 2022, 43, 716–799. [Google Scholar] [CrossRef]
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk: A compass for future health. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef]
- Reed, G.W.; Rossi, J.E.; Cannon, C.P. Acute myocardial infarction. Lancet 2017, 389, 197–210. [Google Scholar] [CrossRef]
- Mundi, S.; Massaro, M.; Scoditti, E.; Carluccio, M.A.; van Hinsbergh, V.W.M.; Iruela-Arispe, M.L.; De Caterina, R. Endothelial permeability, LDL deposition, and cardiovascular risk factors—A review. Cardiovasc. Res. 2018, 114, 35–52. [Google Scholar] [CrossRef] [PubMed]
- The Global Cardiovascular Risk Consortium. Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality. N. Engl. J. Med. 2023, 389, 1273–1285. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.; Martín-Calvo, N.; Bretos-Azcona, T.; Carlos, S.; Delgado-Rodríguez, M. Mediterranean Diet and Cardiovascular Prevention: Why Analytical Observational Designs Do Support Causality and Not Only Associations. Int. J. Environ. Res. Public Health 2022, 19, 13653. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Appel, L.J.; Van Horn, L. Components of a Cardioprotective Diet: New insights. Circulation 2011, 123, 2870–2891. [Google Scholar] [CrossRef]
- Virani, S.S.; Newby, L.K.; Arnold, S.V.; Bittner, V.; Brewer, L.C.; Demeter, S.H.; Dixon, D.L.; Fearon, W.F.; Hess, B.; Johnson, H.M.; et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients with Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2023, 148, E9–E119. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lista, J.; Alcala-Diaz, J.F.; Torres-Peña, J.D.; Quintana-Navarro, G.M.; Fuentes, F.; Garcia-Rios, A.; Ortiz-Morales, A.M.; Gonzalez-Requero, A.I.; Perez-Caballero, A.I.; Yubero-Serrano, E.M.; et al. Long-term secondary prevention of cardiovascular disease with a Mediterranean diet and a low-fat diet (CORDIOPREV): A randomised controlled trial. Lancet 2022, 399, 1876–1885. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Ge, L.; Sadeghirad, B.; Ball, G.D.C.; Da Costa, B.R.; Hitchcock, C.L.; Svendrovski, A.; Kiflen, R.; Quadri, K.; Kwon, H.Y.; Karamouzian, M.; et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: Systematic review and network meta-analysis of randomised trials. BMJ 2020, 369, m696. [Google Scholar] [CrossRef] [PubMed]
- Karam, G.; Agarwal, A.; Sadeghirad, B.; Jalink, M.; Hitchcock, C.L.; Ge, L.; Kiflen, R.; Ahmed, W.; Zea, A.M.; Milenkovic, J.; et al. Comparison of seven popular structured dietary programmes and risk of mortality and major cardiovascular events in patients at increased cardiovascular risk: Systematic review and network meta-analysis. BMJ 2023, 380, e072003. [Google Scholar] [CrossRef] [PubMed]
- Bersch-Ferreira, A.C.; Hall, W.L.; Santos, R.H.; Torreglosa, C.R.; Sampaio, G.; da Silva, J.T.; Alves, R.; Ross, M.B.; Gehringer, M.O.; Kovacs, C.; et al. The effect of the a regional cardioprotective nutritional program on inflammatory biomarkers and metabolic risk factors in secondary prevention for cardiovascular disease, a randomised trial. Clin. Nutr. 2021, 40, 3828–3835. [Google Scholar] [CrossRef] [PubMed]
- Abbaspour, N.; Roberts, T.; Hooshmand, S.; Kern, M.; Hong, M.Y. Mixed Nut Consumption May Improve Cardiovascular Disease Risk Factors in Overweight and Obese Adults. Nutrients 2019, 11, 1488. [Google Scholar] [CrossRef] [PubMed]
- Zurbau, A.; Au-Yeung, F.; Mejia, S.B.; Khan, T.A.; Vuksan, V.; Jovanovski, E.; Leiter, L.A.; Kendall, C.W.C.; Jenkins, D.J.A.; Sievenpiper, J.L. Relation of Different Fruit and Vegetable Sources with Incident Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2020, 9, e017728. [Google Scholar] [CrossRef] [PubMed]
- Carson, J.A.S.; Lichtenstein, A.H.; Anderson, C.A.; Appel, L.J.; Kris-Etherton, P.M.; Meyer, K.A.; Petersen, K.; Polonsky, T.; Van Horn, L.; Arteriosclerosis, T.C.O.; et al. Dietary Cholesterol and Cardiovascular Risk: A Science Advisory from the American Heart Association. Circulation 2020, 141, E39–E53. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-J.; Yeh, T.-L.; Shih, M.-C.; Tu, Y.-K.; Chien, K.-L. Dietary Sodium Intake and Risk of Cardiovascular Disease: A Systematic Review and Dose-Response Meta-Analysis. Nutrients 2020, 12, 2934. [Google Scholar] [CrossRef] [PubMed]
- Dikariyanto, V.; Smith, L.; Francis, L.; Robertson, M.; Kusaslan, E.; O’callaghan-Latham, M.; Palanche, C.; D’Annibale, M.; Christodoulou, D.; Basty, N.; et al. Snacking on whole almonds for 6 weeks improves endothelial function and lowers LDL cholesterol but does not affect liver fat and other cardiometabolic risk factors in healthy adults: The ATTIS study, a randomized controlled trial. Am. J. Clin. Nutr. 2020, 111, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Tindall, A.M.; Kris-Etherton, P.M.; Petersen, K.S. Replacing Saturated Fats with Unsaturated Fats from Walnuts or Vegetable Oils Lowers Atherogenic Lipoprotein Classes Without Increasing Lipoprotein(a). J. Nutr. 2020, 150, 818–825. [Google Scholar] [CrossRef]
- Perna, M.; Hewlings, S. Saturated Fatty Acid Chain Length and Risk of Cardiovascular Disease: A Systematic Review. Nutrients 2022, 15, 30. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Wee, C.C.; Kovell, L.C.; Plante, T.B.; Miller, E.R.; Appel, L.J.; Mukamal, K.J.; Juraschek, S.P. Effects of Diet on 10-Year Atherosclerotic Cardiovascular Disease Risk (from the DASH Trial). Am. J. Cardiol. 2023, 187, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Huang, X.; chooling, C.M.; Zhao, J.V. Red meat consumption, cardiovascular diseases, and diabetes: A systematic review and meta-analysis. Eur. Heart J. 2023, 44, 2626–2635. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, S.A.; Padda, I.; Johal, G. Long-Term Impact of Mediterranean Diet on Cardiovascular Disease Prevention: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Curr. Probl. Cardiol. 2024, 49, 102509. [Google Scholar] [CrossRef] [PubMed]
- Institute for Health Metrics and Evaluation (IHME). Global Health Metrics: Dietary Risks—Level 2 Risk. Available online: https://www.healthdata.org (accessed on 22 March 2024).
- Abbasifard, M.; Jamialahmadi, T.; Reiner, Ž.; Eid, A.H.; Sahebkar, A. The effect of nuts consumption on circulating oxidized low-density lipoproteins: A systematic review and meta-analysis of randomized controlled trials. Phytother. Res. 2023, 37, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, R.; Dod, H.; Sandhu, M.S.; Bedi, R.; Dod, S.; Konat, G.; Chopra, H.; Sharma, R.; Jain, A.C.; Nanda, N. Acute effects of diets rich in almonds and walnuts on endothelial function. Indian. Heart J. 2018, 70, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Dernini, S.; Berry, E.M. Mediterranean Diet: From a Healthy Diet to a Sustainable Dietary Pattern. Front. Nutr. 2015, 2, 15. [Google Scholar] [CrossRef]
- Konieczna, J.; Ruiz-Canela, M.; Galmes-Panades, A.M.; Abete, I.; Babio, N.; Fiol, M.; Martín-Sánchez, V.; Estruch, R.; Vidal, J.; Buil-Cosiales, P.; et al. An Energy-Reduced Mediterranean Diet, Physical Activity, and Body Composition: An Interim Subgroup Analysis of the PREDIMED-Plus Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2337994. [Google Scholar] [CrossRef] [PubMed]
- Marini, H.R. Mediterranean Diet and Soy Isoflavones for Integrated Management of the Menopausal Metabolic Syndrome. Nutrients 2022, 14, 1550. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Liu, G.; Ding, M.; Zong, G.; Hu, F.B.; Willett, W.C.; Rimm, E.B.; Manson, J.E.; Sun, Q. Isoflavone Intake and the Risk of Coronary Heart Disease in US Men and Women: Results from 3 Prospective Cohort Studies. Circulation 2020, 141, 1127–1137. [Google Scholar] [CrossRef]
- Posadzki, P.; Pieper, D.; Bajpai, R.; Makaruk, H.; Könsgen, N.; Neuhaus, A.L.; Semwal, M. Exercise/physical activity and health outcomes: An overview of Cochrane systematic reviews. BMC Public Health 2020, 20, 1724. [Google Scholar] [CrossRef]
- Gonzalez-Jaramillo, N.; Wilhelm, M.; Arango-Rivas, A.M.; Gonzalez-Jaramillo, V.; Mesa-Vieira, C.; Minder, B.; Franco, O.H.; Bano, A. Systematic Review of Physical Activity Trajectories and Mortality in Patients with Coronary Artery Disease. J. Am. Coll. Cardiol. 2022, 79, 1690–1700. [Google Scholar] [CrossRef] [PubMed]
- Giannuzzi, P.; Temporelli, P.L.; Marchioli, R.; Maggioni, A.P.; Balestroni, G.; Ceci, V.; Chieffo, C.; Gattone, M.; Griffo, R.; Schweiger, C.; et al. Global Secondary Prevention Strategies to Limit Event Recurrence after Myocardial Infarction Results of the GOSPEL Study, a Multicenter, Randomized Controlled Trial from the Italian Cardiac Rehabilitation Network. Arch. Intern. Med. 2008, 168, 2194–2204. [Google Scholar] [CrossRef] [PubMed]
- Bonekamp, N.E.; Visseren, F.L.J.; van der Schouw, Y.T.; van der Meer, M.G.; Teraa, M.; Ruigrok, Y.M.; Geleijnse, J.M.; Koopal, C.; Cramer, M.J.; Nathoe, H.M.; et al. Cost-effectiveness of Mediterranean diet and physical activity in secondary cardiovascular disease prevention: Results from the UCC-SMART cohort study. Eur. J. Prev. Cardiol. 2024. [Google Scholar] [CrossRef]
- Pitkala, K.H.; Strandberg, T.E. Clinical trials in older people. Age Ageing 2022, 51, afab267. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [PubMed]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-Item Mediterranean Diet Assessment Tool and Obesity Indexes among High-Risk Subjects: The PREDIMED Trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef]
- PNPAS. A Roda da Alimentação Mediterrânica, Direção-Geral Saúde. Available online: https://alimentacaosaudavel.dgs.pt/ (accessed on 23 February 2024).
- Pinho, I.; Rodrigues, S.; Franchini, B.; Graça, P. Mediterranean Diet: A Health-Promoting Pattern; Programa Nacional para a Promoção da Alimentação Saudável, Ed.; Direção-Geral da Saúde: Lisboa, Portugal, 2016. [Google Scholar]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Standards for Anthropometric Assessment: Restricted Profile; International Society for the Advancement of Kinanthropometry (ISAK): Glasgow, UK, 2019; ISBN 978-84-16045-27-3. [Google Scholar]
- SCORE2-OP Working Group and ESC Cardiovascular risk Collaboration. SCORE2-OP risk prediction algorithms: Estimating incident cardiovascular event risk in older people in four geographical risk regions. Eur. Heart J. 2021, 42, 2455–2467. [Google Scholar] [CrossRef]
- SCORE2 Working Group and ESC Cardiovascular Risk Collaboration. SCORE 2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe. Eur. Heart J. 2021, 42, 2439–2454. [Google Scholar] [CrossRef]
- Zelicha, H.; Kloting, N.; Kaplan, A.; Meir, A.Y.; Rinott, E.; Tsaban, G.; Chassidim, Y.; Bluher, M.; Ceglarek, U.; Isermann, B.; et al. The effect of high-polyphenol Mediterranean diet on visceral adiposity: The DIRECT PLUS randomized controlled trial. BMC Med. 2022, 20, 327. [Google Scholar] [CrossRef]
- Setchell, D.R.K.; Radd, S. Soy and other legumes: ‘Bean’ around a long time but are they the ‘superfoods’ of the millennium and what are the safety issues for their constituent phytoestrogens? Asia Pac. J. Clin. Nutr. 2000, 9, S13–S22. [Google Scholar]
- Tucker, L.A. Bean Consumption Accounts for Differences in Body Fat and Waist Circumference: A Cross-Sectional Study of 246 Women. J. Nutr. Metab. 2020, 9140907. [Google Scholar] [CrossRef] [PubMed]
- Roumans, K.H.M.; Veelen, A.; Andriessen, C.; Mevenkamp, J.; Kornips, E.; Veeraiah, P.; Havekes, B.; Peters, H.P.F.; Lindeboom, L.; Schrauwen, P.; et al. A prolonged fast improves overnight substrate oxidation without modulating hepatic glycogen in adults with and without nonalcoholic fatty liver: A randomized crossover trial. Obesity 2023, 31, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, A.; Nolen-Doerr, E.; Mantzoros, C.S. The Effect of the Mediterranean Diet on Metabolic Health: A Systematic Review and Meta-Analysis of Controlled Trials in Adults. Nutrients 2020, 12, 3342. [Google Scholar] [CrossRef]
- Castañer, O.; Pintó, X.; Subirana, I.; Amor, A.J.; Ros, E.; Hernáez, Á.; Martínez-González, M.; Corella, D.; Salas-Salvadó, J.; Estruch, R.; et al. Remnant Cholesterol, Not LDL Cholesterol, Is Associated With Incident Cardiovascular Disease. J. Am. Coll. Cardiol. 2020, 76, 2712–2724. [Google Scholar] [CrossRef]
- Barnard, N.D.; Alwarith, J.; Rembert, E.; Brandon, L.; Nguyen, M.; Goergen, A.; Horne, T.; Nascimento, G.F.D.; Lakkadi, K.; Tura, A.; et al. A Mediterranean Diet and Low-Fat Vegan Diet to Improve Body Weight and Cardiometabolic Risk Factors: A Randomized, Cross-over Trial. J. Am. Nutr. Assoc. 2022, 41, 127–139. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Y.; Zhang, X.; Ji, H.; Wang, W.; Qiao, O.; Li, X.; Wang, J.; Liu, C.; Huang, L.; et al. Targeting adipokines: A new strategy for the treatment of myocardial fibrosis. Pharmacol. Res. 2022, 181, 106257. [Google Scholar] [CrossRef] [PubMed]
- Adamiak, P.; Katarzyna, Ł. Adipose tissue, adipokines and aging. Pol. Med. J. 2016, 40, 122–128. [Google Scholar]
- Lopes, C.; Torres, D.; Oliveira, A.; Severo, M.; Alarcão, V.; Guiomar, S.; Mota, J.; Teixeira, P.; Rodrigues, S.; Lobato, L.; et al. Inquérito Alimentar Nacional e de Atividade Física, IAN-AF 2015–2016: Relatório de Resultados; Universidade do Porto: Porto, Portugal, 2017; ISBN 978-989-746-181-1. Available online: www.ian-af.up.pt (accessed on 20 June 2024).
- Braz, N. Solar food processing in Mediterranean Algarve. In Proceedings of the CONSOLFOOD 2016—International Conference on Advances in Solar Thermal Food Processing, Faro, Portugal, 22–23 January 2016; Available online: http://www.ualg.pt (accessed on 4 June 2024).
- Fujihira, K.; Takahashi, M.; Wang, C.; Hayashi, N. Factors explaining seasonal variation in energy intake: A review. Front. Nutr. 2023, 10, 1192223. [Google Scholar] [CrossRef]
- Eglseer, D.; Traxler, M.; Embacher, S.; Reiter, L.; Schoufour, J.D.; Weijs, P.J.; Voortman, T.; Boirie, Y.; Cruz-Jentoft, A.; Bauer, S. Nutrition and Exercise Interventions to Improve Body Composition for Persons with Overweight or Obesity Near Retirement Age: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. Int. 2023, 14, 516–538. [Google Scholar] [CrossRef]
- Álvarez, C.; Ramírez-Campillo, R.; Ramírez-Vélez, R.; Izquierdo, M. Effects and prevalence of nonresponders after 12 weeks of high-intensity interval or resistance training in women with insulin resistance: A randomized trial. J. Appl. Physiol. 2017, 122, 985–996. [Google Scholar] [CrossRef]
- Streb, A.R.; Braga, P.G.S.; de Melo, R.F.; Botelho, L.J.; Maranhão, R.C.; Del Duca, G.F. Effects of combined physical exercise on plasma lipid variables, paraoxonase 1 activity, and inflammation parameters in adults with obesity: A randomized clinical trial. J. Endocrinol. Investig. 2022, 45, 1991–1997. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, B.B.; Hivert, M.-F.; Jerome, G.J.; Kraus, W.E.; Rosenkranz, S.K.; Schorr, E.N.; Spartano, N.L.; Lobelo, F.; on behalf of the American Heart Association Council on Lifestyle; Cardiometabolic Health; et al. Physical Activity as a Critical Component of First-Line Treatment for Elevated Blood Pressure or Cholesterol: Who, What, and How?: A Scientific Statement From the American Heart Association. Hypertension 2021, 78, E26–E37. [Google Scholar] [CrossRef]
- Henkin, J.S.; Pinto, R.S.; Machado, C.L.; Wilhelm, E.N. Chronic effect of resistance training on blood pressure in older adults with prehypertension and hypertension: A systematic review and meta-analysis. Exp. Gerontol. 2023, 177, 112193. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Pan, Y.; Zhong, T.; Zeng, Y.; Cheng, A.S. Effects of aerobic, resistance, and combined exercise on metabolic syndrome parameters and cardiovascular risk factors: A systematic review and network meta-analysis. Rev. Cardiovasc. Med. 2021, 22, 1523–1533. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhang, J.; Huang, J.; Li, H.; Wen, K.; Bao, J.; Wu, X.; Sun, R.; Abudukeremu, A.; Wang, Y.; et al. Proteomic and functional analysis of HDL subclasses in humans and rats: A proof-of-concept study. Lipids Health Dis. 2023, 22, 86. [Google Scholar] [CrossRef]
- Surma, S.; Sahebkar, A.; Banach, M. Nutrition, Nutraceuticals and Bioactive Compounds in the Prevention and Fight against Inflammation. Nutrients 2023, 15, 2629. [Google Scholar] [CrossRef]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2021, 13, 7. [Google Scholar] [CrossRef]
Group 1a (n = 27) | Group 1b (n = 32) | Group 2 (n = 29) | p * | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | p | Pre-Intervention | Post-Intervention | p | Pre-Intervention | Post-Intervention | p | ||||||||
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | |||||
Weight (kg) | 71.82 (16.46) | 68.20 (17.70) | 70.95 (66.15) | 66.15 (16.6) | 0.003 4 | 72.70 (12.66) | 71.33 (17.85) | 71.98 (12.65) | 69.28 (20.38) | 0.010 4 | 69.31 (12.83) | 69.05 (14.33) | 67.91 (12.14) | 66.90 (11.88) | <0.001 4 | 0.459 3 |
BMI (kg/m2) | 28.72 (4.89) | 28.76 (5.95) | 28.38 (4.80) | 28.22 (6.60) | 0.003 1 | 29.14 (4.32) | 28.90 (6.93) | 28.85 (4.33) | 28.36 (6.59 | 0.0017 1 | 28.18 (4.41) | 28.22 (5.60) | 27.63 (4.30) | 27.83 (5.20) | <0.001 1 | 0.277 2 |
Waist circumference (cm) | 0.94 (0.13) | 0.93 (0.20) | 0.92 (0.12) | 0.91 (0.18) | 0.235 4 | 0.96 (0.10) | 0.96 (0.12) | 0.95 (0.09) | 0.95 (0.11) | 0.246 4 | 0.90 (0.20) | 0.92 (0.17) | 0.89 (0.12) | 0.88 (0.16) | 0.002 4 | 0.063 3 |
Arm circumference (cm) | 31.65 (3.79) | 32.00 (5.58) | 31.36 (3.48) | 31.40 (4.60) | 0.234 4 | 32.04 (3.37) | 32.25 (5.88) | 31.48 (3.40) | 31.90 (5.25) | <0.001 4 | 30.93 (3.09) | 30.50 (4.25) | 30.61 (3.38) | 30.00 (4.80) | 0.028 4 | 0.090 3 |
Bicipital skinfold (mm) | 8.89 (5.52) | 7.50 (8.50) | 8.47 (5.72) | 6.25 (8.30) | 0.092 4 | 9.19 (4.55) | 9.25 (7.00) | 8.76 (4.39) | 7.63 (6.94) | 0.079 4 | 10.08 (6.64) | 9.10 (5.38) | 9.04 (6.93) | 7.00 (5.13) | <0.001 4 | 0.085 3 |
Tricipital skinfold (mm) | 18.34 (7.99) | 20.00 (11.50) | 16.98 (7.64) | 17.00 (11.19) | 0.003 1 | 18.35 (8.04) | 17.18 (13.69) | 16.98 (7.04) | 16.62 (11.56) | <0.001 1 | 21.11 (8.38) | 20.50 (10.38) | 18.13 (7.43) | 17.25 (7.38) | <0.001 1 | 0.004 2 |
Fat mass (%) | 41.27 (8.53) | 42.24 (12.20) | 39.76 (8.55) | 41.48 (11.28) | <0.001 4 | 40.61 (6.92) | 41.43 (10.87) | 39.38 (6.88) | 39.98 (11.03) | 0.002 4 | 41.14 (8.04) | 41.69 (9.39) | 39.23 (7.87) | 40.46 (13.53) | 0.002 4 | 0.569 3 |
Muscle mass (%) | 25.34 (5.21) | 24.04 (5.82) | 25.73 (5.44) | 24.41 (7.06) | 0.028 4 | 26.02 (3.89) | 25.26 (5.98) | 26.53 (3.86) | 26.38 (4.74) | <0.001 4 | 25.05 (4.52) | 24.02 (5.14) | 25.80 (4.51) | 25.13 (4.51) | 0.010 4 | 0.422 3 |
Visceral tissue | 2.45 (1.24) | 2.20 (1.90) | 2.97 (4.01) | 2.10 (2.00) | 0.044 4 | 3.30 (3.69) | 2.40 (1.55) | 2.54 (1.35) | 2.25 (1.45) | 0.085 4 | 2.40 (1.42) | 2.10 (1.40) | 1.91 (1.08) | 1.50 (1.45) | <0.001 4 | 0.068 3 |
Group 1a (n = 27) | Group 1b (n = 32) | Group 2 (n = 29) | p * | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | p | Pre-Intervention | Post-Intervention | p | Pre-Intervention | Post-Intervention | p | ||||||||
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | |||||
Cholesterol (mg/dL) | 189.67 (43.22) | 183.00 (55.00) | 191.48 (40.31) | 191.00 (40.00) | 0.733 1 | 187.06 (40.90) | 189.00 (52.25) | 175.53 (33.84) | 181.00 (52.25) | 0.029 1 | 201.55 (46.73) | 199.00 (52.50) | 195.14 (40.00) | 190.00 (46.00) | 0.356 1 | 0.312 2 |
LDL-C (mg/dL) | 104.54 (42.86) | 107.00 (58.25) | 109.96 (36.20) | 108.50 (62.00) | 0.115 4 | 103.13 (32.73) | 104.00 (41.00) | 96.19 (30.98) | 94.00 (51.50) | 0.162 4 | 116.69 (38.35) | 112.00 (64.00) | 108.17 (28.97) | 111.00 (43.00) | 0.061 4 | 0.010 3 |
HDL-C (mg/dL) | 56.81 (12.00) | 60.00 (16.00) | 56.41 (11.57) | 56.00 (16.00) | 0.672 1 | 59.66 (17.26) | 58.00 (18.75) | 56.34 (14.85) | 55.00 (18.00) | 0.007 1 | 60.24 (13.84) | 56.00 (19.00) | 61.62 (13.21) | 58.00 (18.00) | 0.223 1 | 0.013 2 |
Triglycerides (mg/dL) | 141.63 (88.34) | 128.00 (129.00) | 128.00 (50.38) | 120.00 (66.00) | 0.838 4 | 124.97 (42.94) | 122.50 (53.00) | 132.56 (58.74) | 119.00 (90.75) | 0.953 4 | 132.10 (53.70) | 121.00 (72.00) | 111.24 (39.58) | 104.00 (37.00) | 0.029 4 | 0.230 3 |
Glycated hemoglobin (%) | 5.95 (0.96) | 5.70 (129.00) | 5.84 (0.85) | 5.60 (66.00) | 0.198 4 | 5.78 (0.71) | 5.60 (0.70) | 5.79 (0.56) | 5.70 (0.60) | 0.605 4 | 5.73 (0.78) | 5.40 (0.75) | 5.82 (0.72) | 5.60 (0.95) | 0.073 4 | 0.047 3 |
C-reactive protein (mg/L) | 9.86 (16.17) | 4.25 (2.40) | 7.80 (6.83) | 3.60 (10.70) | 0.593 4 | 14.07 (15.48) | 9.60 (16.50) | 6.10 (2.68) | 5.55 (4.22) | 0.068 4 | 8.53 (3.76) | 8.50 (5.80) | 5.74 (3.36) | 4.20 (5.40) | 0.075 4 | 0.926 3 |
Group 1a (n = 27) | Group 1b (n = 32) | Group 2 (n = 29) | p * | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | p | Pre-Intervention | Post-Intervention | p | Pre-Intervention | Post-Intervention | p | ||||||||
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | |||||
Nº legumes per week | 0.7 (1.2) | 0.0 (1.0) | 0.6 (1.2) | 0.0 (1.0) | 0.157 2 | 1.2 (1.1) | 1.0 (2.0) | 1.1 (1.2) | 1.0 (2.0) | 0.257 2 | 1.0 (1.2) | 1.0 (2.0) | 4.4 (2.1) | 4.0 (4.0) | <0.001 2 | <0.001 1 |
PREDIMED | 8.6 (2.0) | 9.0 (2.0) | 9.4 (2.2) | 10.0 (3.0) | 0.101 2 | 9.1 (1.9) | 9.0 (2.0) | 8.9 (1.7) | 9.0 (3.0) | 0.469 2 | 9.1 (2.1) | 9.0 (3.5) | 10.1 (2.1) | 10.0 (4.0) | 0.024 2 | 0.061 1 |
FREQUENCY | |||||
---|---|---|---|---|---|
Pre-Intervention | Post-Intervention | p | |||
YES | NO | YES | NO | ||
Do you practice a 12-h fast? n (%) | 12 (41.4) | 17 (58.6) | 21 (72.4) | 8 (27.6) | 0.007 1 |
Do you consume legumes every day? n (%) | 1 (3.4 | 28 (96.6) | 12 (41.4) | 17 (58.6) | <0.001 1 |
Do you consume at most one low-fat dairy product per day? n (%) | 8 (27.6) | 21 (72.4) | 22 (75.9) | 7 (24.1) | <0.001 1 |
Do you consume 30 grams of nuts per day? n (%) | 2 (6.9) | 27 (93.1) | 20 (69.0) | 9 (31.0) | <0.001 1 |
Do you consume whole grains? n (%) | 2 (6.9) | 27 (93.1) | 12 (41.4) | 17 (58.6) | 0.002 1 |
Do you consume vegetables in both main meals? n (%) | 17 (58.6) | 12 (41.4) | 25 (86.2) | 4 (13.8) | 0.005 1 |
Do you exclude red meat from your diet? n (%) | 0 (00.0) | 29 (100.0) | 11 (37.9) | 18 (62.1) | <0.001 1 |
Do you consume alcoholic beverages in moderation? n (%) | 28 (96.6) | 1 (3.4) | 29 (100.0) | 0 (00.0) | 0.317 1 |
Do you consume potatoes at most twice a week? n (%) | 10 (34.5) | 19 (65.5) | 27 (93.1) | 2 (6.9) | <0.001 1 |
Do you have at most four meals per day? n (%) | 20 (69.0) | 9 (31.0) | 26 (89.7) | 3 (10.3) | 0.034 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, A.R.; Pais, S.; Marreiros, A.; Correia, M. Impact of a Mediterranean-Inspired Diet on Cardiovascular Disease Risk Factors: A Randomized Clinical Trial. Nutrients 2024, 16, 2443. https://doi.org/10.3390/nu16152443
Barbosa AR, Pais S, Marreiros A, Correia M. Impact of a Mediterranean-Inspired Diet on Cardiovascular Disease Risk Factors: A Randomized Clinical Trial. Nutrients. 2024; 16(15):2443. https://doi.org/10.3390/nu16152443
Chicago/Turabian StyleBarbosa, Ana Rita, Sandra Pais, Ana Marreiros, and Marta Correia. 2024. "Impact of a Mediterranean-Inspired Diet on Cardiovascular Disease Risk Factors: A Randomized Clinical Trial" Nutrients 16, no. 15: 2443. https://doi.org/10.3390/nu16152443
APA StyleBarbosa, A. R., Pais, S., Marreiros, A., & Correia, M. (2024). Impact of a Mediterranean-Inspired Diet on Cardiovascular Disease Risk Factors: A Randomized Clinical Trial. Nutrients, 16(15), 2443. https://doi.org/10.3390/nu16152443