A New Alternative Nutritional Source Hawthorn Vinegar: How It Interacts with Protein, Glucose and GLP-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animal
- Group: Control (basal diet)
- Group: N1 (1 mL/kg Untreated Hawthorn Vinegar daily)
- Group: P1 (1 mL/kg Thermal Pasteurized Hawthorn Vinegar daily)
- Group: U1 (1 mL/kg Hawthorn Vinegar Ultrasound treated daily)
2.2. Hawthorn Vinegar
2.3. Measurements
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dönmez, A. The Genus Crataegus L. (Rosaceae) with Special Reference to Hybridisation and Biodiversity in Turkey. Turk. J. Bot. 2004, 28, 29–37. [Google Scholar]
- Christensen, K.I. Revision of Crataegus Sect. Crataegus and Nothosect. Crataeguineae (Rosaceae-Maloideae) in the Old World. Syst. Bot. Monogr. 1992, 35, 1. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Ho, W.K.K.; Huang, Y.; Chen, Z.Y. Hypocholesterolemic activity of hawthorn fruit is mediated by regulation of cholesterol-7alpha-hydroxylase and acyl CoA: Cholesterol acyltransferase. Food Res. Int. 2002, 35, 885–891. [Google Scholar] [CrossRef]
- Elsadig Karar, M.G.; Kuhnert, N. UPLC-ESI-Q-TOF-MS/MS Characterization of Phenolics from Crataegus monogyna and Crataegus laevigata (Hawthorn) Leaves, Fruits and their Herbal Derived Drops (Crataegutt Tropfen). J. Chem. Biol. Ther. 2016, 1, 2572-0406. [Google Scholar] [CrossRef]
- Edwards, J.E.; Brown, P.N.; Talent, N.; Dickinson, T.A.; Shipley, P.R. A review of the chemistry of the genus Crataegus. Phytochemistry 2012, 79, 5–26. [Google Scholar] [CrossRef]
- Venskutonis, P.R. Phytochemical composition and bioactivities of hawthorn (Crataegus spp.): Review of recent research advances. J. Food Bioact. 2018, 4, 69–87. [Google Scholar] [CrossRef]
- Nazhand, A.; Lucarini, M.; Durazzo, A.; Zaccardelli, M.; Cristarella, S.; Souto, S.B.; Silva, A.M.; Severino, P.; Souto, E.B.; Santini, A. Hawthorn (Crataegus spp.): An Updated Overview on Its Beneficial Properties. Forests 2020, 11, 564. [Google Scholar] [CrossRef]
- Kwok, C.Y.; Li, C.; Cheng, H.-L.; Ng, Y.F.; Chan, T.Y.; Kwan, Y.W.; Leung, G.P.H.; Lee, S.M.Y.; Mok, D.K.W.; Yu, P.H.F.; et al. Cholesterol lowering and vascular protective effects of ethanolic extract of dried fruit of Crataegus pinnatifida, hawthorn (Shan Zha), in diet-induced hypercholesterolaemic rat model. J. Funct. Foods 2013, 5, 1326–1335. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Ji, Y. Total Flavonoid Extract from Hawthorn (Crataegus pinnatifida) Improves Inflammatory Cytokines-Evoked Epithelial Barrier Deficit. Med. Sci. Monit. 2020, 26, e920170. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, J.; Reyes-Estrada, C.; Hernández, R.; López, J. Antioxidant, hypolipidemic and preventive effect of hawthorn (Crataegus oxyacantha) on alcoholic liver damage in rats. J. Pharmacogn. Phytother. 2016, 8, 193–202. [Google Scholar]
- Li, Z.; Xu, J.; Zheng, P.; Xing, L.; Shen, H.; Yang, L.; Zhang, L.; Ji, G. Hawthorn leaf flavonoids alleviate nonalcoholic fatty liver disease by enhancing the adiponectin/AMPK pathway. Int. J. Clin. Exp. Med. 2015, 8, 17295. [Google Scholar]
- Li, S.; Huang, Z.; Dong, Y.; Zhu, R.; Li, T. Haw pectin pentaglaracturonide inhibits fatty acid synthesis and improves insulin sensitivity in high-fat-fed mice. J. Funct. Foods 2017, 34, 440–446. [Google Scholar] [CrossRef]
- Huang, T.N.; Lu, K.N.; Pai, Y.P.; Chin, H.; Huan, C.J. Role of GLP-1 in the hypoglycemia effects of wild bitter gourd. Evid. Base Complement. Alternat. Med. 2013, 2013, 625892. [Google Scholar]
- Aierken, A.; Buchholz, T.; Chen, C.; Zhang, X.; Melzig, M.F. Hypoglycemic effect of hawthorn in type II diabetes mellitus rat model. J. Sci. Food Agric. 2017, 97, 4557–4561. [Google Scholar] [CrossRef]
- Shih, C.; Lin, C.; Lin, Y.; Wu, J. Validation of the Antidiabetic and Hypolipidemic Effects of Hawthorn by Assessment of Gluconeogenesis and Lipogenesis Related Genes and AMP-Activated Protein Kinase Phosphorylation. Evid.-Based Complement. Altern. Med. 2013, 2013, 597067. [Google Scholar] [CrossRef]
- Xin, C.; Zhao, M.; Wang, J.; Wang, Z. Hawthorn Polyphenols, D-chiro-inositol, and Epigallocatechin Gallate Exert a Synergistic Hypoglycemic Effect. J. Food Biochem. 2021, 7, e13771. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.S.; Guo, Y.; Sun, P.; Lv, X.L.; Zuo, Y.B. Hawthorn fruit increases the antioxidant capacity and reduces lipid peroxidation in senescence-accelerated mice. Eur. Food Res. Technol. 2011, 232, 743–751. [Google Scholar] [CrossRef]
- Moran-Ramos, S.; Tovar, A.R.; Torres, N. Diet: Friend or foe of enteroendocrine cells—How it interacts with enteroendocrine cells. Adv. Nutr. 2012, 3, 8–20. [Google Scholar] [CrossRef]
- Seyidoglu, N.; Aydin, C. Is There Still Room to Improve Medicinal Herbs (Functional Herbs) by Gene Editing for Health? In Current Topics in Functional Food; Shiomi, N., Savitskaya, A., Eds.; IntechOpen: London, UK, 2022; Volume 5, pp. 71–85. [Google Scholar]
- Junior, M.M.S.; Silva, L.O.B.; Leão, D.J.; Ferreira, S.L.C. Analytical strategies for determination of cadmium in Brazilian vinegar samples using ET AAS. Food Chem. 2014, 160, 209–213. [Google Scholar] [CrossRef]
- Johnston, C.S.; Gaas, C.A. Vinegar: Medicinal Uses and Antiglycemic Effect. Medscape Gen. Med. 2006, 8, 61. [Google Scholar]
- Samad, A.; Azlan, A.; Ismail, A. Therapeutic effects of vinegar: A review. Curr. Opin. Food Sci. 2016, 8, 56–61. [Google Scholar] [CrossRef]
- Li, T.; Fu, S.; Huang, X.; Zhang, X.; Cui, Y.; Zhang, Z.; Ma, Y.; Zhang, X.; Yu, Q.; Yang, S.; et al. Biological properties and potential application of hawthorn and its major functional components: A review. J. Funct. Foods 2022, 90, 104988. [Google Scholar] [CrossRef]
- Kadas, Z.; Akdemir Evrendilek, G.; Heper, G. The metabolic effects of hawthorn vinegar in patients with high cardiovascular risk group. J. Food Nutr. Res. 2014, 2, 539–545. [Google Scholar] [CrossRef]
- Karakçı, D.; Bakır, B.; Seyidoglu, N.; Yıkmıs, S. Ultrasound-Treated and Thermal-Pasteurized Hawthorn Vinegar: Antioxidant and Lipid Profiles in Rats. Nutrients 2023, 15, 3933. [Google Scholar] [CrossRef]
- Yıkmış, S. Optimization of Uruset Apple Vinegar Production Using Response Surface Methodology for the Enhanced Extraction of Bioactive Substances. Foods 2019, 8, 107. [Google Scholar] [CrossRef]
- NRC (National Research Council). Subcommittee on Laboratory Animal Nutrition. In Nutrient Requirements of Laboratory Animals, 4th ed.; National Academies Press: Washington, DC, USA, 1995; pp. 11–79. [Google Scholar]
- Ho, C.W.; Lazim, A.M.; Fazry, S.; Zaki, U.K.H.H.; Lim, S.J. Varieties, production, composition and health benefits of vinegars: A review. Food Chem. 2017, 221, 1621–1630. [Google Scholar] [CrossRef]
- Talbot, S.R.; Biernot, S.; Bleich, A. Defining body-weight reduction as a humane endpoint: A critical appraisal. Lab. Anim. 2020, 54, 99–110. [Google Scholar] [CrossRef]
- Koeing, G.; Seneff, S. Review Article Gamma-Glutamyltransferase: A Predictive Biomarker of Cellular Antioxidant Inadequacy and Disease Risk. Dis. Markers 2015, 818570. [Google Scholar]
- Wei, D.; Chen, T.; Li, J.; Gao, Y.; Ren, Y.; Zhang, X.; Yu, H.; Tian, H. Association of serum gammaglutamyl transferase and ferritin with the metabolic syndrome. J. Diabetes Res. 2015, 2015, 741731. [Google Scholar] [CrossRef]
- Jahanian, R. Immunological responses as affected by dietary protein and arginine concentrations in starting broiler chicks. Poult. Sci. 2009, 88, 1818–1824. [Google Scholar] [CrossRef]
- Rezaei, M.; Kalantar, M.; Nasr, J. Thymus vulgaris L., Glycyrrhiza glabra, and combo enzyme in broiler chickens. Int. J. Plant Anim. Environ. Sci. 2014, 44, 18–423. [Google Scholar]
- Ahmadipour, B.; Kalantar, M.; Hosseini, S.; Yang, L.; Kalantar, M.; Raza, S.H.A.; Schreurs, N. Hawthorn (Crataegus oxyacantha) Extract in the Drinking Water of Broilers on Growth and Incidence of Pulmonary Hypertension Syndrome (PHS). Rev. Bras. Ciência Avícola 2017, 19, 639–644. [Google Scholar] [CrossRef]
- Tomé, D.; Benoit, S.; Azzout-Marniche, D. Protein metabolism and related body function: Mechanistic approaches and health consequences. Proc. Nutr. Soc. 2021, 80, 243–251. [Google Scholar] [CrossRef]
- Tlatelpa-Morales, B.B.; Aguilar-Paredes, O.A.; Juárez-Pérez, R.; Nieto-Camacho, A.; Elias-Aguila, R.A.; Arguelles-Martínez, L.; Méndez-Iturbide, D. Inhibition of protein carbonylation in human plasma by acetone extract from hawthorn (Crataegus mexicana). Int. J. Curr. Adv. Res. 2019, 8, 17488–17491. [Google Scholar]
- Khalil, L.W.; Obead, A.I.; Alol, L.H. Influence of 70% Alcoholic Extract of Hawthorn (Crataegus oxycantha) on Some Physiological Parameters in Adult Male Rats Exposed to Hydrogen Peroxide. Al-Anbar J. Vet. Sci. 2014, 7, 66–72. [Google Scholar]
- Zhang, J.; Chai, X.; Zhao, F.; Hou, G.; Meng, Q. Food Applications and Potential Health Benefits of Hawthorn. Foods 2022, 11, 2861. [Google Scholar] [CrossRef]
- Müller, T.; Finan, B.; Bloom, S.; D’Alessio, D.; Drucker, D.; Flatt, P.; Fritsche, A.; Gribble, F.; Grill, H.; Habener, J.F.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [PubMed]
- Drucker, D.J. The biology of incretin hormones. Cell Metab. 2006, 3, 153–165. [Google Scholar] [CrossRef]
- Demirok, N.T.; Yıkmış, S. Combined Effect of Ultrasound and Microwave Power in Tangerine Juice Processing: Bioactive Compounds, Amino Acids, Minerals, and Pathogen. Processes 2022, 10, 2100. [Google Scholar] [CrossRef]
Groups | ||||
---|---|---|---|---|
Parameters | Control | N1 | P1 | U1 |
Plasma total protein (g/dL) | 7.07 ± 0.41 | 6.28 ± 0.36 | 6.68 ± 0.36 | 7.16 ± 0.50 |
Plasma albumin (g/dL) | 3.59 ± 0.21 | 3.27 ± 0.13 | 3.43 ± 0.14 | 3.74 ± 0.16 |
Plasma globulin (g/dL) | 3.48 ± 0.14 | 3.21 ± 0.19 | 3.38 ± 0.24 | 3.52 ± 0.68 |
Plasma albumin/globulin ratio (%) | 0.99 ± 0.06 | 1.19 ± 0.14 | 1.25 ± 0.19 | 1.08 ± 0.16 |
Liver total protein (g/dL) | 4.11 ± 0.19 | 4.56 ± 0.12 | 4.39 ± 0.03 | 4.40 ± 0.20 |
Liver albumin (g/dL) | 2.18 ± 0.05 | 2.43 ± 0.12 | 1.93 ± 0.12 | 2.40 ± 0.15 |
Liver globulin (g/dL) | 1.78 ± 0.05 | 2.20 ± 0.09 | 2.33 ± 0.13 | 2.36 ± 0.06 |
Liver albumin/globulin ratio (%) | 1.11 ± 0.08 | 1.13 ± 0.10 | 0.90 ± 0.07 | 1.20 ± 0.03 |
Intestinal total protein (g/dL) | 3.22 ± 0.08 | 2.95 ± 0.05 | 3.19 ± 0.06 | 3.77 ± 0.24 * |
Intestinal albumin (g/dL) | 0.66 ± 0.04 | 0.72 ± 0.03 | 0.77 ± 0.09 | 0.88 ± 0.19 |
Intestinal globulin (g/dL) | 2.2 7 ± 0.21 | 2.28 ± 0.04 | 2.45 ± 0.06 | 2.66 ± 0.15 |
Intestinal albumin/globulin ratio (%) | 0.28 ± 0.04 | 0.34 ± 0.02 | 0.35 ± 0.05 | 0.37 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seyidoglu, N.; Karakçı, D.; Ergin Eğritağ, H.; Yıkmış, S. A New Alternative Nutritional Source Hawthorn Vinegar: How It Interacts with Protein, Glucose and GLP-1. Nutrients 2024, 16, 2163. https://doi.org/10.3390/nu16132163
Seyidoglu N, Karakçı D, Ergin Eğritağ H, Yıkmış S. A New Alternative Nutritional Source Hawthorn Vinegar: How It Interacts with Protein, Glucose and GLP-1. Nutrients. 2024; 16(13):2163. https://doi.org/10.3390/nu16132163
Chicago/Turabian StyleSeyidoglu, Nilay, Deniz Karakçı, Hale Ergin Eğritağ, and Seydi Yıkmış. 2024. "A New Alternative Nutritional Source Hawthorn Vinegar: How It Interacts with Protein, Glucose and GLP-1" Nutrients 16, no. 13: 2163. https://doi.org/10.3390/nu16132163
APA StyleSeyidoglu, N., Karakçı, D., Ergin Eğritağ, H., & Yıkmış, S. (2024). A New Alternative Nutritional Source Hawthorn Vinegar: How It Interacts with Protein, Glucose and GLP-1. Nutrients, 16(13), 2163. https://doi.org/10.3390/nu16132163