The Impact of Malnutrition on Chronic Obstructive Pulmonary Disease (COPD) Outcomes: The Predictive Value of the Mini Nutritional Assessment (MNA) versus Acute Exacerbations in Patients with Highly Complex COPD and Its Clinical and Prognostic Implications
Abstract
:1. Introduction
2. Materials and Methods
- Participants admitted during hospitalization were reassessed at 3, 6 and 12 months after discharge at the “COPD and Cardiovascular Risk” outpatient clinic, which collected information on both moderate and severe acute COPD exacerbations leading to hospitalization and mortality.
- For outpatients referred to the “COPD and Cardiovascular Risk” ambulatory, information on moderate and severe acute COPD exacerbation that led to hospitalization was retrospectively collected the day after the last moderate or severe AECOPD and follow-up continued until a 12-month follow-up was completed.
2.1. COPD Assessment and Outcome Definition
2.2. Administration of the Questionnaires
- Mini Nutritional Assessment (MNA): The MNA includes anthropometric measurements, a global assessment, a dietary questionnaire and a subjective assessment. According to the developers’ instructions, the MNA’s administration utilizes a two-step approach: the screening step and the global assessment step. Subsequently, based on the MNA Total Score (MNA-TS), patients are classified as ‘‘malnourished’’, ‘‘at risk of malnutrition’’ or as having a ‘‘normal nutritional status”. The ‘‘global assessment step’’ of the MNA should only be administered to patients not reaching the screening threshold. For the purpose of this study, we evaluated both procedures for the MNA questionnaire.
- The Barthel Index: The evaluation of activities of daily living is essential in gaining insight into the functional capacity and independence of COPD patients. The Barthel Index plays a crucial role in assessing the functional status of these individuals [26]. The Barthel Index, formerly the Maryland Disability Index, was codified by the English nurse Barthel in the 1950s. It serves as an ordinal scale and consists of 10 items examining ADLs. Each item is given an arbitrary score of 5, 10 or 15 points. The sum indicates the degree of autonomy in performing daily activities: a total of 100 points represents the maximum level of autonomy [27]. For the purpose of this study, the cut-off points suggested by Shah et al. [28] were used and allowed us to interpet the Barthel Index score as follows: a total score ranging between 0 and 20 implies “total dependency”, 21–60 indicates “severe dependency”, 61–90 indicates “moderate dependency” and 91–99 suggests “slight dependency”. A score of 100 denotes complete independence from external assistance.
- EuroQol 5D 3 level (EQ-5D-3L): EQ-5D-3L is a simple questionnaire that explores QoL and health status [29]. Euro-QoL-5D-3L (EQ-5D-3L) is a widely used generic health-related QoL (HRQoL) instrument that measures individuals’ health status across five dimensions: mobility, self-care, usual activities, pain/discomfort and anxiety/depression. It provides a descriptive profile of health and allows for the calculation of an overall index score [29]. Studies using EQ-5D-3L in COPD patients have consistently found that they experience significant impairments in several dimensions of health: key findings in COPD patients include decreased mobility due to breathlessness, limitations in self-care activities and difficulties in performing usual activities. Furthermore, COPD patients often report moderate to severe levels of pain/discomfort and anxiety/depression, which can significantly impact their overall HRQoL [30,31]. For the purpose of this study, the Italian population-based set value was used to calculate the EQ-5D-3L index value [32] (license agreement number: 159432; March 2021).
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Demographic, Anthropometric and COPD-Related Variables of the 120 Enrolled Participants Assessed at Baseline
3.2. Distribution of Multidimensional Tests Evaluated: The MNA, the Barthel Index and the EQ-5D-3L Index
3.3. Assessment of the Relationship between MNA Indices, Clinical–Spirometric Parameters of COPD Severity, Multidimensional Assessment (The Barthel Index and EQ-5D-3L), Age and BMI
3.4. Distribution of mMRC, CAT, FVC, FEV1 and EQ-5D-3L Scores According to MNA Risk Class of Malnutrition: “Normal Nutritional Status”, “Risk of Malnutrition” or “Malnourished”
3.5. Both MNA-SF and MNA-TS Have Predictive Value for the Severity of Breathlessness, Quality of Life and Level of Independence
3.6. COPD Participants Classified as “At Risk of Malnutrition” and “Malnourished” According to the MNA Score Had a Higher Risk of Moderate to Severe Acute Exacerbations during the 52 Weeks of Follow-Up
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 2024 GOLD Report. Available online: https://goldcopd.org/2024-gold-report/ (accessed on 28 February 2024).
- Mete, B.; Pehlivan, E.; Gülbaş, G.; Günen, H. Prevalence of Malnutrition in COPD and Its Relationship with the Parameters Related to Disease Severity. Int. J. Chron. Obstruct Pulmon Dis. 2018, 13, 3307–3312. [Google Scholar] [CrossRef] [PubMed]
- Soler, J.J.; Sánchez, L.; Román, P.; Martínez, M.A.; Perpiñá, M. Prevalence of malnutrition in outpatients with stable chronic obstructive pulmonary disease. Arch. Bronconeumol. 2004, 40, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Lu, Y.; Zhang, Q.; Bian, Y.; Zhou, X.; Hou, G. Global prevalence of malnutrition in patients with chronic obstructive pulmonary disease: Systemic review and meta-analysis. Clin. Nutr. 2023, 42, 848–858. [Google Scholar] [CrossRef]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Tramontano, A.; Palange, P. Nutritional State and COPD: Effects on Dyspnoea and Exercise Tolerance. Nutrients 2023, 15, 1786. [Google Scholar] [CrossRef] [PubMed]
- Kaluźniak-Szymanowska, A.; Krzymińska-Siemaszko, R.; Wieczorowska-Tobis, K.; Deskur-Śmielecka, E. Optimal Assessment of Nutritional Status in Older Subjects with the Chronic Obstructive Pulmonary Disease-A Comparison of Three Screening Tools Used in the GLIM Diagnostic Algorithm. Int. J. Environ. Res. Public Health 2022, 19, 1025. [Google Scholar] [CrossRef] [PubMed]
- Scichilone, N.; Paglino, G.; Battaglia, S.; Martino, L.; Interrante, A.; Bellia, V. The mini nutritional assessment is associated with the perception of dyspnoea in older subjects with advanced COPD. Age Ageing 2008, 37, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Guigoz, Y. The Mini Nutritional Assessment (MNA) Review of the Literature—What Does It Tell Us? J. Nutr. Health Aging 2006, 10, 466–485; discussion 485–487. [Google Scholar] [PubMed]
- Fried, T.R.; Fragoso, C.A.V.; Rabow, M.W. Caring for the Older Person with Chronic Obstructive Pulmonary Disease. JAMA 2012, 308, 1254–1263. [Google Scholar] [CrossRef]
- Ozsoy, I.; Ozcan Kahraman, B.; Acar, S.; Ozalevli, S.; Akkoclu, A.; Savci, S. Factors Influencing Activities of Daily Living in Subjects With COPD. Respir. Care 2019, 64, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Nakken, N.; Janssen, D.J.A.; Wouters, E.F.M.; van den Bogaart, E.H.A.; Muris, J.W.M.; de Vries, G.J.; Bootsma, G.P.; Gronenschild, M.H.M.; Delbressine, J.M.L.; van Vliet, M.; et al. Changes in Problematic Activities of Daily Living in Persons with COPD during 1 Year of Usual Care. Aust. Occup. Ther. J. 2020, 67, 447–457. [Google Scholar] [CrossRef]
- Lahaije, A.J.M.C.; van Helvoort, H.a.C.; Dekhuijzen, P.N.R.; Heijdra, Y.F. Physiologic Limitations during Daily Life Activities in COPD Patients. Respir. Med. 2010, 104, 1152–1159. [Google Scholar] [CrossRef] [PubMed]
- Simon, K.M.; Carpes, M.F.; Corrêa, K.S.; dos Santos, K.; Karloh, M.; Mayer, A.F. Relationship between Daily Living Activities (ADL) Limitation and the BODE Index in Patients with Chronic Obstructive Pulmonary Disease. Rev. Bras. Fisioter. 2011, 15, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.S.; Nogueira, F.R.; Porto, E.F.; Gazzotti, M.R.; Nascimento, O.A.; Camelier, A.; Jardim, J.R. Dynamic Hyperinflation during Activities of Daily Living in COPD Patients. Chron. Respir. Dis. 2015, 12, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Zareifopoulos, N.; Bellou, A.; Spiropoulou, A.; Spiropoulos, K. Prevalence, Contribution to Disease Burden and Management of Comorbid Depression and Anxiety in Chronic Obstructive Pulmonary Disease: A Narrative Review. COPD 2019, 16, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Fazekas-Pongor, V.; Balazs, P.; Tarantini, S.; Szollosi, G.; Pako, J.; Nemeth, A.N.; Varga, J.T. Effect of Malnutrition and Body Composition on the Quality of Life of COPD Patients. Physiol. Int. 2021, 108, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Marco, E.; Sánchez-Rodríguez, D.; Dávalos-Yerovi, V.N.; Duran, X.; Pascual, E.M.; Muniesa, J.M.; Rodríguez, D.A.; Aguilera-Zubizarreta, A.; Escalada, F.; Duarte, E. Malnutrition According to ESPEN Consensus Predicts Hospitalizations and Long-Term Mortality in Rehabilitation Patients with Stable Chronic Obstructive Pulmonary Disease. Clin. Nutr. 2019, 38, 2180–2186. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, D.B. Malnutrition in Chronic Obstructive Pulmonary Disease. Respir. Care Clin. N. Am. 2006, 12, 521–531. [Google Scholar] [PubMed]
- Anzueto, A. Impact of Exacerbations on COPD. Eur. Respir. Rev. 2010, 19, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Erhabor, G.E.; Adeniyi, B.; Arawomo, A.O.; Akinwalere, O.; Adetona, G.; Fagbohun, F.T.; Aigbirior, J.; Erhabor, J.O. Acute Exacerbation of COPD: Clinical Perspectives and Literature Review. West. Afr. J. Med. 2021, 38, 1129–1142. [Google Scholar] [CrossRef]
- Di Raimondo, D.; Pirera, E.; Pintus, C.; De Rosa, R.; Profita, M.; Musiari, G.; Siscaro, G.; Tuttolomondo, A. The Role of the Cumulative Illness Rating Scale (CIRS) in Estimating the Impact of Comorbidities on Chronic Obstructive Pulmonary Disease (COPD) Outcomes: A Pilot Study of the MACH (Multidimensional Approach for COPD and High Complexity) Study. J. Pers. Med. 2023, 13, 1674. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-Ethnic Reference Values for Spirometry for the 3–95-Yr Age Range: The Global Lung Function 2012 Equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef] [PubMed]
- Van Dam van Isselt, E.F.; Spruit, M.; Groenewegen-Sipkema, K.H.; Chavannes, N.H.; Achterberg, W.P. Geriatric Rehabilitation for Patients with Advanced Chronic Obstructive Pulmonary Disease: A Naturalistic Prospective Cohort Study on Feasibility and Course of Health Status. Chron. Respir. Dis. 2014, 11, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Wylie, C.M.; White, B.K. A Measure of Disability. Arch. Environ. Health An. Int. J. 1964, 8, 834–839. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Vanclay, F.; Cooper, B. Improving the Sensitivity of the Barthel Index for Stroke Rehabilitation. J. Clin. Epidemiol. 1989, 42, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Rabin, R.; de Charro, F. EQ-5D: A Measure of Health Status from the EuroQol Group. Ann. Med. 2001, 33, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Boros, P.W.; Lubiński, W. Health State and the Quality of Life in Patients with Chronic Obstructive Pulmonary Disease in Poland: A Study Using the EuroQoL-5D Questionnaire. Pol. Arch. Med. Wewn. 2012, 122, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.-J.; Pickard, A.S.; Krishnan, J.A.; Joo, M.J.; Au, D.H.; Carson, S.S.; Gillespie, S.; Henderson, A.G.; Lindenauer, P.K.; McBurnie, M.A.; et al. Measuring Health-Related Quality of Life in Chronic Obstructive Pulmonary Disease: Properties of the EQ-5D-5L and PROMIS-43 Short Form. BMC Med. Res. Methodol. 2014, 14, 78. [Google Scholar] [CrossRef] [PubMed]
- Finch, A.P.; Meregaglia, M.; Ciani, O.; Roudijk, B.; Jommi, C. An EQ-5D-5L Value Set for Italy Using Videoconferencing Interviews and Feasibility of a New Mode of Administration. Soc. Sci. Med. 2022, 292, 114519. [Google Scholar] [CrossRef]
- Kaluźniak-Szymanowska, A.; Krzymińska-Siemaszko, R.; Deskur-Śmielecka, E.; Lewandowicz, M.; Kaczmarek, B.; Wieczorowska-Tobis, K. Malnutrition, Sarcopenia, and Malnutrition-Sarcopenia Syndrome in Older Adults with COPD. Nutrients 2021, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Verduri, A.; Clini, E.; Carter, B.; Hewitt, J. Impact of Frailty on Symptom Burden in Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2024, 13, 984. [Google Scholar] [CrossRef] [PubMed]
- Dávalos-Yerovi, V.; Marco, E.; Sánchez-Rodríguez, D.; Duran, X.; Meza-Valderrama, D.; Rodríguez, D.A.; Muñoz, E.; Tejero-Sánchez, M.; Muns, M.D.; Guillén-Solà, A.; et al. Malnutrition According to GLIM Criteria Is Associated with Mortality and Hospitalizations in Rehabilitation Patients with Stable Chronic Obstructive Pulmonary Disease. Nutrients 2021, 13, 369. [Google Scholar] [CrossRef] [PubMed]
- De Araújo, B.E.; Kowalski, V.; Leites, G.M.; da Silva Fink, J.; Silva, F.M. AND-ASPEN and ESPEN consensus, and GLIM criteria for malnutrition identification in AECOPD patients: A longitudinal study comparing concurrent and predictive validity. Eur. J. Clin. Nutr. 2022, 76, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Perrot, L.; Greil, A.; Boirie, Y.; Farigon, N.; Mulliez, A.; Costes, F.; Caillaud, D. Prevalence of sarcopenia and malnutrition during acute exacerbation of COPD and after 6 months recovery. Eur. J. Clin. Nutr. 2020, 74, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.M.; et al. Diagnostic criteria for malnutrition—An ESPEN Consensus Statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM Core Leadership Committee; GLIM Working Group. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Berg-Hansen, K.; Gopalasingam, N.; Christensen, K.H.; Ladefoged, B.; Andersen, M.J.; Poulsen, S.H.; Borlaug, B.A.; Nielsen, R.; Møller, N.; Wiggers, H. Cardiovascular Effects of Oral Ketone Ester Treatment in Patients With Heart Failure With Reduced Ejection Fraction: A Randomized, Controlled, Double-Blind Trial. Circulation 2024, 149, 1474–1489. [Google Scholar] [CrossRef] [PubMed]
- Di Raimondo, D.; Musiari, G.; Miceli, G.; Arnao, V.; Pinto, A. Preventive and Therapeutic Role of Muscle Contraction Against Chronic Diseases. Curr. Pharm. Des. 2016, 22, 4686–4699. [Google Scholar] [CrossRef] [PubMed]
- Di Raimondo, D.; Tuttolomondo, A.; Musiari, G.; Schimmenti, C.; D’Angelo, A.; Pinto, A. Are the Myokines the Mediators of Physical Activity-Induced Health Benefits? Curr. Pharm. Des. 2016, 22, 3622–3647. [Google Scholar] [CrossRef] [PubMed]
Variable | Count (%) | Mean | |
---|---|---|---|
Male, n (%) | 72 (62.5) | ||
Age (years), median (IQR) | 73 (67–79) | ||
Former smoker (yes), n (%) | 75 (62.50) | ||
Active smoker (yes), n (%) | 45 (37.50) | ||
Environmental risk factors (yes), n (%) | 37 (30.83) | ||
BMI (kg/m2), median (IQR) | 27.8 (24.2–31.2) | ||
Obesity class according to BMI | Underweight, n (%) | 4 (3.33) | |
Optimal weight, n (%) | 32 (26.67) | ||
Overweight, n (%) | 41 (34.17) | ||
Class I obesity, n (%) | 30 (25) | ||
Class II obesity, n (%) | 9 (7.5) | ||
Class III obesity, n (%) | 4 (3.33) | ||
mMRC, n (%) | 0 | 5 (4.17) | |
1 | 25 (20.83) | ||
2 | 32 (26.67) | ||
3 | 39 (32.5) | ||
4 | 19 (15.83) | ||
CAT, mean ± SD | 15.94 ± 7.95 | ||
FVC (Lt), mean ± SD | 2.33 ± 0.72 | ||
FVC (% predicted), median (IQR) | 72 (60–86) | ||
FEV1 (Lt/sec), median (IQR) | 1.4 (1.01–1.85) | ||
FEV1 (% predicted), mean ± SD | 58.33 ± 18.90 | ||
FEV1/FVC, median (IQR) | 0.63 (0.54–0.68) | ||
COPD-GOLD class, n (%) | GOLD 1E | 14 (11.67) | |
GOLD 2E | 62 (51.67) | ||
GOLD 3E | 38 (31.67) | ||
GOLD 4E | 6 (5) | ||
Inhaled bronchodilators, n (%) | LAMA | 22 (18.33) | |
LABA + ICS | 20 (16.67) | ||
LABA + LAMA | 37 (30.83) | ||
LABA + LAMA + ICS | 41 (34.17) | ||
LTOT, n (%) | 39 (32.50) | ||
Outpatient enrollment, n (%) | 70 (58.33) |
mMRC | CAT | FVC (%) | FEV1 (%) | Barthel Index | EQ-5D-3L | Age | BMI | MNA-SF | MNA-TS | ||
---|---|---|---|---|---|---|---|---|---|---|---|
MNA-SF | ρ | −0.380 *** | −0.414 *** | 0.247 * | −0.312 *** | 0.147 | 0.424 *** | −0.07 | 0.140 | -- | 0.831 *** |
MAN-TS | ρ | 0.398 *** | 0.448 *** | 0.126 | −0.267 ** | 0.224 ** | 0.494 *** | −0.02 | 0.132 | 0.831 *** | -- |
Mini Nutritional Assessment Short Form | Mini Nutritional Assessment Total Score | |||||||
---|---|---|---|---|---|---|---|---|
Normal (1) (n = 39) | At Risk (2) (n = 57) | Malnourished (3) (n = 24) | p Value | Normal (1) (n = 45) | At Risk (2) (n = 62) | Malnourished (3) (n = 13) | p Value | |
Age | 71 (66–78) | 74 (68–80) | 73.5 (66–79.5) | NS | 74 (67–78) | 73 (67–80) | 71 (70–78) | NS |
BMI | 27.5 (24.2–30.9) | 28.7 (24.5–31.2) | 25.7 (22–33.5) | NS | 28.3 (24.6–31.1) | 27.5 (24.1–31.2) | 25.1 (21.6–34.15) | NS |
mMRC | 2 (1–3) | 3 (2–3) | 3 (2–4) | 1 vs. 2–3, p < 0.01 | 2 (1–3) | 3 (2–3) | 3 (3–4) | 1 vs. 2–3, p < 0.01 |
CAT score | 11 (5–15) | 18 (13–22) | 1 vs. 2–3, p < 0.001 | 13 (6–17) | 17 (11–22) | 23 (16–28) | 1 vs. 2–3, p < 0.001 | |
FVC (%) | 77.5 (65–91.5) | 75 (60–86) | 62 (56–73) | 1 vs. 3, p = 0.019 | 75 (61–88.5) | 71.5 (58–87) | 71 (59–78) | NS |
FEV1 (%) | 66 (51–78) | 59 (40–68) | 50 (39–59) | 1 vs. 3, p = 0.01 | 62 (49–74) | 58 (44–68) | 44 (34–55) | NS |
FVC/FEV1 | 0.65 (0.59–0.69) | 0.62 (0.51–0.68) | 0.62 (0.58–0.65) | NS | 0.65 (0.59–0.69) | 0.63 (0.54–0.68) | 0.52 (0.45–0.62) | 1 vs. 3, p = 0.002 |
Barthel Index | 95 (85–100) | 90 (75–100) | 92.5 (67.5–100) | NS | 95 (85–100) | 92.5 (80–100) | 75 (45–90) | 1 vs. 3, p = 0.015 |
EQ-5D-3L | 0.88 (0.81–0.92) | 0.78 (0.7–0.88) | 0.72 (0.52–0.82) | 1 vs. 2–3, p < 0.01 | 0.88 (0.81–0.9) | 0.78 (0.72–0.87) | 0.56 (0.37–0.72) | All comparisons p < 0.001 |
MNA-SF | 12 (12–14) | 10 (9–11) | 7 (5.5–7) | All comparisons p < 0.0001 | 12 (11–14) | 10 (8–11) | 6 (5–7) | All comparisons p < 0.001 |
MNA-TS | 25 (24–27) | 22 (19.5–23.5) | 17.25 (15.25–18.5) | All comparisons p < 0.0001 | 25 (24–27) | 20 (18–22.5) | 15 (14–16) | All comparisons p < 0.0001 |
Time to event (months) | 52 (52–52) | 52 (19–52) | 27.5 (12–47) | All comparisons p < 0.05 | 52 (52–52) | 47.5 (11–52) | 15 (11–35) | All comparisons p < 0.05 |
Number of events, n (%) | 5 (11.11) | 25 (55.56) | 15 (33.33) | 1 vs. 2–3, p < 0.001 † | 8 (17.78) | 29 (64.44) | 8 (17.78) | 1 vs. 2–3, p < 0.001 † |
MNA-SF β Coefficient | MNA-TS β Coefficient | 95% Confidence Interval | |
---|---|---|---|
Model 1.1 | −0.135 *** | −0.207–−0.064 | |
Model 1.2 | −0.095 *** | −0.140–−0.050 | |
Model 2.1 | 1.075 *** | −1.607–−0.549 | |
Model 2.2 | −0.844 *** | −1.172–−0.517 | |
Model 3.1 | 1.424 * | 0.062–2.788 | |
Model 3.2 | 1.605 *** | 0.766–2.445 | |
Model 4.1 | 0.273 *** | 0.146–0.400 | |
Model 4.2 | 0.231 *** | 0.015–0.030 |
Normal Nutritional Status | At Risk of Malnutrition | Malnourished | |
---|---|---|---|
MNA Short Form | Group reference | 3.77 (1.29–11.00) * | 6.12 (2.63–21.21) * |
MNA Total Score | Group reference | 3.08 (1.40–6.80) ** | 4.64 (1.71–12.55) ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Raimondo, D.; Pirera, E.; Pintus, C.; De Rosa, R.; Profita, M.; Musiari, G.; Siscaro, G.; Tuttolomondo, A. The Impact of Malnutrition on Chronic Obstructive Pulmonary Disease (COPD) Outcomes: The Predictive Value of the Mini Nutritional Assessment (MNA) versus Acute Exacerbations in Patients with Highly Complex COPD and Its Clinical and Prognostic Implications. Nutrients 2024, 16, 2303. https://doi.org/10.3390/nu16142303
Di Raimondo D, Pirera E, Pintus C, De Rosa R, Profita M, Musiari G, Siscaro G, Tuttolomondo A. The Impact of Malnutrition on Chronic Obstructive Pulmonary Disease (COPD) Outcomes: The Predictive Value of the Mini Nutritional Assessment (MNA) versus Acute Exacerbations in Patients with Highly Complex COPD and Its Clinical and Prognostic Implications. Nutrients. 2024; 16(14):2303. https://doi.org/10.3390/nu16142303
Chicago/Turabian StyleDi Raimondo, Domenico, Edoardo Pirera, Chiara Pintus, Riccardo De Rosa, Martina Profita, Gaia Musiari, Gherardo Siscaro, and Antonino Tuttolomondo. 2024. "The Impact of Malnutrition on Chronic Obstructive Pulmonary Disease (COPD) Outcomes: The Predictive Value of the Mini Nutritional Assessment (MNA) versus Acute Exacerbations in Patients with Highly Complex COPD and Its Clinical and Prognostic Implications" Nutrients 16, no. 14: 2303. https://doi.org/10.3390/nu16142303
APA StyleDi Raimondo, D., Pirera, E., Pintus, C., De Rosa, R., Profita, M., Musiari, G., Siscaro, G., & Tuttolomondo, A. (2024). The Impact of Malnutrition on Chronic Obstructive Pulmonary Disease (COPD) Outcomes: The Predictive Value of the Mini Nutritional Assessment (MNA) versus Acute Exacerbations in Patients with Highly Complex COPD and Its Clinical and Prognostic Implications. Nutrients, 16(14), 2303. https://doi.org/10.3390/nu16142303