Vitamin D Status among 2–18-Year-Old Romanian Pediatric Patients: A Single-Center Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Participants
2.2. Sample Collection and Analysis
2.3. Statistical Analysis
3. Results
3.1. Description of the Studied Sample
3.2. Distributions of Serum 25(OH)D Values in Pediatric Patients Aged 2–18 Years, Stratified by Age, Sex, and Season of Blood Sample Collection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gröber, U.; Spitz, J.; Reichrath, J.; Kisters, K.; Holick, M.F. Vitamin D: Update 2013: From rickets prophylaxis to general preventive healthcare. Derm. Endocrinol. 2013, 5, 331–347. [Google Scholar] [CrossRef] [PubMed]
- Antonucci, R.; Locci, C.; Clemente, M.G.; Chicconi, E.; Antonucci, L. Vitamin D Deficiency in Childhood: Old Lessons and Current Challenges. J. Pediatr. Endocrinol. Metab. 2018, 31, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Ao, T.; Kikuta, J.; Ishii, M. The effects of vitamin D on immune system and inflammatory diseases. Biomolecules 2021, 11, 1624. [Google Scholar] [CrossRef] [PubMed]
- Wimalawansa, S.J. Controlling chronic diseases and acute infections with vitamin D sufficiency. Nutrients 2023, 15, 3623. [Google Scholar] [CrossRef] [PubMed]
- Van de Walle, L.; Vandenplas, Y.; Toelen, J.; Raaijmakers, A. Vitamin D status in Belgian children: A regional study. Nutrients 2024, 16, 657. [Google Scholar] [CrossRef] [PubMed]
- Jayatissa, R.; Lekamwasam, S.; Ranbanda, J.M.; Ranasingha, S.; Perera, A.G.; De Silva, K.H. Vitamin D Deficiency among Children Aged 10-18 Years in Sri Lanka. Ceylon Med. J. 2019, 64, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Benameur, T. Seasonal Variations in 25-Hydroxyvitamin D Levels among Pediatric Patients Attending the Healthcare Centre. Nutrients 2024, 16, 379. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Norman, A.W. From vitamin D to hormone D: Fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 2008, 88, 491S–499S. [Google Scholar] [CrossRef]
- Cui, A.; Zhang, T.; Xiao, P.; Fan, Z.; Wang, H.; Zhuang, Y. Global and regional prevalence of vitamin D deficiency in population-based studies from 2000 to 2022: A pooled analysis of 7.9 million participants. Front. Nutr. 2023, 10, 1070808. [Google Scholar] [CrossRef]
- Chlebna-Sokół, D.; Konstantynowicz, J.; Abramowicz, P.; Kulik-Rechberger, B.; Niedziela, M.; Obuchowicz, A.; Ziora, K.; Karalus-Gach, J.; Golec, J.; Michałus, I.; et al. Evidence of a significant vitamin D deficiency among 9–13-year-old Polish children: Results of a multicentre study. Eur. J. Nutr. 2019, 58, 2029–2036. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Dabas, A.; Seth, A.; Bhatia, V.L.; Khadgawat, R.; Kumar, P.; Balasubramanian, S.; Khadilkar, V.; Mallikarjuna, H.B.; Godbole, T.; et al. Indian Academy of Pediatrics Revised (2021) Guidelines on Prevention and Treatment of Vitamin D Deficiency and Rickets. Indian Pediatr. 2022, 59, 142–158. [Google Scholar] [CrossRef]
- Lachowicz, K.; Stachoń, M. Determinants of dietary vitamin D intake in population-based cohort sample of polish female adolescents. Int. J. Environ. Res. Public Health 2022, 19, 12184. [Google Scholar] [CrossRef]
- Mitchell, F. Vitamin-D and COVID-19: Do deficient risk a poorer outcome? Lancet Diabetes Endocrinol. 2020, 8, 570. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.; Damascena, A.D.; Azevedo, L.M.G.; Oliveira, T.D.A.; Santana, J.D.M. Vitamin D deficiency aggravates COVID-19: Systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2020, 62, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, D.A.; Camargo, C.A.; Sluyter, J.D.; Martineau, A.R. Vitamin D supplementation to prevent acute respiratory infections: A systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021, 9, 276–292. [Google Scholar] [CrossRef]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Gonzalez-Gross, M.; Valtueña, J.; De Henauw, S. Vitamin D deficiency in Europe: Pandemic? Am. J. Clin. Nutr. 2016, 103, 1033–1044. [Google Scholar] [CrossRef]
- Crowe, F.L.; Jolly, K.; MacArthur, C.; Manaseki-Holland, S.; Gittoes, N.; Hewison, M. Trends in the incidence of testing for vitamin D deficiency in primary care in the UK: A retrospective analysis of The Health Improvement Network (THIN), 2005–2015. BMJ Open 2019, 9, e028355. [Google Scholar] [CrossRef] [PubMed]
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Berisha, A.T.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef]
- Zhu, K.; Oddy, W.H.; Holt, P.; Ping-Delfos, W.C.S.; Mountain, J.; Lye, S.; Pennell, C.; Hart, P.H.; Walsh, J.P. Tracking of Vitamin D Status from Childhood to Early Adulthood and Its Association with Peak Bone Mass. Am. J. Clin. Nutr. 2017, 106, 276–283. [Google Scholar] [CrossRef]
- Malacova, E.; Cheang, P.R.; Dunlop, E.; Sherriff, J.L.; Lucas, R.M.; Daly, R.M.; Nowson, C.A.; Black, L.J. Prevalence and Predictors of Vitamin D Deficiency in a Nationally Representative Sample of Adults Participating in the 2011–2013 Australian Health Survey. Br. J. Nutr. 2019, 121, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Horton-French, K.; Dunlop, E.; Lucas, R.M.; Pereira, G.; Black, L.J. Prevalence and Predictors of Vitamin D Deficiency in a Nationally Representative Sample of Australian Adolescents and Young Adults. Eur. J. Clin. Nutr. 2021, 75, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Lips, P.; Cashman, K.D.; Lamberg-Allardt, C.; Bischoff-Ferrari, H.A.; Obermayer-Pietsch, B.; Bianchi, M.L.; Stepan, J.; El-Hajj Fuleihan, G.; Roger Bouillon, R. Current vitamin D status in European and Middle East countries and strategies to prevent vitamin D deficiency: A position statement of the European Calcified Tissue Society. Eur. J. Endocrinol. 2019, 180, P23–P54. [Google Scholar] [CrossRef] [PubMed]
- Chirita-Emandi, A.; Socolov, D.; Haivas, C.; Calapiș, A.; Gheorghiu, C.; Puiu, M. Vitamin D Status: A Different Story in the Very Young versus the Very Old Romanian Patients. PLoS ONE 2015, 10, e0128010. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, D.A.; Capatina, C.A.M.; Dusceac, R.; Caragheorgheopol, A.; Ghemigian, A.; Poiana, C. Seasonal variation of serum vitamin D levels in Romania. Arch. Osteoporos. 2017, 12, 113. [Google Scholar] [CrossRef]
- Brîndușe, L.A.; Eclemea, I.; Neculau, A.E.; Cucu, M.A. Vitamin D Status in the Adult Population of Romania-Results of the European Health Examination Survey. Nutrients 2024, 16, 867. [Google Scholar] [CrossRef] [PubMed]
- Marti, D.T.; Nesiu, A.; Balta, C.; Olariu, T.R.; Mihu, A.G.; Hermenean, A.; Oatis, D.A. Retrospective Analysis of Vitamin D Deficiency in an Adult Population of Arad County, Western Romania (2019–2022). Life 2024, 14, 274. [Google Scholar] [CrossRef] [PubMed]
- Peptine, L.D.; Răileanu, C.R.; Goroftei, L.; Verga, G.I.; Neagu, A.; Gurău, T.V.; Grigore, I.; Zaharia, A.E.; Maftei, N.M.; Matei, M.N.; et al. The prevalence of vitamin D deficiency in a pediatric hospital in Romania. Innov. Rom. Food Biotechnol. 2023, 23, 1–11. [Google Scholar]
- Płudowski, P.; Karczmarewicz, E.; Bayer, M.; Carter, G.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dębski, R.; Decsi, T.; Dobrzańska, A.; Franek, E.; et al. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe—Recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol. Pol. 2013, 64, 319–327. [Google Scholar] [CrossRef]
- Munns, C.F.; Shaw, N.; Kiely, M.; Specker, B.L.; Thacher, T.D.; Ozono, K.; Michigami, T.; Tiosano, D.; Mughal, M.Z.; Mäkitie, O.; et al. Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. Horm. Res. Paediatr. 2016, 85, 83–106. [Google Scholar] [CrossRef]
- Rusińska, A.; Płudowski, P.; Walczak, M.; Borszewska-Kornacka, M.K.; Bossowski, A.; Chlebna-Sokół, D.; Czech-Kowalska, J.; Dobrzańska, A.; Franek, E.; Helwich, E.; et al. Vitamin D Supplementation Guidelines for General Population and Groups at Risk of Vitamin D Deficiency in Poland—Recommendations of the Polish Society of Pediatric Endocrinology and Diabetes and the Expert Panel With Participation of National Specialist Consultants and Representatives of Scientific Societies-2018 Update. Front. Endocrinol. 2018, 9, 246. [Google Scholar] [CrossRef]
- Płudowski, P.; Kos-Kudła, B.; Walczak, M.; Fal, A.; Zozulińska-Ziółkiewicz, D.; Sieroszewski, P.; Peregud-Pogorzelski, J.; Lauterbach, R.; Targowski, T.; Lewiński, A.; et al. Guidelines for Preventing and Treating Vitamin D Deficiency: A 2023 Update in Poland. Nutrients 2023, 15, 695. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 10 April 2024).
- Bikle, D. Nonclassic actions of vitamin D. J. Clin. Endocrinol. Metab. 2009, 9, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.N. Vitamin D in Toddlers, Preschool Children, and Adolescents. Ann. Nutr. Metab. 2020, 76, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Castano, L.; Madariaga, L.; Grau, G.; García-Castaño, A. 25(OH)Vitamin D Deficiency and Calcifediol Treatment in Pediatrics. Nutrients 2022, 14, 1854. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Walther, B. Natural Vitamin D Content in Animal Products. Adv. Nutr. 2013, 4, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Crowe, F.L.; Steur, M.; Allen, N.E.; Appleby, P.N.; Travis, R.C.; Key, T.J. Plasma concentrations of 25-hydroxyvitamin D in meat eaters, fish eaters, vegetarians and vegans: Results from the EPIC-Oxford study. Public Health Nutr. 2011, 14, 340–346. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Farruggia, M.; Veronese, N.; Mario Barbagallo, M. Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment. Metabolites 2021, 11, 255. [Google Scholar] [CrossRef]
- Cashman, K.D. Global differences in vitamin D status and dietary intake: A review of the data. Endocr. Connect. 2022, 11, e210282. [Google Scholar] [CrossRef]
- Vissing Landgrebe, A.; Asp Vonsild Lund, M.; Lausten-Thomsen, U.; Frithioff-Bøjsøe, C.; Esmann Fonvig, C.; Lind Plesner, J.; Aas Holm, L.; Jespersen, T.; Hansen, T.; Christian Holm, J. Population-based pediatric reference values for serum parathyroid hormone, vitamin D, calcium, and phosphate in Danish/North-European white children and adolescents. Clin. Chim. Acta 2021, 523, 483–490. [Google Scholar] [CrossRef]
- Benedik, E. Sources of vitamin D for humans. Int. J. Vitam. Nutr. Res. 2022, 92, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.S.; Rybchyn, M.S.; Abboud, M.; Brennan-Speranza, T.C.; Fraser, D.R. The Role of Skeletal Muscle in Maintaining Vitamin D Status in Winter. Curr. Dev. Nutr. 2019, 3, nzz087. [Google Scholar] [CrossRef] [PubMed]
- Rybchyn, M.S.; Abboud, M.; Puglisi, D.A.; Gordon-Thomson, C.; Brennan-Speranza, T.C.; Mason, R.S.; Fraser, D.R. Skeletal Muscle and the Maintenance of Vitamin D Status. Nutrients 2020, 12, 3270. [Google Scholar] [CrossRef] [PubMed]
- Engelsen, O. The relationship between ultraviolet radiation exposure and vitamin D status. Nutrients 2010, 2, 482–495. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Dowling, K.G.; Škrabáková, Z.; Kiely, M.; Lamberg-Allardt, C.; Durazo-Arvizu, R.A.; Sempos, C.T.; Koskinen, S.; Lundqvist, A.; Sundvall, J.; et al. Standardizing Serum 25-Hydroxyvitamin D Data from Four Nordic Population Samples Using the Vitamin D Standardization Program Protocols: Shedding New Light on Vitamin D Status in Nordic Individuals. Scan. J. Clin. Lab. Investig. 2015, 75, 549–561. [Google Scholar] [CrossRef] [PubMed]
- Lips, P.; de Jongh, R.T.; van Schoor, N.M. Trends in Vitamin D Status Around the World. JBMR Plus. 2021, 30, e10585. [Google Scholar] [CrossRef]
- Middelkoop, K.; Walker, N.; Stewart, J.; Delport, C.; Jolliffe, D.A.; Nuttall, J.; Coussens, A.K.; Naude, C.E.; Tang, J.C.Y.; Fraser, W.D.; et al. Prevalence and Determinants of Vitamin D Deficiency in 1825 Cape Town Primary Schoolchildren: A Cross-Sectional Study. Nutrients 2022, 14, 1263. [Google Scholar] [CrossRef] [PubMed]
- Khadilkar, A.; Kajale, N.; Oza, C.; Oke, R.; Gondhalekar, K.; Patwardhan, V.; Khadilkar, V.; Mughal, Z.; Padidela, R. Vitamin D Status and Determinants in Indian Children and Adolescents: A Multicentre Study. Sci. Rep. 2022, 12, 16790. [Google Scholar] [CrossRef]
- Elvia, J.; Sankar, R.; Arpita, D.; Portia, D.; Tapan, D. Vitamin D status of children at a tertiary care hospital of Agartala, North-east India. A cross-sectional study. Indian J. Health Sci. Biomed. Res. 2022, 15, 214–218. [Google Scholar] [CrossRef]
- Berger, C.; Greene-Finestone, L.S.; Langsetmo, L.; Kreiger, N.; Joseph, L.; Kovacs, C.S.; Richards, J.B.; Hidiroglou, N.; Sarafin, K.; Davison, K.S.; et al. Temporal trends and determinants of longitudinal change in 25-hydroxyvitamin D and parathyroid hormone levels. J. Bone Miner. Res. 2012, 27, 1381–1389. [Google Scholar] [CrossRef]
- Cairncross, C.T.; Stonehouse, W.; Conlon, C.A.; Grant, C.C.; McDonald, B.; Houghton, L.A.; Eyles, D.; Camargo, C.A., Jr.; Coad, J.; von Hurst, P.R. Predictors of vitamin D status in New Zealand preschool children. Matern. Child. Nutr. 2017, 13, e12340. [Google Scholar] [CrossRef]
- Wójcik, M.; Jaworski, M.; Płudowski, P. 25(OH)D Concentration in Neonates, Infants, Toddlers, Older Children and Teenagers from Poland-Evaluation of Trends during Years 2014–2019. Nutrients 2023, 15, 3477. [Google Scholar] [CrossRef] [PubMed]
- Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M.; et al. Global Prevalence and Disease Burden of Vitamin D Deficiency: A Roadmap for Action in Low- and Middle-Income Countries. Ann. N. Y. Acad. Sci. 2018, 1430, 44–79. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Mao, M.; Ping, L.; Yu, D. Prevalence of vitamin D deficiency and insufficiency among 460,537 children in 825 hospitals from 18 provinces in mainland China. Medicine 2020, 99, e22463. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ke, H.-J.; Liu, Y.; Fu, M.; Ning, J.; Yu, L.; Xiao, Y.; Che, D.; Chen, X.-Y.; Deng, Y.-H.; et al. Prevalence of Vitamin D Insufficiency among Children in Southern China. Medicine 2018, 97, e11030. [Google Scholar] [CrossRef] [PubMed]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef] [PubMed]
- Charoenngam, N.; Holick, M.F. Immunologic Effects of Vitamin D on Human Health and Disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef] [PubMed]
- Ginty, F.; Cavadini, C.; Michaud, P.-A.; Burckhardt, P.; Baumgartner, M.; Mishra, G.D.; Barclay, D.V. Effects of usual nutrient intake and vitamin D status on markers of bone turnover in Swiss adolescents. Eur. J. Clin. Nutr. 2004, 58, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D. Vitamin D in childhood and adolescence. Postgrad. Med. J. 2007, 83, 230–235. [Google Scholar] [CrossRef]
- Płudowski, P.; Ducki, C.; Konstantynowicz, J.; Jaworski, M. (Vitamin D status in Poland. Pol. Arch. Med. Wewn. 2016, 126, 530–539. [Google Scholar] [CrossRef]
- Brodie, A.M.; Lucas, R.M.; Harrison, S.L.; van der Mei, I.A.F.; Armstrong, B.; Kricker, A.; Mason, R.S.; McMichael, A.J.; Nowak, M.; Whiteman, D.C.; et al. The AusD study: A population-based study of the determinants of serum 25-hydroxyvitamin D concentration across a broad latitude range. Am. J. Epidemiol. 2013, 177, 89–903. [Google Scholar] [CrossRef] [PubMed]
- Byun, E.J.; Heo, J.; Cho, S.H.; Lee, J.D.; Kim, H.S. Suboptimal vitamin D status in Korean adolescents: A nationwide study on its prevalence, risk factors including cotinine-verified smoking status and association with atopic dermatitis and asthma. BMJ Open 2017, 7, e016409. [Google Scholar] [CrossRef]
- Tugrul, B.; Demirdag, H.G.; Hanli Sahin, A. Vitamin D Levels in Children During Winter and the Relationship Between Sunscreen and Sun Protection Behaviors. Dermatol. Pract. Concept 2023, 13, e2023190. [Google Scholar] [CrossRef] [PubMed]
- Forrest, K.Y.; Stuhldreher, W.L. Prevalence and correlates of vitamin D deficiency in US adults. Nutr. Res. 2011, 31, 48–54. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Wei, Y.; Fu, J.; Feng, Y.; Chen, D.; Xu, D. Status and influential factors of vitamin D among children aged 0 to 6 years in a Chinese population. BMC Public Health 2020, 20, 429. [Google Scholar] [CrossRef]
Characteristics | All Sample (n = 1674) |
---|---|
Age (years) (a) | 8 (5) |
Age category (years) (b) | |
2 to 5 | 606 (36) |
6 to 11 | 613 (37) |
12 to 18 | 455 (27) |
Sex (b) | |
Male | 908 (54) |
Female | 766 (46) |
Season of blood sample collection (b) | |
Spring | 957 (57) |
Summer | 151 (9) |
Winter | 566 (34) |
25(OH)D Serum concentration (ng/mL) (c) | 26 (20; 36) |
Vitamin D status (b) | |
Sufficient | 673 (40) |
Insufficient | 553 (33) |
Deficient | 448 (27) |
Variables | Level of Measure | 25(OH)D Serum Concentration (ng/mL) | |||
---|---|---|---|---|---|
Median (IQR) | Mean (SD) | p-Value | Adjusted p-Value for Pairwise Comparisons | ||
Age category (years) | 2–5 | 35 (26, 47) | 37 (14) | <0.0001 * | <0.0001 *(a) |
6–11 | 24 (18, 31) | 25.91 (11) | <0.0001 *(b) | ||
12–18 | 22 (18, 27) | 23.35 (9) | 0.0001 *(c) | ||
Sex | Male | 27 (21, 36) | 29.61 (13) | 0.02 * | NA |
Female | 25 (19, 35) | 28.76 (13) | |||
Season of blood sample collection | Spring | 25 (19, 35) | 28.81 (13) | 0.0003 * | 0.0002 *(d) |
Summer | 29 (24, 39) | 32.58 (13) | 0.59 (e) | ||
Winter | 26 (20, 36) | 28.99 (13) | 0.0006 *(f) |
Variables | Level of Measure | 25-(OH)D Status | |||
---|---|---|---|---|---|
Sufficient (≥30 ng/mL) | Insufficient (21–29 ng/mL) | Deficient (<20 ng/mL) | p-Value | ||
Age category (years) | 2–5 | 410 (68) | 130 (22) | 66 (11) | <0.0001 * |
6–11 | 181 (30) | 229 (38) | 203 (33) | ||
12–18 | 82 (18) | 194 (43) | 179 (39) | ||
Sex | Female | 290 (38) | 242 (32) | 234 (31) | 0.006 * |
Male | 383 (42) | 311 (34) | 214 (24) | ||
Season of blood sample collection | Spring | 371 (39) | 313 (33) | 273 (29) | 0.003 * |
Summer | 74 (49) | 57 (38) | 20 (13) | ||
Winter | 228 (40) | 183 (32) | 155 (27) |
Season | Age Category (Years) | 25(OH)D Status | |||
---|---|---|---|---|---|
Sufficient (≥30 ng/mL) | Insufficient (21–29 ng/mL) | Deficient (<20 ng/mL) | p-Value | ||
Spring | 2–5 | 222 (65) | 72 (21) | 46 (14) | <0.0001 * |
6–11 | 101 (29) | 132 (37) | 121 (34) | ||
12–18 | 48 (18) | 109 (42) | 106 (40) | ||
Summer | 2–5 | 54 (80) | 12 (18) | 2 (3) | <0.0001 * |
6–11 | 14 (32) | 22 (50) | 8 (18) | ||
12–18 | 6 (16) | 23 (59) | 10 (26) | ||
Winter | 2–5 | 134 (68) | 46 (23) | 18 (9) | <0.0001 * |
6–11 | 66 (31) | 75 (35) | 74 (34) | ||
12–18 | 28 (18) | 62 (41) | 63 (41) | ||
Season | Sex | ||||
Spring | Female | 170 (38) | 136 (30) | 143 (32) | 0.08 |
Male | 201 (40) | 177 (35) | 130 (26) | ||
Summer | Female | 31 (44) | 29 (42) | 10 (14) | 0.56 |
Male | 43 (43) | 28 (35) | 10 (12) | ||
Winter | Female | 89 (36) | 77 (31) | 81 (33) | 0.03 * |
Male | 139 (44) | 106 (33) | 74 (23) |
25-(OH)D Status | ||||
---|---|---|---|---|
Factors | Insufficient (21–29 ng/mL) | Deficient (<20 ng/mL) | ||
OR (95% CI) | Adjusted OR (95% CI) | OR (95% CI) | Adjusted OR (95% CI) | |
Age category (years) | ||||
2–5 | Reference | Reference | Reference | Reference |
6–11 | 4 (3.0, 5.3) | 4 (3.0, 5.3) | 8 (5.0, 9.7) | 7 (4.9, 9.4) |
12–18 | 7 (5.4, 10.3) | 7 (5.4, 10.3) | 14 (9.4, 19.6) | 14 (9.3, 19.6) |
Sex | ||||
Male | Reference | Reference | Reference | Reference |
Female | 0.97 (0.82, 1.29) | 1.01 (0.82, 1.29) | 1.44 (1.14, 1.84) | 1.43 (1.10, 1.86) |
Season of blood sample collection | ||||
Summer | Reference | Reference | Reference | Reference |
Spring | 1.10 (0.75, 1.60) | 1.03 (0.68, 1.55) | 2.7 (1.6, 4.6) | 2.5 (1.5, 4.4) |
Winter | 1.04 (0.70, 1.55) | 0.96 (.62, 1.47) | 2.5 (1.5, 4.3) | 2.3 (1.3, 4.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badiu Tișa, I.; Cozma-Petruț, A.; Samașca, G.; Miere, D.; Filip, L.; Banc, R.; Mîrza, O.; Iancu, M. Vitamin D Status among 2–18-Year-Old Romanian Pediatric Patients: A Single-Center Study. Nutrients 2024, 16, 2266. https://doi.org/10.3390/nu16142266
Badiu Tișa I, Cozma-Petruț A, Samașca G, Miere D, Filip L, Banc R, Mîrza O, Iancu M. Vitamin D Status among 2–18-Year-Old Romanian Pediatric Patients: A Single-Center Study. Nutrients. 2024; 16(14):2266. https://doi.org/10.3390/nu16142266
Chicago/Turabian StyleBadiu Tișa, Ioana, Anamaria Cozma-Petruț, Gabriel Samașca, Doina Miere, Lorena Filip, Roxana Banc, Oana Mîrza, and Mihaela Iancu. 2024. "Vitamin D Status among 2–18-Year-Old Romanian Pediatric Patients: A Single-Center Study" Nutrients 16, no. 14: 2266. https://doi.org/10.3390/nu16142266
APA StyleBadiu Tișa, I., Cozma-Petruț, A., Samașca, G., Miere, D., Filip, L., Banc, R., Mîrza, O., & Iancu, M. (2024). Vitamin D Status among 2–18-Year-Old Romanian Pediatric Patients: A Single-Center Study. Nutrients, 16(14), 2266. https://doi.org/10.3390/nu16142266