The Prevalence of Low Energy Availability in Cross-Country Skiers during the Annual Cycle
Highlights
- In the preparatory phase of the annual training cycle (June), cross-country skiers experienced low energy availability (LEA).
- LEA was caused by a reduction in the overall energy and carbohydrate intakes due to high-intensity and high-volume training leading to increased energy exercise expenditure.
- The principal discovery of this investigation was that all cross-country skiers participating in this study exhibited an LEA during the preparatory phase, prior to competitions.
- The potential negative effects of LEA on performance are often underestimated by coaches and athletes. To ensure efficient training, it is essential to adopt appropriate dietary strategies that ensure an adequate calorific intake in accordance with energy expenditure.
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. Anthropometric and Body Composition Measurements
2.3.2. Actual Dietary Intake and Exercise Training Records
2.3.3. Rest Energy Expenditure
2.3.4. Test ‘Until Exhaustion’
2.3.5. Energy Availability
2.3.6. Percentage Contribution of Macronutrients
- % Fats = (Fats, kcal·day−1/EI, kcal·day−1) × 100;
- % CHOs = (CHOs, kcal·day−1/EI, kcal·day−1) × 100.
- % Fats = ((1 − RER)/0.29) × 100;
- % CHOs = ((RER − 0.71)/0.29) × 100.
2.3.7. Energy Balance
2.3.8. Total Energy Expenditure
2.3.9. Blood Sampling
2.3.10. Statistical Analysis
3. Results
3.1. Actual Nutrient Intakes
3.2. Energy Expenditure, Energy Availability
3.3. Fats and Carbohydrates Contribution
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CD | competition day |
CHOs | carbohydrates |
EA | energy availability |
EB | energy balance |
EEE | exercise energy expenditure |
EI | energy intake |
FAs | fatty acids |
FFM | fat-free mass |
PAL | physical activity level |
REE | rest energy expenditure |
TD | training day |
TEE | total energy expenditure |
VO2max | maximal oxygen uptake |
References
- Wasserfurth, P.; Palmowski, J.; Hahn, A.; Krüger, K. Reasons for and Consequences of Low Energy Availability in Female and Male Athletes: Social Environment, Adaptations, and Prevention. Sports Med. Open 2020, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Loucks, A.B.; Kiens, B.; Wright, H.H. Energy availability in athletes. J. Sports Sci. 2011, 29, S7–S15. [Google Scholar] [CrossRef] [PubMed]
- Heydenreich, J.; Kayser, B.; Schutz, Y.; Melzer, K. Total Energy Expenditure, Energy Intake, and Body Composition in Endurance Athletes Across the Training Season: A Systematic Review. Sports Med. Open 2017, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Loucks, A.B. Energy balance and body composition in sports and exercise. J. Sports Sci. 2004, 22, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Camic, C.L.; Kisiolek, J.; Luedke, J.; Erickson, J.; Jones, M.T.; Oliver, J.M. Accuracy of Resting Metabolic Rate Prediction Equations in Athletes. J. Strength Cond. Res. 2018, 32, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie-Shalders, K.; Kelly, J.T.; So, D.; Coffey, V.G.; Byrne, N.M. The effect of exercise interventions on resting metabolic rate: A systematic review and meta-analysis. J. Sports Sci. 2020, 8, 1635–1649. [Google Scholar] [CrossRef] [PubMed]
- Frączek, B.; Grzelak, A.; Klimek, A.T. Energy expenditure of athletes’ endurance and strength in the light of the Polish energy intake standards. Int. J. Occup. Med. Environ. Health 2019, 32, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, N.R.; Di Marco, N.M.; Langley, S. American College of Sports Medicine position stand. Nutrition and athletic performance. Med. Sci. Sports Exerc. 2009, 41, 709–731. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Hawley, J.A.; Wong, S.H.; Jeukendrup, A.E. Carbohydrates for training and competition. J. Sports Sci. 2011, 29, S17–S27. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M. Practical nutritional recommendations for the athlete. Nestle Nutr. Inst. Workshop Ser. 2011, 69, 131–149. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise & sports nutrition review update: Research & recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Boulay, M.R.; Serresse, O.; Almeras, N.; Tremblay, A. Energy expenditure measurement in male cross-country skiers: Comparison of two field methods. Med. Sci. Sports Exerc. 1994, 26, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.; Matias, C.N.; Santos, D.A.; Thomas, D.; Bosy-Westphal, A.; Müller, M.J.; Heymsfield, S.B.; Sardinha, L.B. Energy Balance over One Athletic Season. Med. Sci. Sports Exerc. 2017, 49, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, S.K.; Gouvianaki, A.; Grammatikopoulou, M.G.; Maraki, Z.; Pagkalos, I.G.; Malliaropoulos, N.; Hassapidou, M.N.; Maffulli, N. Body Composition and Dietary Intake of Elite Cross-country Skiers Members of the Greek National Team. Asian J. Sports Med. 2012, 3, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Sjödin, A.M.; Andersson, A.B.; Högberg, J.M.; Westerterp, K.R. Energy balance in cross-country skiers: A study using doubly labeled water. Med. Sci. Sports Exerc. 1994, 26, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Aslankeser, Z.; Balcı, Ş.S. Re-examination of the contribution of substrates to energy expenditure during high-intensity intermittent exercise in endurance athletes. PeerJ 2017, 5, e3769. [Google Scholar] [CrossRef] [PubMed]
- Harriss, D.J.; Macsween, A.; Atkinson, G. Standards for Ethics in Sport and Exercise Science Research: 2018 Update. Int. J. Sports Med. 2017, 38, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Boyko, E.R. Physiological and Biochemical Mechanisms of Ensuring Sports Activity in Winter Cyclic Sports; Komi Republican Printing House LLC: Syktyvkar, Russia, 2019; p. 256. [Google Scholar]
- Redondo, B.R. Resting energy expenditure; assessment methods and applications. Nutr. Hosp. 2015, 31, 245–254. [Google Scholar] [CrossRef]
- Bushmanova, E.A.; Lodinova, T.P.; Lyudinina, A.Y. The thermic effect of carbohydrate minimally influence on rest energy expenditure. J. Med. Biol. Res. 2023, 11, 153–161. [Google Scholar] [CrossRef]
- McGilvery, R.; Goldstein, G. Biochemistry. In A Functional Approach; Saunders: Philadelphia, PA, USA, 1983; pp. 810–976. [Google Scholar]
- Shetty, P.S. Human energy requirements. Scientific background papers from the Joint FAO/WHO/UNU Expert Consultation. Public Health Nutr. 2005, 8, 929–1228. [Google Scholar] [CrossRef]
- Rakhmanov, R.S.; Bogomolova, E.S.; Khayrov, R.S. Estimation of the diet and metabolic status of hokkey players with different body mass. Vopr. Pitan. 2019, 88, 57–65. (In Russian) [Google Scholar] [CrossRef] [PubMed]
- Stellingwerff, T.; Heikura, I.A.; Meeusen, R.; Bermon, S.; Seiler, S.; Mountjoy, M.L.; Burke, L.M. Overtraining Syndrome (OTS) and Relative Energy Deficiency in Sport (RED-S): Shared Pathways, Symptoms and Complexities. Sports Med. 2021, 51, 2251–2280. [Google Scholar] [CrossRef] [PubMed]
- Rosenbloom, C.A.; Jonnalagadda, S.S.; Skinner, R. Nutrition knowledge of collegiate athletes in a Division I National Collegiate Athletic Association instit.ution. J. Am. Diet. Assoc. 2002, 102, 418–420. [Google Scholar] [CrossRef] [PubMed]
- Konopka, A.R.; Harber, M.P. Skeletal muscle hypertrophy after aerobic exercise training. Exerc. Sport Sci. Rev. 2014, 42, 53–61. [Google Scholar] [CrossRef]
- Fudge, B.W.; Westerterp, K.R.; Kiplamai, F.K.; Onywera, V.O.; Boit, M.K.; Kayser, B.; Pitsiladis, Y.P. Evidence of negative energy balance using doubly labelled water in elite Kenyan endurance runners prior to competition. Br. J. Nutr. 2006, 95, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Matveyev, L. Periodisierung des Sportlichen Trainings, 2nd ed.; Bartels & Wernitz: Berlin, Germany, 1975. [Google Scholar]
- Magkos, F.; Yannakoulia, M. Methodology of dietary assessment in athletes: Concepts and pitfalls. Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Motonaga, K.; Yoshida, S.; Yamagami, F.; Kawano, T.; Takeda, E. Estimation of total daily energy expenditure and its components by monitoring the heart rate of Japanese endurance athletes. J. Nutr. Sci. Vitaminol. 2006, 52, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Hill, R.J.; Davies, P.S. Energy intake and energy expenditure in elite lightweight female rowers. Med. Sci. Sports Exerc. 2002, 34, 1823–1829. [Google Scholar] [CrossRef] [PubMed]
- Bescós, R.; Rodríguez, F.A.; Iglesias, X.; Knechtle, B.; Benítez, A.; Marina, M.; Padullés, J.M.; Torrado, P.; Vazquez, J.; Rosemann, T. Nutritional behavior of cyclists during a 24-hour team relay race: A field study report. J. Int. Soc. Sports Nutr. 2012, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Casa, D.J.; Emmanuel, H.; Ganio, M.S.; Klau, J.F.; Lee, E.C.; Maresh, C.M.; McDermott, B.P.; Stearns, R.L.; Vingren, J.L.; et al. Nutritional, physiological, and perceptual responses during a summer ultraendurance cycling event. J. Strength Cond. Res. 2012, 26, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Hulton, A.T.; Lahart, I.; Williams, K.L.; Godfrey, R.; Charlesworth, S.; Wilson, M.; Pedlar, C.; Whyte, G. Energy expenditure in the Race Across America (RAAM). Int. J. Sports Med. 2010, 31, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.J.; Gill, S.K.; Hankey, J.; Wright, A.; Marczak, S. Perturbed energy balance and hydration status in ultra-endurance runners during a 24 h ultra-marathon. Br. J. Nutr. 2014, 112, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.J.; Leitch, C.A. Validation of doubly labeled water for measurement of caloric expenditure in collegiate swimmers. J. Appl. Physiol. 1993, 74, 2909–2914. [Google Scholar] [CrossRef] [PubMed]
- Brouns, F.; Saris, W.H.; Stroecken, J.; Beckers, E.; Thijssen, R.; Rehrer, N.J.; ten Hoor, F. Eating, drinking, and cycling. A controlled Tour de France simulation study, Part I. Int. J. Sports Med. 1989, 10, S32–S40. [Google Scholar] [CrossRef] [PubMed]
- Lyudinina, A.Y.; Bushmanova, E.A.; Varlamova, N.G.; Bojko, E.R. Dietary and plasma blood α-linolenic acid as modulators of fat oxidation and predictors of aerobic performance. J. Int. Soc. Sports Nutr. 2020, 17, 57. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.C.; Fattor, J.A.; Horning, M.A.; Faghihnia, N.; Johnson, M.L.; Mau, T.L.; Luke-Zeitoun, M.; Brooks, G.A. Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. J. Physiol. 2007, 584, 963–981. [Google Scholar] [CrossRef] [PubMed]
- Romijn, J.A.; Coyle, E.F.; Sidossis, L.S.; Gastaldelli, A.; Horowitz, J.F.; Endert, E.; Wolfe, R.R. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am. J. Physiol. 1993, 265, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Venables, M.C.; Achten, J.; Jeukendrup, A.E. Determinants of fat oxidation during exercise in healthy men and women: A cross-sectional study. J. Appl. Physiol. 2005, 98, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Lyudinina AYu Ivankova, G.E.; Bojko, E.R. Priority use of medium-chain fatty acids during high-intensity exercise in cross-country skiers. J. Int. Soc. Sports Nutr. 2018, 15, 57. [Google Scholar] [CrossRef]
Characteristics | TD | CD |
---|---|---|
Age, years | 21.1 ± 3.9 | 21.1 ± 4.0 |
Body height, cm | 178.3 ± 5.7 | 178.4 ± 5.3 |
Body mass, kg | 73.3 ± 4.3 | 70.1 ± 4.8 |
Body mass index, kg/m2 | 22.4 ± 1.3 | 22.0 ± 1.4 |
Fat mass, % | 10.7 ± 3.3 | 8.9 ± 2.9 * |
VO2max, mL·min−1·kg−1 | 59.7 ± 6.9 | 62.2 ± 10.2 * |
Period | Total PRO Intake | Total Fats Intake | Total CHOs Intake | EI, kcal/Day | |
---|---|---|---|---|---|
TD | Actual intake (g/day) | 129.7 ± 33.7 | 147.0 ± 35.5 | 516.6 ± 123.4 | 4050.2 ± 796.6 |
Actual intake (g/kg/day) | 1.9 ± 0.5 | 2.1 ± 0.5 | 4.4 ± 1.7 | 54.6 ± 10.6 | |
Recommended intake (g/day) | 144.3 ± 33.8 | 100.2 ± 23.5 | 541.3 ± 126.8 | 4511 ± 1056 | |
CD | Actual intake (g/day) | 150.4 ± 17.5 | 276.7 ± 51.5 *** | 666.7 ± 122.5 *** | 5986.3 ± 923.7 ** |
Actual intake (g/kg/day) | 2.1 ± 0.3 | 3.8 ± 0.9 *** | 9.2 ± 2.0 *** | 79.2 ± 16.2 ** | |
Recommended intake (g/day) | 162.4 ± 38.0 | 120.3 ± 28.2 | 721.7 ± 169.0 | 5413 ± 1268 |
Variables | TD | CD |
---|---|---|
Energy Availability, kcal∙kg FFM–1·d–1 | 14.8 ± 9.3 | 64.4 ± 4.5 ** |
Energy Intake, kcal/day | 4050.2 ± 796.6 | 5986.3 ± 923.7 ** |
Exercise Energy Expenditure, kcal/day | 3690.7 ± 485.2 | 777.4 ± 67.8 ** |
Rest Energy Expenditure, kcal/day | 2111.2 ± 294.3 | 1891.6 ± 504.9 ** |
Rest Energy Expenditure, kcal/day/kg | 30.4 ± 5.6 | 27.0 ± 6.8 ** |
Fat-free mass, kg | 65.7 ± 9.9 | 63.7 ± 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bushmanova, E.A.; Lyudinina, A.Y.; Bojko, E.R. The Prevalence of Low Energy Availability in Cross-Country Skiers during the Annual Cycle. Nutrients 2024, 16, 2279. https://doi.org/10.3390/nu16142279
Bushmanova EA, Lyudinina AY, Bojko ER. The Prevalence of Low Energy Availability in Cross-Country Skiers during the Annual Cycle. Nutrients. 2024; 16(14):2279. https://doi.org/10.3390/nu16142279
Chicago/Turabian StyleBushmanova, Ekaterina A., Aleksandra Y. Lyudinina, and Evgeny R. Bojko. 2024. "The Prevalence of Low Energy Availability in Cross-Country Skiers during the Annual Cycle" Nutrients 16, no. 14: 2279. https://doi.org/10.3390/nu16142279
APA StyleBushmanova, E. A., Lyudinina, A. Y., & Bojko, E. R. (2024). The Prevalence of Low Energy Availability in Cross-Country Skiers during the Annual Cycle. Nutrients, 16(14), 2279. https://doi.org/10.3390/nu16142279