A Novel Facet of In-Hospital Food Consumption Associated with Hospital Mortality in Patients with Scheduled Admission—Addition of a Study Protocol to Test the Existence of Effects of COVID-19 in the Same Study in the Post-COVID-19 Period
Abstract
:1. Introduction
1.1. Findings of the Previous Study, Which Showed an Association between In-Hospital Food Consumption and In-Hospital Mortality in Patients with Emergency Admission
1.2. Objective
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Four Seasons’ Analysis
2.4. Age Analysis
2.5. Food Consumption Analysis
2.6. Multivariate Analysis
2.7. Statistical Analysis
3. Results
3.1. Results of Section 2.3
3.2. Results of Section 2.4
3.3. Results of Section 2.5
3.4. Results of Section 2.6
4. Discussion
4.1. The Need to Examine Whether the COVID-19 Pandemic Had an Effect on In-Hospital Mortality Due to COVID History
4.2. Which Nutritional Assessment Tool Was Most Used during the COVID-19 Pandemic and Which Tools Include Food Consumption Assessment?
4.3. A Novel Cutoff Value of In-Hospital Food Consumption Setting at 75% of Requirements
4.4. Strength and Limitations of the Present Study
4.5. Proposal of Study Protocol
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CoronaBoard. Available online: https://coronaboard.com/global/ (accessed on 9 June 2024).
- Mikkelsen, S.; Frost, K.H.; Engelbreth, E.M.; Nilsson, L.; Peilicke, K.M.; Tobberup, R.; Holst, M. Are nutritional sufficiency of 75% energy and protein requirements relevant targets in patients at nutritional risk?—A one month follow-up study. Clin. Nutr. ESPEN 2023, 54, 398–405. [Google Scholar] [CrossRef]
- Ingadottir, A.R.; Beck, A.M.; Baldwin, C.; Weekes, C.E.; Geirsdottir1, O.G.; Ramel, A.; Gislason, T.; Gunnardottir, I. Association of energy and protein intakes with length of stay, readmission and mortality in hospitalised patients with chronic obstructive pulmonary disease. Br. J. Nutr. 2018, 119, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Pourhassan, M.; Böttger, S.; Janssen, G.; Sieske, L.; Wirth, R. The association of inflammation with food intake in older hospitalized patients. J. Nutr. Health Aging 2018, 22, 589–593. [Google Scholar] [CrossRef]
- Miyata, H.; Tsunou, A.; Hokotachi, Y.; Amagai, T. Daily food deprivation as a predictor of in0hospital mortality with 75% cutoff. J. Food Nutr. 2024, 10, 101. [Google Scholar]
- Charlson, M.E.; Carrozzino, D.; Guidi, J.; Patierno, C. Charlson comorbidity index: A critical review of clinimetric properties. Psychother. Psychosom. 2022, 91, 8–35. [Google Scholar] [CrossRef]
- Fischer, A.; Veraar, C.; Worf, I.; Tarantino, S.; Kiss, N.; Schuh, C.; Hiesmayr, M. More Nutritional Support on the Wards after a Previous Intensive Care Unit Stay: A nutritionDay Analysis in 136,667 Patients. Nutrients 2023, 15, 3545. [Google Scholar] [CrossRef]
- Böhne, S.E.J.; Hiesmayr, M.; Sulz, I.; Tarantino, S.; Wirth, R.; Volkert, D. Recent and current low food intake–prevalence and associated factors in hospital patients from different medical specialities. Eur. J. Clin. Nutr. 2022, 76, 1440–1448. [Google Scholar] [CrossRef]
- Kiss, N.; Hiesmayr, M.; Sulz, I.; Bauer, P.; Heinze, G.; Mouhieddine, M.; Schuh, C.; Tarantino, S.; Simon, J. Predicting Hospital Length of Stay at Admission Using Global and Country-Specific Competing Risk Analysis of Structural, Patient, and Nutrition-Related Data from nutritionDay 2007–2015. Nutrients 2021, 13, 4111. [Google Scholar] [CrossRef]
- Walicka, M.; Tuszyńska, A.; Chlebus, M.; Sanchak, Y.; Śliwczyński, A.; Brzozowska, M.; Rutkowski, D.; Puzianowska-Kuźnicka, M.; Franek, E. Predictors of in-hospital mortality in surgical wards: A multivariable retrospective cohort analysis of 2,800,069 hospitalizations. World J. Surg. 2021, 45, 480–487. [Google Scholar] [CrossRef]
- Chen, L.; Chen, L.; Zheng, H.; Wu, S.; Wang, S. Emergency admission parameters for predicting in-hospital mortality in patients with acute exacerbation of chronic obstructive pulmonary disease with hypercapnic respiratory failure. BMC Pulm. Med. 2021, 21, 258. [Google Scholar] [CrossRef]
- Kondrup, J.; Allison, S.P.; Elia, M.; Plauth, M. ESPEN guidelines for nutrition screening 2002. Clin. Nutr. 2003, 22, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Jensen, G.L.; Cererholm, T.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; de Baptista, G.A.; Barazzoni, R.; Blaauw, R.; Coats, A.J.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. J. Parenter. Enteral Nutr. 2019, 43, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Detsky, A.S.; McLaughlin, J.R.; Baker, J.P.; Johnston, N.; Whittaker, S.; Mendelson, R.A.; Jeejeebhoy, K.N. What is subjective global assessment of nutritional status? JPEN J. Parenter. Enteral Nutr. 1987, 11, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.L. The mini nutritional assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999, 15, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, L.Z.; Harker, J.O.; Salvà, A.; Guigoz, Y.; Vellas, B. Screening for undernutrition in geriatric practice: Developing the short-form mini-nutritional assessment (MNA-SF). J. Gerontol. A Bio Sci. Med. Sci. 2001, 56, M366–M372. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Ulter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.; et al. Validation of the mini nutritional assessment short-form (MNA-SF): A practical tool identification of nutritional status. J. Nutr. Health Aging 2009, 13, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.; Capra, S.; Bauer, J.; Banks, M. Development of a valid and reliable malnutrition screening tool for adult hospital patients. Nutrition 1999, 15, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, S.; Tobberup, R.; Skadhauge, L.B.; Rasmussen, H.H.; Holst, M. “More2Eat” in patients at nutritional risk during hospital stay lowers the risk of three-month mortality. Clin. Nutr. ESPEN 2023, 57, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Pourhasan, M.; Sieske, L.; Janssen, G.; Babel, N.; Westhoff, T.H.; Wirth, R. The impact of acute changes of inflammation on appetite and food intake among older hospitalized patients. Br. J. Nutr. 2020, 124, 1069–1075. [Google Scholar] [CrossRef]
- Grund, S.; Bauer, J.M. Malnutrition and sarcopenia in COVID-19 survivors. Clin. Geriatr. Med. 2022, 38, 559–564. [Google Scholar] [CrossRef]
- Fyffe, I.; Sorensen, J.; Carroll, S.; MacPhee, M.; Andrews-Paul, A.; Crooks, V.A.; Freeman, S.; Davison, K.; Walls, J.; Berndt, A.; et al. Long COVID in long-term care: A rapid realist review. BMJ Open 2023, 13, e076186. [Google Scholar] [CrossRef] [PubMed]
- Rossi, R.; Coppi, F.; Monopoli, D.E.; Sgura, F.A.; Arrotti, S.; Alfredo, F. Pulmonary arterial hypertension and right ventricular systolic dysfunction in COVID-19 survivors. Cardiol. J. 2022, 29, 163–165. [Google Scholar] [CrossRef] [PubMed]
- Riou, M.; Coste, F.; Meyer, A.; Enache, I.; Talha, S.; Charloux, A.; Reboul, C.; Geny, B. Mechanisms of Pulmonary Vasculopathy in Acute and Long-Term COVID-19: A Review. Int. J. Mol. Sci. 2024, 25, 4941. [Google Scholar] [CrossRef] [PubMed]
- Eroume À Egom, E.; Shiwani, H.A.; Nouthe, B. From acute SARS-CoV-2 infection to pulmonary hypertension. Front. Physiol. 2022, 13, 1023758. [Google Scholar] [CrossRef] [PubMed]
- Martinuzzi, A.L.N.; Manzanares, W.; Quesada, E.; Reberendo, M.J.; Baccaro, F.; Aversa, I.; Kecskes, C.E.; Magnífico, L.; González, V.; Bolzico, D.; et al. Nutritional risk and clinical outcomes in critically ill adult patients with COVID-19. Nutr. Hosp. 2021, 38, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhou, C.L.; Ba, Y.M.; Wang, Y.M.; Song, B.; Cheng, X.B.; Dong, Q.-F.; Wang, L.-L.; You, S.-S. Nutritional risk and therapy for severe and critical COVID-19 patients: A multicenter retrospective observational study. Clin. Nutr. 2021, 40, 2154–2161. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhang, S.; Mao, Z.; Wang, W.; Hu, H. Clinical significance of nutritional risk screening for older adult patients with COVID-19. Eur. J. Clin. Nutr. 2020, 74, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Can, B.; Senturk Durmus, N.; Olgun Yıldızeli, S.; Kocakaya, D.; Ilhan, B.; Tufan, A. Nutrition risk assessed by Nutritional Risk Screening 2002 is associated with in-hospital mortality in older patients with COVID-19. Nutr. Clin. Pract. 2022, 37, 605–614. [Google Scholar] [CrossRef]
- Zhang, K.; Gui, H.; Cong, J.; He, P. A modified nutrition risk screening 2002 predicts the risk of death among hospitalized patients with COVID-19. Clin. Nutr. ESPEN 2022, 52, 365–370. [Google Scholar] [CrossRef]
- Ahmadi, S.; Firoozi, D.; Dehghani, M.; Zare, M.; Mehrabi, Z.; Ghaseminasab-Parizi, M.; Masoumi, S.J. Evaluation of Nutritional Status of Intensive Care Unit COVID-19 Patients Based on the Nutritional Risk Screening 2002 Score. Clin. Pract. 2022, 2022, 2448161. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Ge, Y.; Shi, Y.; Lv, P.; Zhang, J.; Fu, G.; Zhou, Y.; Jiang, K.; Lin, N.; et al. Evaluation of Nutrition Risk and Its Association With Mortality Risk in Severely and Critically Ill COVID-19 Patients. JPEN J. Parenter. Enteral Nutr. 2021, 45, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Alikiaii, B.; Heidari, Z.; Fazeli, A.; Rahimi Varposhti, M.; Moradi Farsani, D.; Fattahpour, S.; Rafiee, S.; Bagherniya, M. Evaluation of the effectiveness of the Nutritional Risk Screening System 2002 (NRS-2002) in COVID-19 patients admitted to the intensive care unit. Int. J. Clin. Pract. 2021, 75, e14934. [Google Scholar] [CrossRef] [PubMed]
- Fatemeh, G.; Fotsing, G.; Marques-Vidal, P.; Kopp, P.; Barigou, M. Predictive value of multiple variable models including nutritional risk score (NRS 2002) on mortality and length of stay of patients with COVID-19 infections. The INCOVO study. Clin. Nutr. ESPEN 2023, 55, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Sasdelli, A.S.; Ravaioli, F.; Baracco, B.; Battaiola, C.; Bocedi, G.; Brodosi, L.; Leoni, L.; Mari, G.A.; Musio, A. Malnutrition and nutritional therapy in patients with SARS-CoV-2 disease. Clin. Nutr. 2021, 40, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
- Gregoriano, C.; Voelkle, M.; Koch, D.; Hauser, S.I.; Kutz, A.; Mueller, B.; Schuetz, P. Association of Different Malnutrition Parameters and Clinical Outcomes among COVID-19 Patients: An Observational Study. Nutrients 2022, 14, 3449. [Google Scholar] [CrossRef] [PubMed]
- Shamlan, G.; Albreiki, M.; Almasoudi, H.O.; Alshehri, L.A.; Ghaith, M.M.; Alharthi, A.S.; Aleanizy, F.S. Nutritional status of elderly patients previously ill with COVID-19: Assessment with nutritional risk screening 2002 (NRS-2002) and mini nutritional assessment (MNA-sf). J. Infect. Public Health 2024, 17, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.; Serratrice, C.; Herrmann, F.R.; Gold, G.; Graf, C.E.; Zekry, D.; Genton, L. Nutritional risk at hospital admission is associated with prolonged length of hospital stay in old patients with COVID-19. Clin. Nutr. 2022, 41, 3085–3088. [Google Scholar] [CrossRef] [PubMed]
- Kasapoglu, U.S.; Gok, A.; Delen, L.A.; Ozer, A.B. Comparison of nutritional risk status assessment tools in predicting 30-day survival in critically ill COVID-19 pneumonia patients. Ann. Saudi Med. 2022, 42, 236–245. [Google Scholar] [CrossRef]
- Polat, O.; Yuruyen, M.; Sonmezoz, G.B.; Kansu, A.D.; Erismis, B.; Karendere, F.; Kocoglu, H.; Karabela, S.; Yasar, K.K. Malnutrition risk frequency and independent risk factors associated with mortality in hospitalized elderly patients with COVID-19 in Turkey. Asia Pac. J. Clin. Nutr. 2022, 31, 355–361. [Google Scholar] [CrossRef]
- Sun, Y.; He, J.; Li, W.; Li, S.; Lin, Y.; Cen, Y.; Li, Y. Preliminary Exploration of Setting the Disease Severity Score in the Nutritional Risk Screening of Patients with Severe Novel Coronavirus Pneumonia by Applying NRS2002. Int. J. Gen. Med. 2021, 14, 1167–1172. [Google Scholar] [CrossRef]
- Eslamian, G.; Sali, S.; Babaei, M.; Parastouei, K.; Moghadam, D.A. Association of nutrition risk screening 2002 and Malnutrition Universal Screening Tool with COVID-19 severity in hospitalized patients in Iran. Acute Crit. Care 2022, 37, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Cuerda, C.; López, I.S.; Martínez, C.G.; Viveros, M.M. Impact of COVID-19 in nutritional and functional status of survivors admitted in intensive care units during the first outbreak. Preliminary results of the NUTRICOVID study. Clin. Nutr. 2022, 41, 2934–2939. [Google Scholar] [CrossRef] [PubMed]
- McGovern, J.; Al-Azzawi, Y.; Kemp, O.; Moffitt, P.; Richards, C.; Dolan, R.D.; Laird, B.J.; McMillan, D.C.; Maguire, D. The relationship between frailty, nutritional status, co-morbidity, CT-body composition and systemic inflammation in patients with COVID-19. J. Transl. Med. 2022, 20, 98. [Google Scholar] [CrossRef] [PubMed]
- Damanti, S.; Cilla, M.; Vitali, G.; Tiraferri, V.; Pomaranzi, C.; De Rubertis, G.; De Lorenzo, R.; Di Lucca, G.; Scotti, R.; Messina, E.; et al. Exploring the Association between Delirium and Malnutrition in COVID-19 Survivors: A Geriatric Perspective. Nutrients 2023, 15, 4727. [Google Scholar] [CrossRef]
- Riesgo, H.; Castro, A.; Del Amo, S.; San Ceferino, M.J.; Izaola, O.; Primo, D.; Hoyos, E.G.; Gómez, J.J.L.; de Luis, D.A. Prevalence of Risk of Malnutrition and Risk of Sarcopenia in a Reference Hospital for COVID-19: Relationship with Mortality. Ann. Nutr. Metab. 2021, 77, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Vong, T.; Yanek, L.R.; Wang, L.; Yu, H.; Fan, C.; Zhou, E.; Oh, S.J.; Szvarca, D.; Kim, A.; Potter, J.J.; et al. Malnutrition Increases Hospital Length of Stay and Mortality among Adult Inpatients with COVID-19. Nutrients 2022, 14, 1310. [Google Scholar] [CrossRef] [PubMed]
- Cvijetić, S.; Keser, I.; Boschiero, D.; Ilich, J.Z. Osteosarcopenic Adiposity and Nutritional Status in Older Nursing Home Residents during the COVID-19 Pandemic. Nutrients 2023, 15, 227. [Google Scholar] [CrossRef] [PubMed]
- Kananen, L.; Eriksdotter, M.; Boström, A.M.; Kivipelto, M.; Annetorp, M.; Metzner, C.; Jerlardtz, V.B.; Engström, M.; Johnson, P.; Lundberg, L.; et al. Body mass index and Mini Nutritional Assessment-Short Form as predictors of in-geriatric hospital mortality in older adults with COVID-19. Clin. Nutr. 2022, 41, 2973–2979. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Ta, T.V.; Bui, A.T.; Vo, S.N.; Nguyen, N.L.T. Nutritional Status, Refeeding Syndrome and Some Associated Factors of Patients at COVID-19 Hospital in Vietnam. Nutrients 2023, 15, 1760. [Google Scholar] [CrossRef]
- Bedock, D.; Couffignal, J.; Bel Lassen, P.; Soares, L.; Mathian, A.; Fadlallah, J.P.; Amoura, Z.; Oppert, J.-M.; Faucher, P. Evolution of Nutritional Status after Early Nutritional Management in COVID-19 Hospitalized Patients. Nutrients 2021, 13, 2276. [Google Scholar] [CrossRef]
- Mosbah, H.; Fadlallah, J.; Amoura, Z.; Oppert, J.M.; Faucher, P. Prevalence and severity of malnutrition in hospitalized COVID-19 patients. Clin. Nutr. ESPEN 2020, 40, 214–219. [Google Scholar] [CrossRef]
- Gobbi, M.; Brunani, A.; Arreghini, M.; Baccalaro, G.; Dellepiane, D.; La Vela, V.; Lucchetti, E.; Barbaglia, M.; Cova, A.; Fornara, E.; et al. Nutritional status in post SARS-Cov-2 rehabilitation patients. Clin. Nutr. 2022, 41, 3055–3060. [Google Scholar] [CrossRef]
- Demirkol, M.E.; Aktas, G.; Alisik, M.; Yis, O.M.; Kaya, M.; Kocadag, D. Is the prognostic nutritional index a predictor of Covid-19 related hospitalizations and mortality? Malawi Med. J. 2023, 35, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Al-Shami, I.; Hourani, H.M.A.; Alkhatib, B. The use of prognostic nutritional index (PNI) and selected inflammatory indicators for predicting malnutrition in COVID-19 patients: A retrospective study. J. Infect. Public Health 2023, 16, 280–285. [Google Scholar] [CrossRef]
- Wei, W.; Wu, X.; Jin, C.; Mu, T.; Gu, G.; Min, M.; Mu, S.; Han, Y. Predictive Significance of the Prognostic Nutritional Index (PNI) in Patients with Severe COVID-1. J. Immunol. Res. 2021, 2021, 9917302. [Google Scholar] [CrossRef]
- Song, F.; Ma, H.; Wang, S.; Qin, T.; Xu, Q.; Yuan, H.; Li, F.; Wang, Z.; Liao, Y.; Tan, X.; et al. Nutritional screening based on objective indices at admission predicts in-hospital mortality in patients with COVID-19. Nutr. J. 2021, 20, 46. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, D.; Sacco, G.; Gautier, J.; Brière, O.; Annweiler, C.; GERIA-COVID Study Group. Effects of malnutrition on mortality in oldest-old inpatients with COVID-19 in the GERIA-COVID cohort. Maturitas 2022, 161, 40–43. [Google Scholar] [CrossRef] [PubMed]
- De Meester, D.; Goossens, M.; Marco, E.; Claessens, M.; Gautier, J.; Annweiler, C.; Lieten, S.; Benoit, F.; Surquin, M.; Sánchez-Rodríguez, D. Evaluation of the Geriatric Nutritional Risk Index in predicting mortality in older patients with COVID-19 in the AgeBru cohort. Clin. Nutr. ESPEN 2023, 57, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Braga-da-Silveira, J.; Baron, M.V.; Carati-da-Rocha, G.G.; Reinheimer, I.C.; Figueiredo, A.E.; Poli-de-Figueiredo, C.E. Nutritional risk and morbidity and mortality in intensive care unit patients with Coronavirus disease 2019. Clin. Nutr. ESPEN 2024, 60, 234–239. [Google Scholar] [CrossRef]
- Kucuk, B.; Baltaci Ozen, S.; Kocabeyoglu, G.M.; Mutlu, N.M.; Cakir, E.; Ozkocak Turan, I. NUTRIC Score Is Not Superior to mNUTRIC Score in Prediction of Mortality of COVID-19 Patients. Int. J. Clin. Pract. 2022, 2022, 1864776. [Google Scholar] [CrossRef]
- Sendrós, M.J.; Soldevila, B.; Puig-Domingo, M. Impact of COVID-19 on nutritional status during the first wave of the pandemic. Clin. Nutr. 2022, 41, 3032–3037. [Google Scholar] [CrossRef]
- Ramos, A.; Joaquin, C.; Ros, M.; Martin, M.; Cachero, M.; Sospedra, M.; Martínez, E.; Socies, G.; de Oca, A.P.-M.; Sendrós, M.J.; et al. Early nutritional risk detection and intervention in COVID-19 hospitalized patients through the implementation of electronic automatized alarms. Endocrinol. Diabetes Nutr. (Engl. Ed.) 2024, 71, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Kunugi, H. Approaches to Nutritional Screening in Patients with Coronavirus Disease 2019 (COVID-19). Int. J. Environ. Res. Public Health 2021, 18, 2772. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.; Heyer, N.; Greenstein, A.; Fragkos, K.; Baxter-Derrington, C.; Mehta, S. A retrospective analysis of malnutrition risk, nutritional support and outcomes in COVID-19 patients. Clin. Nutr. ESPEN 2022, 50, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Beauchamp, M.K.; Vrkljan, B.; Vesnaver, E.; Giangregorio, L.; Macedo, L.G.; Keller, H.H. Loneliness and resilience are associated with nutrition risk after the first wave of COVID-19 in community-dwelling older Canadians. Appl. Physiol. Nutr. Metab. 2023, 48, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Fiorindi, C.; Campani, F.; Rasero, L.; Campani, C.; Livi, L.; Giovannoni, L.; Amato, C.; Giudici, F.; Bartoloni, A.; Fattirolli, F.; et al. Prevalence of nutritional risk and malnutrition during and after hospitalization for COVID-19 infection: Preliminary results of a single-centre experience. Clin. Nutr. ESPEN 2021, 45, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Haraj, N.E.; El Aziz, S.; Chadli, A.; Dafir, A.; Mjabber, A.; Aissaoui, O.; Barrou, L.; Hamidi, C.E.K.E.; Nsiri, A.; AL Harrar, R.; et al. Nutritional status assessment in patients with COVID-19 after discharge from the intensive care unit. Clin. Nutr. ESPEN 2021, 41, 423–428. [Google Scholar] [CrossRef]
- Capicio, M.; Panesar, S.; Keller, H.; Gramlich, L.; Popeski, N.; Basualdo-Hammond, C.; Atkins, M.; Chan, C.B. Nutrition Risk, Resilience and Effects of a Brief Education Intervention among Community-Dwelling Older Adults during the COVID-19 Pandemic in Alberta, Canada. Nutrients 2022, 14, 1110. [Google Scholar] [CrossRef]
Subgroups of Four Seasons | Group S1 | Group S2 | Group S3 | Group S4 | p-Value |
---|---|---|---|---|---|
Demographics | |||||
Sex, male, N (%) | 50 (56) | 45 (49) | 45 (46) | 47 (55) | 0.468 |
Age, years | 73 (65, 79) | 72 (62, 79) | 71 (65, 77) | 72 (64, 76) | 0.797 |
BMI, kg/m2 | 22.9 (19.5, 25.5) | 22.3 (19.8, 24.5) | 22.2 (20.3, 25.6) | 22.1 (19.8, 24.4) | 0.892 |
Admitted ward, N (%) of internal medicine | 50 (56) | 54 (59) | 62 (63) | 56 (66) | 0.497 |
CCI score | 4 (2, 6) | 4 (2, 6) | 4 (1, 5) | 4 (2, 6) | 0.558 |
Walking as ADL, N (%) | 72 (80) | 75 (82) | 82 (84) | 73 (86) | 0.750 |
Number of drugs, types | 6 (3, 10) | 5 (2, 8) | 5 (2, 9) | 5 (3, 8) | 0.614 |
LOS before study day | 9 (2, 15) | 3 (1, 16) | 8 (2, 17) | 10 (2, 17) | 0.276 |
Nutritional parameters | |||||
Hospital food intake, % | 95 (67, 100) | 84 (57, 100) | 83 (65, 100) | 85 (64, 100) | 0.591 |
% food intake, N (%) of patients taking hospital food ≥ 75% | 59 (66) | 54 (59) | 64 (65) | 49 (58) | 0.563 |
Food texture by IDDIS, N (%) of participants taking regular diets * | 69 (90) | 57 (79) | 76 (93) | 68 (96) | 0.008 |
Outcome parameters | |||||
Primary outcome | |||||
In-hospital mortality, N (%) | 5 (3) | 2 (2) | 1 (1) | 2 (2) | 0.271 |
Secondary outcomes | |||||
LOS, days | 20 (12, 36) | 17 (6, 43) | 19 (10, 33) | 22 (11, 38) | 0.577 |
Highest CRP around study day, mg/dL | 2.2 (0.3, 6.1) | 1.1 (0.2, 6.1) | 1.4 (0.3, 5.7) | 2.2 (0.3, 7.7) | 0.789 |
Survival within 30 days after hospitalization, N (%) | 90 (99) | 92 (100) | 98 (100) | 85 (100) | 0.383 |
Age < 75 | Age ≥ 75 | p Value | |
---|---|---|---|
Number of subjects | 236 | 129 | |
Demographics | |||
Sex, male, N (%) | 126 (53) | 61 (47) | 0.265 |
Age, years | 67 (59, 72) | 79 (77, 82) | <0.001 |
BMI, kg/m2 | 22.6 (20.1, 25.3) | 21.6 (19.5, 24.9) | 0.062 |
Admitted ward, N (%) of internal medicine | 145 (61) | 77 (60) | 0.743 |
CCI score | 4 (2, 6) | 4 (3, 6) | 0.248 |
Walking as ADL, N (%) | 204 (86) | 98 (76) | 0.011 |
Number of drugs, types | 5 (2, 8) | 8 (4, 11) | <0.001 |
LOS before study day | 8 (2, 15) | 8 (2, 21) | 0.835 |
Nutritional parameters | |||
Food texture by IDDIS, N (%) of participants taking regular diets * | 173 (89) | 97 (90) | 0.863 |
Hospital food consumption, % | 92 (65, 100) | 75 (54, 97) | 0.131 |
Outcome parameters | |||
Primary outcome | |||
In-hospital mortality, N (%) | 5 (2) | 5 (4) | 0.254 |
Secondary outcomes | |||
LOS, days | 22 (12, 38) | 26 (16, 45) | 0.249 |
Highest CRP during the entire hospital study, mg/dL | 1.8 (0.2, 6.3) | 1.4 (0.4, 5.5) | 0.850 |
Survival within 30 days after hospitalization, N (%) | 236 (100) | 128 (99) | 0.353 |
Hospital Food Intake | |||
---|---|---|---|
<50% | ≥50% | p Value | |
Number of subjects | 308 | 57 | |
Demographics | |||
Sex, male, N (%) | 157 (51) | 30 (53) | 0.818 |
Age, years | 72 (64,77) | 74 (64, 79) | 0.971 |
BMI, kg/m2 | 22.6 (19.9, 25.3) | 21.3 (18.2, 23.3) | 0.039 |
Admitted ward, N (%) of internal medicine | 183 (59) | 39 (68) | 0.201 |
CCI score | 4 (2, 6) | 5 (3, 8) | <0.001 |
Walking as ADL, N (%) | 267 (87) | 35 (61) | <0.001 |
Number of drugs, types | 6 (3, 9) | 7 (3, 11) | 0.719 |
LOS before study day | 8 (2, 15) | 6 (1, 24) | 0.964 |
Nutritional parameters | |||
Food texture by IDDIS, N (%) of participants taking regular diets * | 257 (91) | 13 (72) | 0.031 |
Hospital food consumption, % | 95 (72, 100) | 5 (0, 29) | <0.001 |
Outcome parameters | |||
Primary outcome | |||
In-hospital mortality, N (%) | 2 (1) | 8 (14) | <0.001 |
Secondary outcomes | |||
LOS, days | 24 (15, 41) | 23 (8, 46) | 0.765 |
Highest CRP during the entire hospital study, mg/dL | 1.4 (0.2, 5.3) | 3.8 (0.7, 11.3) | 0.015 |
Survival within 30 days after hospitalization, N (%) | 308 (100) | 56 (98) | 0.156 |
Hospital Food Intake | |||
---|---|---|---|
<75% | ≥75% | p-Value | |
Number of subjects | 226 | 139 | |
Demographics | |||
Sex, male, N (%) | 118 (52) | 69 (50) | 0.633 |
Age, years | 71 (64,76) | 74 (66, 79) | 0.948 |
BMI, kg/m2 | 22.6 (20.2, 25.4) | 21.8 (19.0, 24.6) | 0.077 |
Admitted ward, N (%) of internal medicine | 129 (57) | 93 (67) | 0.062 |
CCI score | 4 (2, 5) | 5 (3, 7) | 0.003 |
Walking as ADL, N (%) | 198 (88) | 104 (75) | 0.002 |
Number of drugs, types | 6 (3, 9) | 6 (4, 10) | 0.266 |
LOS before study day | 9 (3, 16) | 3 (1, 19) | 0.002 |
Nutritional parameters | |||
Food texture by IDDIS, N (%) of participants taking regular diets * | 207 (92) | 63 (83) | 0.033 |
Hospital food consumption, % | 100 (90, 100) | 56 (12, 67) | <0.001 |
Outcome parameters | |||
Primary outcome | |||
In-hospital mortality, N (%) | 0 (0) | 10 (7) | <0.001 |
Secondary outcomes | |||
LOS, days | 24 (15, 38) | 24 (11, 45) | 0.974 |
Highest CRP during the entire hospital study, mg/dL | 1.2 (0.2, 4.6) | 2.8 (0.5, 11.3) | <0.001 |
Survival within 30 days after hospitalization, N (%) | 226 (100) | 138 (99) | 0.381 |
Variables | Reference | OR (95% CI) | p Value |
---|---|---|---|
Sex | male | 0.362 (0.047–2.762) | 0.327 |
Age | 0.997 (0.923–1.077) | 0.946 | |
BMI | 1.130 (0.841–1.519) | 0.417 | |
CCI | 1.485 (1.021–2.160) | 0.039 | |
ADL | walking | 1.059 (0.099–11.312) | 0.962 |
Food texture by IDDIS | regular diets | 2.417 (0.245–23.835) | 0.450 |
Hospital food consumption | 0.450 (0.288–0.703) | <0.001 |
Variables | Reference | OR (95% CI) | p Value |
---|---|---|---|
Sex | male | 1.838 (1.072–3.155) | 0.027 |
Age | 0.999 (0.979–1.019) | 0.931 | |
BMI | 0.948 (0.887–1.012) | 0.110 | |
CCI | 1.134 (1.030–1.248) | 0.011 | |
ADL | walking | 1.466 (0.713–3.012) | 0.298 |
Food texture by IDDIS | regular diets | 1.595 (0.698–3.636) | 0.268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miyata, H.; Tsunou, A.; Hokotachi, Y.; Amagai, T. A Novel Facet of In-Hospital Food Consumption Associated with Hospital Mortality in Patients with Scheduled Admission—Addition of a Study Protocol to Test the Existence of Effects of COVID-19 in the Same Study in the Post-COVID-19 Period. Nutrients 2024, 16, 2327. https://doi.org/10.3390/nu16142327
Miyata H, Tsunou A, Hokotachi Y, Amagai T. A Novel Facet of In-Hospital Food Consumption Associated with Hospital Mortality in Patients with Scheduled Admission—Addition of a Study Protocol to Test the Existence of Effects of COVID-19 in the Same Study in the Post-COVID-19 Period. Nutrients. 2024; 16(14):2327. https://doi.org/10.3390/nu16142327
Chicago/Turabian StyleMiyata, Hiroyo, Ayako Tsunou, Yoko Hokotachi, and Teruyoshi Amagai. 2024. "A Novel Facet of In-Hospital Food Consumption Associated with Hospital Mortality in Patients with Scheduled Admission—Addition of a Study Protocol to Test the Existence of Effects of COVID-19 in the Same Study in the Post-COVID-19 Period" Nutrients 16, no. 14: 2327. https://doi.org/10.3390/nu16142327
APA StyleMiyata, H., Tsunou, A., Hokotachi, Y., & Amagai, T. (2024). A Novel Facet of In-Hospital Food Consumption Associated with Hospital Mortality in Patients with Scheduled Admission—Addition of a Study Protocol to Test the Existence of Effects of COVID-19 in the Same Study in the Post-COVID-19 Period. Nutrients, 16(14), 2327. https://doi.org/10.3390/nu16142327