The Role of Combined Muscle Ultrasound and Bioimpedentiometry Parameters for Sarcopenia Diagnosis in a Population of Hospitalized Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Handgrip Test
2.3. Bioelectric Impedance Analysis
2.4. Ultrasound Study
2.5. Evaluation of Nutritional Status
2.6. Statistical Analysis
3. Results
3.1. Main Results
3.1.1. Study Characteristics
3.1.2. Multiple Regression Analysis
3.1.3. ROC Curves and Optimal Cut-Off Calculation
4. Discussion
4.1. Body Composition Findings
4.2. Ultrasound Findings
4.3. Bioimpedentiometry Findings
4.4. Combined Index MQI
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schaap, L.A.; van Schoor, N.M.; Lips, P.; Visser, M. Associations of Sarcopenia Definitions, and Their Components, with the Incidence of Recurrent Falling and Fractures: The Longitudinal Aging Study Amsterdam. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1199–1204. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2018, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Schaap, L.A.; Koster, A.; Visser, M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol. Rev. 2013, 35, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, K.; May, C.; Patel, H.P.; Baxter, M.; Sayer, A.A.; Roberts, H. A feasibility study of implementing grip strength measurement into routine hospital practice (GRImP): Study protocol. Pilot. Feasibility Stud. 2016, 2, 27. [Google Scholar] [CrossRef] [PubMed]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.P.; Babbanini, A.; Del Monte, L.; Vantini, G.; Stabile, G.; Urbani, S.; Fantin, F.; Zoico, E.; Zamboni, M.; Mazzali, G. The Role of Ultrasound Muscle Parameters for Myosteatosis and Myofibrosis Measurement in Young, Older, and Obese Subjects. J. Am. Med. Dir. Assoc. 2024, 25, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Perkisas, S.; Bastijns, S.; Baudry, S.; Bauer, J.; Beaudart, C.; Beckwée, D.; Cruz-Jentoft, A.; Gasowski, J.; Hobbelen, H.; Jager-Wittenaar, H.; et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur. Geriatr. Med. 2021, 12, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.P.; Harris, T.B.; Fantin, F.; Armellini, F.; Zamboni, M. The multidomain mobility lab in older persons: From bench to bedside. The assessment of body composition in older persons at risk of mobility limitations. Curr. Pharm. Des. 2014, 20, 3245–3255. [Google Scholar] [CrossRef] [PubMed]
- Galindo Martín, C.A.; Monares Zepeda, E.; Lescas Méndez, O.A. Bedside Ultrasound Measurement of Rectus Femoris: A Tutorial for the Nutrition Support Clinician. J. Nutr. Metab. 2017, 2017, 2767232. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Yasuda, T.; Abe, T. Component characteristics of thigh muscle volume in young and older healthy men. Clin. Physiol. Funct. Imaging 2012, 32, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Frontera, W.R.; Reid, K.F.; Phillips, E.M.; Krivickas, L.S.; Hughes, V.A.; Roubenoff, R.; Fielding, R.A. Muscle fiber size and function in elderly humans: A longitudinal study. J. Appl. Physiol. 2008, 105, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Loenneke, J.P.; Thiebaud, R.S.; Fukunaga, T. Age-related site-specific muscle wasting of upper and lower extremities and trunk in Japanese men and women. Age 2014, 36, 813–821. [Google Scholar] [CrossRef] [PubMed]
- McGregor, R.A.; Cameron-Smith, D.; Poppitt, S.D. It is not just muscle mass: A review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev. Healthspan 2014, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Pillen, S.; Tak, R.O.; Zwarts, M.J.; Lammens, M.M.Y.; Verrijp, K.N.; Arts, I.M.P.; van der Laak, J.A.; Hoogerbrugge, P.M.; van Engelen, B.G.M.; Verrips, A. Skeletal muscle ultrasound: Correlation between fibrous tissue and echo intensity. Ultrasound Med. Biol. 2009, 35, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Reimers, K.; Reimers, C.D.; Wagner, S.; Paetzke, I.; Pongratz, D.E. Skeletal muscle sonography: A correlative study of echogenicity and morphology. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 1993, 12, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Sergi, G.; De Rui, M.; Veronese, N.; Bolzetta, F.; Berton, L.; Carraro, S.; Bano, G.; Coin, A.; Manzato, E.; Perissinotto, E. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin. Nutr. 2015, 34, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Choi, S.H.; Lim, S.; Kim, K.W.; Lim, J.Y.; Cho, N.H.; Park, K.S.; Jang, H.C. Assessment of appendicular skeletal muscle mass by bioimpedance in older community-dwelling Korean adults. Arch. Gerontol. Geriatr. 2014, 58, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Rangel Peniche, D.B.; Raya Giorguli, G.; Alemán-Mateo, H. Accuracy of a predictive bioelectrical impedance analysis equation for estimating appendicular skeletal muscle mass in a non-Caucasian sample of older people. Arch. Gerontol. Geriatr. 2015, 61, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Genton, L.; Hans, D.; Pichard, C. Validation of a bioelectrical impedance analysis equation to predict appendicular skeletal muscle mass (ASMM). Clin. Nutr. 2003, 22, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.C.Y.; Powell, A.; Khow, K.S.F.; Visvanathan, R. The Performance of Five Bioelectrical Impedance Analysis Prediction Equations against Dual X-ray Absorptiometry in Estimating Appendicular Skeletal Muscle Mass in an Adult Australian Population. Nutrients 2016, 8, 189. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Bolonchuk, W.W.; Hall, C.B.; Siders, W.A. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J. Appl. Physiol. 1986, 60, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Zocher, D.; Bosy-Westphal, A.; Szramek, A.; Scheufele, R.; Smoliner, C.; Pirlich, M. Cutoff percentiles of bioelectrical phase angle predict functionality, quality of life, and mortality in patients with cancer. Am. J. Clin. Nutr. 2010, 92, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis--clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef] [PubMed]
- Bering, T.; Diniz, K.G.D.; Coelho, M.P.P.; de Souza, A.C.M.; de Melo, L.F.; Vieira, D.A.; Soares, M.M.S.; Kakehasi, A.M.; Correia, M.I.T.D.; Teixeira, R.; et al. Bioelectrical Impedance Analysis-Derived Measurements in Chronic Hepatitis C: Clinical Relevance of Fat-Free Mass and Phase Angle Evaluation. Nutr. Clin. Pract. 2018, 33, 238–246. [Google Scholar] [CrossRef] [PubMed]
- de Blasio, F.; Di Gregorio, A.; de Blasio, F.; Bianco, A.; Bellofiore, B.; Scalfi, L. Malnutrition and sarcopenia assessment in patients with chronic obstructive pulmonary disease according to international diagnostic criteria, and evaluation of raw BIA variables. Respir. Med. 2018, 134, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Pena, N.F.; Mauricio, S.F.; Rodrigues, A.M.; Carmo, A.S.; Coury, N.C.; Correia, M.I.; Generoso, S.V. Association Between Standardized Phase Angle, Nutrition Status, and Clinical Outcomes in Surgical Cancer Patients. Nutr. Clin. Pract. 2019, 34, 381–386. [Google Scholar] [CrossRef]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.P.; Zanandrea, V.; Zoico, E.; Zanardo, M.; Caliari, C.; Confente, S.; Gabriele, S.; Mazzali, G.; Fantin, F.; Zamboni, M. Inflammation and nutritional status as predictors of physical performance and strength loss during hospitalization. Eur. J. Clin. Nutr. 2016, 70, 1439–1442. [Google Scholar] [CrossRef] [PubMed]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Strasser, E.M.; Draskovits, T.; Praschak, M.; Quittan, M.; Graf, A. Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. Age 2013, 35, 2377–2388. [Google Scholar] [CrossRef] [PubMed]
- Narici, M.V.; Maganaris, C.N.; Reeves, N.D.; Capodaglio, P. Effect of aging on human muscle architecture. J. Appl. Physiol. 2003, 95, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.; Kuznia, P.; Heshka, S.; Albu, J.; Heymsfield, S.B.; Goodpaster, B.; Visser, M.; Harris, T.B. Adipose tissue in muscle: A novel depot similar in size to visceral adipose tissue. Am. J. Clin. Nutr. 2005, 81, 903–910. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, K.; Mercer, A.; Mawhinney, H.; Pulinilkunnil, T.; Udenigwe, C.C.; Kienesberger, P.C. Whey peptides stimulate differentiation and lipid metabolism in adipocytes and ameliorate lipotoxicity-induced insulin resistance in muscle cells. Nutrients 2020, 12, 425. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, S. Current Understanding of Sarcopenia and Malnutrition in Geriatric Rehabilitation. Nutrients 2023, 15, 1426. [Google Scholar] [CrossRef] [PubMed]
- Curtis, M.; Swan, L.; Fox, R.; Warters, A.; O’Sullivan, M. Associations between Body Mass Index and Probable Sarcopenia in Community-Dwelling Older Adults. Nutrients 2023, 15, 1505. [Google Scholar] [CrossRef] [PubMed]
- Minetto, M.A.; Caresio, C.; Menapace, T.; Hajdarevic, A.; Marchini, A.; Molinari, F.; Maffiuletti, N.A. Ultrasound-Based Detection of Low Muscle Mass for Diagnosis of Sarcopenia in Older Adults. PM R 2016, 8, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, Y.; Ikezoe, T.; Yamada, Y.; Tsukagoshi, R.; Nakamura, M.; Mori, N.; Kimura, M.; Ichihashi, N. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur. J. Appl. Physiol. 2012, 112, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Askanas, V.; Engel, W.K. Distinct subtypes of type I fibers of human skeletal muscle. Neurology 1975, 25, 879. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L.; Li, X.; Frontera, W.R. Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am. J. Physiol.-Cell Physiol. 1997, 272, C638–C649. [Google Scholar] [CrossRef] [PubMed]
- Larsson, L. Histochemical characteristics of human skeletal muscle during aging. Acta Physiol. Scand. 1983, 117, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Zoico, E.; Corzato, F.; Bambace, C.; Rossi, A.P.; Micciolo, R.; Cinti, S.; Harris, T.B.; Zamboni, M. Myosteatosis and myofibrosis: Relationship with aging, inflammation and insulin resistance. Arch. Gerontol. Geriatr. 2013, 57, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Ismail, C.; Zabal, J.; Hernandez, H.J.; Woletz, P.; Manning, H.; Teixeira, C.; DiPietro, L.; Blackman, M.R.; Harris-Love, M.O. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia. Front. Physiol. 2015, 6, 302. [Google Scholar] [CrossRef] [PubMed]
- Reimers, C.D.; Schlotter, B.; Eicke, B.M.; Witt, T.N. Calf enlargement in neuromuscular diseases: A quantitative ultrasound study in 350 patients and review of the literature. J. Neurol. Sci. 1996, 143, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Arts, I.M.; Schelhaas, H.J.; Verrijp, K.C.; Zwarts, M.J.; Overeem, S.; van der Laak, J.A.; Lammens, M.M.; Pillen, S. Intramuscular fibrous tissue determines muscle echo intensity in amyotrophic lateral sclerosis. Muscle Nerve 2012, 45, 449–450. [Google Scholar] [CrossRef] [PubMed]
- Kołodziej, M.; Ignasiak, Z. Changes in the bioelectrical impedance parameters estimating appendicular skeletal muscle mass in healthy older persons. Aging Clin. Exp. Res. 2020, 32, 1939–1945. [Google Scholar] [CrossRef]
- Marini, E.; Buffa, R.; Saragat, B.; Coin, A.; Berton, L.; Manzato, E.; Sergi, G.; Toffanello, E.D. The potential of classic and specific bioelectrical impedance vector analysis for the assessment of sarcopenia and sarcopenic obesity. Clin. Interv. Aging 2012, 7, 585–591. [Google Scholar] [CrossRef] [PubMed]
- do Espirito Santo Silva, D.; Waitzberg, D.L.; Passos de Jesus, R.; de Oliveira, L.P.M.; Torrinhas, R.S.; Belarmino, G. Phase angle as a marker for sarcopenia in cirrhosis. Clin. Nutr. ESPEN 2019, 32, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Deniz, O.; Cruz-Jentoft, A.; Aycicek, G.S.; Unsal, P.; Esme, M.; Ucar, Y.; Burkuk, S.; Sendur, A.; Yavuz, B.B.; Cankurtaran, M.; et al. Role of ultrasonography in estimating muscle mass in sarcopenic obesity. J. Parenter. Enter. Nutr. 2020, 44, 1398–1406. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, Y.; Koca, M.; Burkuk, S.; Unsal, P.; Dikmeer, A.; Oytun, M.G.; Bas, A.O.; Kahyaoglu, Z.; Deniz, O.; Coteli, S.; et al. The role of muscle ultrasound to predict sarcopenia. Nutrition 2022, 101, 111692. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Kimura, Y.; Ishiyama, D.; Nishio, N.; Otobe, Y.; Tanaka, T.; Ohji, S.; Koyama, S.; Sato, A.; Suzuki, M.; et al. Phase Angle is a Useful indicator for Muscle Function in Older Adults. J. Nutr. Health Aging 2019, 23, 251–255. [Google Scholar] [CrossRef]
- Kosoku, A.; Uchida, J.; Nishide, S.; Kabei, K.; Shimada, H.; Iwai, T.; Maeda, K.; Hanayama, Y.; Ishihara, T.; Naganuma, T.; et al. Association of sarcopenia with phase angle and body mass index in kidney transplant recipients. Sci. Rep. 2020, 10, 266. [Google Scholar] [CrossRef] [PubMed]
Females (n = 35; 50%) | Males (n = 35; 50%) | |||||||
---|---|---|---|---|---|---|---|---|
Total Sample (n = 35) | Hospitalized Elderly Women (n = 30) | Young Females (n = 5) | p Value | Total Sample (n = 35) | Hospitalized Elderly Men (n = 30) | Young Males (n = 5) | p Value | |
Age (Years) | 77.69 ± 20.48 | 85.67 ± 5.49 | 29.80 ± 0.66 | <0.001 | 74.26 ± 18.87 | 81.6 ± 5.17 | 30.20 ± 1.92 | <0.001 |
Height (cm) | 159.11 ± 6.96 | 158.07 ± 5.99 | 165.40 ±9.66 | 0.027 | 171.97 ± 8.16 | 170.13 ± 7.2 | 183 ± 3.67 | <0.001 |
Weight (kg) | 57.45 ± 9.34 | 58.06 ± 9.66 | 53.8 ± 6.79 | 0.352 | 73.96 ± 16.03 | 73.65 ± 17.11 | 75.8 ± 7.6 | 0.786 |
Body Mass Index (kg/m2) | 22.79 ± 3.50 | 23.31 ± 3.47 | 19.64 ± 1.61 | 0.028 | 24.52 ± 4.36 | 24.79 ± 4.55 | 22.92 ± 2.8 | 0.384 |
Waist Circumference (cm) | 85.86 ± 14.03 | 90.37 ± 9.02 | 58.8 ± 3.96 | <0.001 | 92.86 ± 14.39 | 96.23 ± 12.87 | 72.60 ± 8.23 | <0.001 |
Grip Strength (kg) | 15.89 ± 6.25 | 14.33 ± 5.17 | 25.22 ± 3.38 | <0.001 | 26.16 ± 12.98 | 21.68 ± 7.11 | 53.06 ± 3.27 | <0.001 |
Phase Angle (°) | 3.87 ± 1.05 | 3.59 ± 0.81 | 5.58 ± 0.57 | <0.001 | 4.33 ± 1.4 | 4.06 ± 0.85 | 6.96 ± 0.43 | <0.001 |
Fat-Free Mass (kg) | 36.83 ± 5.09 | 36.44 ± 5.15 | 39.18 ± 4.47 | 0.271 | 52.19 ± 10.27 | 50.26 ± 9.8 | 63.76 ± 2.35 | 0.005 |
Fat Mass (kg) | 21.05 ± 8.17 | 22.12 ± 8.19 | 14.62 ± 4.58 | 0.056 | 21.91 ± 11.82 | 23.42 ± 11.81 | 12.84 ± 7.54 | 0.063 |
Fat Mass % | 35.73 ± 0.88 | 37.21 ± 8.4 | 26.82 ± 6.17 | 0.013 | 28.49 ± 11.4 | 0.31 ± 0.11 | 0.16 ± 0.08 | 0.007 |
Skeletal Muscle (kg) | 16.2 ± 3.98 | 15.64 ± 3.9 | 19.53 ± 2.64 | 0.041 | 27.54 ± 5.94 | 26.48 ± 5.73 | 33.89 ± 1.6 | 0.008 |
Skeletal Muscle Index (kg/m2) | 6.36 ± 1.32 | 6.23 ± 3.98 | 7.14 ± 0.86 | 0.154 | 9.27 ± 1.8 | 9.131 ± 1.9 | 10.13 ± 0.59 | 0.257 |
Basal Thickness (cm) | 1.25 ± 0.32 | 1.18 ± 0.25 | 1.65 ± 0.39 | 0.001 | 1.57 ± 0.46 | 1.44 ± 0.34 | 2.34 ± 0.28 | <0.001 |
Post Compression Thickness (cm) | 0.70 ± 0.24 | 0.65 ± 0.2 | 1.0 ± 0.26 | 0.001 | 0.94 ± 0.37 | 0.83 ± 0.23 | 1.61 ± 0.35 | <0.001 |
Compressibility (%) | 0.44 ± 0.11 | 0.45 ± 0.11 | 0.39 ± 0.11 | 0.251 | 0.41 ± 0.1 | 0.42 ± 0.08 | 0.31 ± 0.12 | 0.021 |
Stiffness (0–100) | 55.88 ± 11.4 | 54.99 ± 11.47 | 61.22 ± 10.53 | 0.264 | 59.69 ± 9.67 | 58.18 ± 8.44 | 68.79 ± 12.5 | 0.021 |
Subcutaneus Fat (mm) | 1.08 ± 0.34 | 1.11 ± 0.35 | 0.96 ± 0.22 | 0.358 | 0.72 ± 0.27 | 0.74 ± 0.28 | 0.61 ± 0.23 | 0.319 |
Rectus Femoris Cross-sectional Area (cm2) | 5.01 ± 1.86 | 4.49 ± 1.25 | 7.16 ± 1.11 | <0.001 | 7.22 ± 3.15 | 6.19 ± 1.80 | 12.65 ± 2.57 | <0.001 |
Echogenicity (0–250) | 55.65 ± 18.40 | 60.63 ± 14.49 | 25.81 ± 7.40 | <0.001 | 46.63 ± 11.81 | 46.09 ± 9.78 | 28.84 ± 13.18 | 0.001 |
Muscle Quality Index (cm) | 20.05 ± 11.12 | 16.73 ± 7.59 | 39.93 ± 7.54 | <0.001 | 34.69 ± 24.84 | 25.81 ± 10.59 | 87.88 ± 17.46 | <0.001 |
Sarcopenic Hospitalized Elderly (n = 26) | Non-Sarcopenic Hospitalized Elderly (n = 34) | p-Value | |
---|---|---|---|
Age (Years) | 83.81 ± 5.89 | 83.50 ± 5.58 | 0.837 |
Sex (F%) | 11 (42.3) | 19 (55.8) | 0.435 |
Barthel Index | 54.0 (27.9) | 68.5 (31.2) | 0.067 |
Height (cm) | 164.10 ± 8.95 | 163.27 ± 10.18 | 0.534 |
Weight (kg) | 59.02 ± 13.21 | 71.09 ± 15.89 | 0.003 |
Body Mass Index (kg/m2) | 21.98 ± 3.18 | 25.63 ± 4.02 | <0.001 |
Waist Circumference (cm) | 87.50 ± 7.48 | 97.74 ± 11.43 | <0.001 |
Grip Strength (kg) | 14.34 ± 5.62 | 20.81 ± 7.06 | <0.001 |
Mini Nutritional Assessment | 21.42 ± 7.33 | 25.56 ± 7.61 | 0.037 |
Phase Angle (°) | 3.33 ± 0.61 | 4.20 ± 0.83 | <0.001 |
Fat-Free Mass (kg) | 41.07 ± 9.84 | 45.09 ± 10.67 | 0.14 |
Fat Mass (kg) | 18.12 ± 7.22 | 26.33 ± 10.62 | 0.001 |
Fat Mass % | 0.31 ± 0.08 | 0.36 ± 0.11 | 0.023 |
Skeletal Muscle (kg) | 18.71 ± 6.43 | 22.86 ± 7.53 | 0.028 |
Skeletal Muscle Index (kg/m2) | 6.90 ± 1.95 | 8.28 ± 2.20 | 0.014 |
Basal Thickness (cm) | 1.22 ± 0.36 | 1.40 ± 0.29 | 0.036 |
Post Compression Thickness (cm) | 0.62 ± 0.21 | 0.83 ± 0.20 | <0.001 |
Compressibility (%) | 0.49 ± 0.09 | 0.39 ± 0.09 | <0.001 |
Stiffness (0–100) | 51.27 ± 9.34 | 60.65 ± 8.80 | <0.001 |
Subcutaneus Fat (mm) | 0.89 ± 0.40 | 0.95 ± 0.33 | 0.589 |
Rectus Femoris Cross-sectional Area (cm2) | 4.42 ± 1.55 | 6.04 ± 1.60 | <0.001 |
Echogenicity (0–250) | 51.12 ± 12.71 | 55.08 ± 15.34 | 0.291 |
Muscle Quality Index (cm) | 14.92 ± 6.28 | 26.13 ± 10.04 | <0.001 |
Females | Males | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cross-sectional Area (cm2) | <3.49 | <3.61 | <3.71 | <3.88 | <4.08 | <4.24 a | <2.69 | <3.59 | <4.28 | <4.88 | <5.49 | <5.63 a |
Sensitivity (%) | 94.7 | 89.5 | 84.2 | 78.9 | 78.9 | 78.9 | 100 | 100 | 100 | 100 | 100 | 100 |
Specificity (%) | 45.5 | 54.5 | 54.5 | 63.6 | 81.8 | 100 | 6.7 | 20 | 33.3 | 46.7 | 60 | 80 |
Phase Angle (°) | <2.25 | <2.55 | <2.85 | <3.35 | <3.6 | <3.85 a | <2.6 | <3.05 | <3.35 | <3.7 | <3.95 | <4.25 a |
Sensitivity (%) | 94.7 | 89.5 | 84.2 | 78.9 | 68.4 | 57.9 | 100 | 100 | 100 | 93.3 | 73.3 | 73.3 |
Specificity (%) | 9.1 | 18.2 | 27.3 | 63.6 | 72.7 | 100 | 6.7 | 20 | 46.7 | 66.7 | 73.3 | 93.3 |
Muscle Quality Index | <6.78 | <8.50 | <10.24 | <11.39 | <13.23 | <15.63 a | <8.35 | <11.29 | <13.38 | <17.37 | <22.20 | <23.45 a |
Sensitivity (%) | 100 | 94.7 | 84.2 | 78.9 | 78.9 | 78.9 | 100 | 100 | 100 | 100 | 100 | 100 |
Specificity (%) | 9.1 | 27.3 | 36.4 | 54.3 | 72.7 | 100 | 6.7 | 20 | 33.3 | 46.7 | 66.7 | 86.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanotelli, A.; Rossi, A.P.; Del Monte, L.; Vantini, G.; Stabile, G.; Urbani, S.; Giani, A.; Zoico, E.; Babbanini, A.; Fantin, F.; et al. The Role of Combined Muscle Ultrasound and Bioimpedentiometry Parameters for Sarcopenia Diagnosis in a Population of Hospitalized Older Adults. Nutrients 2024, 16, 2429. https://doi.org/10.3390/nu16152429
Zanotelli A, Rossi AP, Del Monte L, Vantini G, Stabile G, Urbani S, Giani A, Zoico E, Babbanini A, Fantin F, et al. The Role of Combined Muscle Ultrasound and Bioimpedentiometry Parameters for Sarcopenia Diagnosis in a Population of Hospitalized Older Adults. Nutrients. 2024; 16(15):2429. https://doi.org/10.3390/nu16152429
Chicago/Turabian StyleZanotelli, Alfredo, Andrea P. Rossi, Letizia Del Monte, Gianluca Vantini, Giovanni Stabile, Silvia Urbani, Anna Giani, Elena Zoico, Alessio Babbanini, Francesco Fantin, and et al. 2024. "The Role of Combined Muscle Ultrasound and Bioimpedentiometry Parameters for Sarcopenia Diagnosis in a Population of Hospitalized Older Adults" Nutrients 16, no. 15: 2429. https://doi.org/10.3390/nu16152429
APA StyleZanotelli, A., Rossi, A. P., Del Monte, L., Vantini, G., Stabile, G., Urbani, S., Giani, A., Zoico, E., Babbanini, A., Fantin, F., Zamboni, M., & Mazzali, G. (2024). The Role of Combined Muscle Ultrasound and Bioimpedentiometry Parameters for Sarcopenia Diagnosis in a Population of Hospitalized Older Adults. Nutrients, 16(15), 2429. https://doi.org/10.3390/nu16152429