Effects of Plant-Based Diets on Markers of Insulin Sensitivity: A Systematic Review and Meta-Analysis of Randomised Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection
2.4. Data Extraction and Data Synthesis
2.5. Assessment of Study Quality
2.6. Statistical Analysis
3. Results
3.1. Identification and Study Selection
3.2. Study Characteristics
3.3. HOMA-IR
3.4. Fasting Insulin
3.5. Other Markers of Insulin Sensitivity
3.6. Adherence and Support
3.7. Changes in Medication
3.8. Adverse Events
3.9. Study Quality
3.10. Heterogeneity
3.11. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elsayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes—2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar] [CrossRef] [PubMed]
- Wondmkun, Y.T. Obesity, Insulin Resistance, and Type 2 Diabetes: Associations and Therapeutic Implications. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 3611–3616. [Google Scholar] [CrossRef] [PubMed]
- Aas, A.M.; Axelsen, M.; Churuangsuk, C.; Hermansen, K.; Kendall, C.W.C.; Kahleova, H.; Khan, T.; Lean, M.E.J.; Mann, J.I.; Pedersen, E.; et al. Evidence-based European recommendations for the dietary management of diabetes. Diabetologia 2023, 66, 965–985. [Google Scholar] [CrossRef]
- Craig, W.J.; Mangels, A.R. Position of the American Dietetic Association: Vegetarian Diets. J. Am. Diet. Assoc. 2009, 109, 1266–1282. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Fogelholm, M.; Poppitt, S.D.; Silvestre, M.P.; Møller, G.; Huttunen-Lenz, M.; Stratton, G.; Sundvall, J.; Råman, L.; Jalo, E.; et al. Adherence to a plant-based diet and consumption of specific plant foods—Associations with 3-year weight-loss maintenance and cardiometabolic risk factors: A secondary analysis of the preview intervention study. Nutrients 2021, 13, 3916. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Larson, N.; Gallaher, D.D.; Odegaard, A.O.; Rana, J.S.; Shikany, J.M.; Steffen, L.M.; Jacobs, D.R. A Shift Toward a Plant-Centered Diet From Young to Middle Adulthood and Subsequent Risk of Type 2 Diabetes and Weight Gain: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Diabetes Care 2020, 43, 2796–2803. [Google Scholar] [CrossRef] [PubMed]
- Hemler, E.C.; Hu, F.B. Plant-Based Diets for Personal, Population, and Planetary Health. Adv. Nutr. 2019, 10, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Schlesinger, S.; Neuenschwander, M.; Schwedhelm, C.; Hoffmann, G.; Bechthold, A.; Boeing, H.; Schwingshackl, L. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2019, 10, 205–218. [Google Scholar] [CrossRef]
- Zhu, R.; Fogelholm, M.; Jalo, E.; Poppitt, S.D.; Silvestre, M.P.; Møller, G.; Huttunen-Lenz, M.; Stratton, G.; Sundvall, J.; Macdonald, I.A.; et al. Animal-based food choice and associations with long-term weight maintenance and metabolic health after a large and rapid weight loss: The PREVIEW study. Clin. Nutr. 2022, 41, 817–828. [Google Scholar] [CrossRef]
- Ivanova, S.; Delattre, C.; Karcheva-Bahchevanska, D.; Benbasat, N.; Nalbantova, V.; Ivanov, K. Plant-Based Diet as a Strategy for Weight Control. Foods 2021, 10, 3052. [Google Scholar] [CrossRef]
- Termannsen, A.D.; Clemmensen, K.K.B.; Thomsen, J.M.; Nørgaard, O.; Díaz, L.J.; Torekov, S.S.; Quist, J.S.; Færch, K. Effects of vegan diets on cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. Obes. Rev. 2022, 23, e13462. [Google Scholar] [CrossRef]
- Xu, Y.; Mo, G.; Yao, Y.; Li, C. The effects of vegetarian diets on glycemia and lipid parameters in adult patients with overweight and obesity: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2023, 77, 794–802. [Google Scholar] [CrossRef]
- Melgar, B.; Diaz-Arocutipa, C.; Huerta-Rengifo, C.; Piscoya, A.; Barboza, J.J.; Hernandez, A.V. Vegetarian diets on anthropometric, metabolic and blood pressure outcomes in people with overweight and obesity: A systematic review and meta-analysis of randomized controlled trials. Int. J. Obes. 2023, 47, 903–910. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Grainger, M.J.; Gray, C.T. Citationchaser: A tool for transparent and efficient forward and backward citation chasing in systematic searching. Res. Synth. Methods 2022, 13, 533–545. [Google Scholar] [CrossRef]
- Thomas, J.; Graziosi, S.; Brunton, J.; Ghouze, Z.; O’Driscoll, P.; Bond, M. EPPI-Reviewer: Advanced software for systematic reviews, maps and evidence synthesis. EPPI-Centre; UCL Social Research Institute, University College London, 2020; Available online: https://training.cochrane.org/handbook/current (accessed on 24 April 2024).
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, V.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 (Updated February 2021); Cochrane, 2021. [Google Scholar]
- Furukawa, T.A.; Barbui, C.; Cipriani, A.; Brambilla, P.; Watanabe, N. Imputing missing standard deviations in meta-analyses can provide accurate results. J. Clin. Epidemiol. 2006, 59, 7–10. [Google Scholar] [CrossRef]
- Sofi, F.; Dinu, M.; Pagliai, G.; Cesari, F.; Gori, A.M.; Sereni, A.; Becatti, M.; Fiorillo, C.; Marcucci, R.; Casini, A. Low-Calorie Vegetarian Versus Mediterranean Diets for Reducing Body Weight and Improving Cardiovascular Risk Profile: CARDIVEG Study (Cardiovascular Prevention with Vegetarian Diet). Circulation 2018, 137, 1103–1113. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A.C. Chapter 8: Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 (Updated February 2021); Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Cochrane, 2021; Available online: https://training.cochrane.org/handbook/current/chapter-08 (accessed on 24 April 2024).
- Balshem, H.; Helfand, M.; Schünemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Montori, V.; Akl, E.A.; Djulbegovic, B.; Falck-Ytter, Y.; et al. GRADE guidelines: 4. Rating the quality of evidence—Study limitations (risk of bias). J. Clin. Epidemiol. 2011, 64, 407–415. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Montori, V.; Vist, G.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Djulbegovic, B.; Atkins, D.; Falck-Ytter, Y.; et al. GRADE guidelines: 5. Rating the quality of evidence—Publication bias. J. Clin. Epidemiol. 2011, 64, 1277–1282. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Brozek, J.; Alonso-Coello, P.; Rind, D.; Devereaux, P.J.; Montori, V.M.; Freyschuss, B.; Vist, G.; et al. GRADE guidelines 6. Rating the quality of evidence—Imprecision. J. Clin. Epidemiol. 2011, 64, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Woodcock, J.; Brozek, J.; Helfand, M.; Alonso-Coello, P.; Glasziou, P.; Jaeschke, R.; Akl, E.A.; et al. GRADE guidelines: 7. Rating the quality of evidence—Inconsistency. J. Clin. Epidemiol. 2011, 64, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Kunz, R.; Woodcock, J.; Brozek, J.; Helfand, M.; Alonso-Coello, P.; Falck-Ytter, Y.; Jaeschke, R.; Vist, G.; et al. GRADE guidelines: 8. Rating the quality of evidence—Indirectness. J. Clin. Epidemiol. 2011, 64, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- The Cochrane Collaboration 2020. Review Manager (RevMan)[Computer Program] Version 5.4; The Cochrane Collaboration: London, UK, 2020. [Google Scholar]
- Deeks, J.; Higgins, J.; Altman, D. Chapter 10: Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.2 (Updated February 2021); Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Cochrane, 2021; Available online: https://training.cochrane.org/handbook/current/chapter-10 (accessed on 24 April 2024).
- Garousi, N.; Tamizifar, B.; Pourmasoumi, M.; Feizi, A.; Askari, G.; Clark, C.C.T.; Entezari, M.H. Effects of lacto-ovo-vegetarian diet vs. standard-weight-loss diet on obese and overweight adults with non-alcoholic fatty liver disease: A randomised clinical trial. Arch. Physiol. Biochem. 2023, 129, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Wong, J.M.W.; Kendall, C.W.C.; Esfahani, A.; Ng, V.W.Y.; Leong, T.C.K.; Faulkner, D.A.; Vidgen, E.; Paul, G.; Mukherjea, R.; et al. Effect of a 6-month vegan low-carbohydrate (‘Eco-Atkins’) diet on cardiovascular risk factors and body weight in hyperlipidaemic adults: A randomised controlled trial. BMJ Open 2014, 4, e003505. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Petersen, K.F.; Shulman, G.I.; Alwarith, J.; Rembert, E.; Tura, A.; Hill, M.; Holubkov, R.; Barnard, N.D. Effect of a Low-Fat Vegan Diet on Body Weight, Insulin Sensitivity, Postprandial Metabolism, and Intramyocellular and Hepatocellular Lipid Levels in Overweight Adults: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2025454. [Google Scholar] [CrossRef] [PubMed]
- Njike, V.Y.; Treu, J.A.; Kela, G.C.M.; Ayettey, R.G.; Comerford, B.P.; Siddiqui, W.T. Egg Consumption in the Context of Plant-Based Diets and Cardiometabolic Risk Factors in Adults at Risk of Type 2 Diabetes. J. Nutr. 2021, 151, 3651–3660. [Google Scholar] [CrossRef]
- Barnard, N.D.; Alwarith, J.; Rembert, E.; Brandon, L.; Nguyen, M.; Goergen, A.; Horne, T.; do Nascimento, G.F.; Lakkadi, K.; Tura, A.; et al. A Mediterranean Diet and Low-Fat Vegan Diet to Improve Body Weight and Cardiometabolic Risk Factors: A Randomized, Cross-over Trial. J. Am. Coll. Nutr. 2021, 41, 127–139. [Google Scholar] [CrossRef]
- Barnard, N.D.; Scialli, A.R.; Turner-McGrievy, G.; Lanou, A.J.; Glass, J. The effects of a low-fat, plant-based dietary intervention on body weight, metabolism, and insulin sensitivity. Am. J. Med. 2005, 118, 991–997. [Google Scholar] [CrossRef]
- Kahleova, H.; Matoulek, M.; Malinska, H.; Oliyarnik, O.; Kazdova, L.; Neskudla, T.; Skoch, A.; Hajek, M.; Hill, M.; Kahle, M.; et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet. Med. 2011, 28, 549–559. [Google Scholar] [CrossRef]
- Landry, M.J.; Ward, C.P.; Cunanan, K.M.; Durand, L.R.; Perelman, D.; Robinson, J.L.; Hennings, T.; Koh, L.; Dant, C.; Zeitlin, A.; et al. Cardiometabolic Effects of Omnivorous vs Vegan Diets in Identical Twins: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2344457. [Google Scholar] [CrossRef]
- Barnard, N.D.; Scialli, A.R.; Turner-McGrievy, G.; Lanou, A.J. Acceptability of a low-fat vegan diet compares favorably to a step II diet in a randomized, controlled trial. J. Cardiopulm. Rehabil. 2004, 24, 229–235. [Google Scholar] [CrossRef]
- Kahleova, H.; Hill, M.; Pelikánova, T. Vegetarian vs. conventional diabetic diet—A 1-year follow-up. Cor Vasa 2014, 56, e140–e144. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Sakkas, H.; Bozidis, P.; Touzios, C.; Kolios, D.; Athanasiou, G.; Athanasopoulou, E.; Gerou, I.; Gartzonika, C. Nutritional Status and the Influence of the Vegan Diet on the Gut Microbiota and Human Health. Medicina 2020, 56, 88. [Google Scholar] [CrossRef]
- Woo, K.S.; Kwok, T.C.Y.; Celermajer, D.S. Vegan Diet, Subnormal Vitamin B-12 Status and Cardiovascular Health. Nutrients 2014, 6, 3259–3273. [Google Scholar] [CrossRef]
- Elorinne, A.L.; Alfthan, G.; Erlund, I.; Kivimäki, H.; Paju, A.; Salminen, I.; Turpeinen, U.; Voutilainen, S.; Laakso, J. Food and Nutrient Intake and Nutritional Status of Finnish Vegans and Non-Vegetarians. PLoS ONE 2016, 11, e0148235. [Google Scholar] [CrossRef]
- DeFronzo, R.A.; Simonson, D.; Ferrannini, E. Hepatic and peripheral insulin resistance: A common feature of Type 2 (non-insulin-dependent) and Type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1982, 23, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Rocha, L.V.; Macdonald, I.; Alssema, M.; Færch, K. The Use and Effectiveness of Selected Alternative Markers for Insulin Sensitivity and Secretion Compared with Gold Standard Markers in Dietary Intervention Studies in Individuals without Diabetes: Results of a Systematic Review. Nutrients 2022, 14, 2036. [Google Scholar] [CrossRef] [PubMed]
Authors, Year, Country | Study Design | Sample Size |
Study Duration | Age | BMI | Sex | Population | Intervention Diet | Control Diet | Meta-Analyses | Support | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Randomised Completed | Weeks | Years | kg/m2 | % Female | HOMA-IR | Fasting Insulin | ||||||
Barnard et al., 2005 [34] USA | RCT Parallel | 64 (IG: 32, CG:32) 59 (IG: 29, CG:30) | 14 week | IG: 57.4 [47–71] CG: 55.6 [44–73] | IG: 33.6 ± 5.2 CG: 32.6 ± 3.3 | 100% | Overweight/ obesity | Low-fat Vegan Diet Ad libitum | Diet based on the National Cholesterol Education Program Ad libitum | ✓ | Both groups: No meals provided Weekly 1 h meetings (nutrition and cooking instruction + group discussions) | |
Barnard et al., 2021 [33] USA | RCT Crossover | 62 52 | 2 × 16 week | IG first: 58.3 ± 8.4 CG first: 56.6 ± 10.9 | IG first: 33.7 ± 3.4 CG first: 34.3 ± 2.7 | 77% | Overweight/ obesity | Low-fat Vegan Diet+ B12 Ad libitum | Mediterranean Diet Ad libitum | ✓ | Both groups: No meals provided Weekly meetings (nutrition and cooking instruction) | |
Garousi et al., 2023 [29] Iran | RCT Parallel | 80 (IG: 40, CG: 40) 75 (IG: 37, CG: 38) | 12 week | IG: 43.5 ± 9.9 CG: 42.8 ± 9.9 | IG: 32.0 ± 4.6 CG: 30.1 ± 3.8 | IG: 60% CG: 45% | Overweight/ obesity + NAFL | Lacto-ovo-vegetarian Diet −500 kcal/d | Standard Weight loss Diet −500 kcal/d | ✓ | ✓ | Both groups: No meals provided Menu plans provided |
Jenkins et al., 2014 [30] Canada | RCT Parallel | 39 (IG: 20, CG: 19) 23 (IG: 10, CG: 13) | 26 week | IG: 57.6 ± 1.4 * CG: 53.3 ± 1.8 * | IG: 31.1 (29.8–32.4) CG: 31.1 (29.9–32.4) | IG: 55% CG: 68% | Overweight/ obesity | Low-carbohydrate Vegan Diet or High-carbohydrate Lacto-ovo-vegetarian Diet 40% energy reduction | NA | Both groups: No meals provided Continuous dietary counselling Menu plans provided | ||
Kahleova et al., 2011 [35] USA | RCT Parallel | 74 (IG: 37, CG: 37) 70 (IG: 35, CG: 35) | 12 week | IG: 54.6 ± 7.8 CG: 57.7 ± 4.9 | IG: 35.1 ± 6.1 CG: 35.0 ± 4.6 | IG: 54% CG: 51% | T2D | Lacto-ovo-vegetarian Diet + B12 −500 kcal/d | Conventional Diabetes Diet + B12 −500 kcal/d | Both groups: Meals provided Weekly meetings (nutrition and cooking instruction) | ||
Kahleova et al., 2020 [31] USA | RCT Parallel | 244 (IG: 122, CG: 122) 223 (IG: 117, CG: 106) | 16 week | IG: 53 ± 10 CG: 57 ± 13 | IG: 33.3 ± 3.8 CG: 33.6 ± 3.7 | IG: 86% CG: 87% | Overweight/ obesity | Low-fat Vegan Diet + B12 Ad libitum | No dietary changes + B12 Ad libitum | ✓ | ✓ | Intervention group: No meals provided Weekly meetings (nutrition and cooking instruction) |
Njike et al., 2021 [32] USA | RCT Crossover | 35 33 | 2 × 6 week | All: 60.7 ± 6.8 | 30.9 ± 4.9 | 71% | Elevated fasting glucose | Vegan Diet or Ovo-vegetarian Diet (eggs) Isocaloric | NA | Intervention group: Educational material, sample meal planes, recipes. Control group: Counselling and 500 dollars for food purchase | ||
Sofi et al., 2018 [19] Italy | RCT Crossover | 118 100 | 2 × 12 week | 50 [21–75] ¤ | IG: 30.6 ± 4.9 | 78% | Overweight/ obesity | Low-calorie Vegetarian Diet + B12 ~−500 kcal/d (dependent on body weight) Isocaloric | Low-calorie Mediterranean Diet + B12 ~500 kcal/d (dependent on body weight) Isocaloric | ✓ | ✓ | Both groups: Menu plans with recipes provided Individual counselling sessions |
Summary of Findings | Certainty of Evidence | ||||||
---|---|---|---|---|---|---|---|
Outcome | No. of Participants (No. of trials) | Mean Difference (95% CI) | Risk of Bias * | Publication Bias ¤ | Imprecision § | Inconsistency † | Certainty of Evidence (GRADE Score) |
HOMA-IR | 609 (4) | −0.97 [−1.67, −0.27] | □ | □ | □ | ■ | Moderate |
Fasting Insulin (µIU/mL) | 564 (4) | −4.13 µIU/mL, [−7.20, −1.04] | □ | □ | □ | ■ | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Termannsen, A.-D.; Søndergaard, C.S.; Færch, K.; Andersen, T.H.; Raben, A.; Quist, J.S. Effects of Plant-Based Diets on Markers of Insulin Sensitivity: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2024, 16, 2110. https://doi.org/10.3390/nu16132110
Termannsen A-D, Søndergaard CS, Færch K, Andersen TH, Raben A, Quist JS. Effects of Plant-Based Diets on Markers of Insulin Sensitivity: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients. 2024; 16(13):2110. https://doi.org/10.3390/nu16132110
Chicago/Turabian StyleTermannsen, Anne-Ditte, Christian Sümeghy Søndergaard, Kristine Færch, Tue Helms Andersen, Anne Raben, and Jonas Salling Quist. 2024. "Effects of Plant-Based Diets on Markers of Insulin Sensitivity: A Systematic Review and Meta-Analysis of Randomised Controlled Trials" Nutrients 16, no. 13: 2110. https://doi.org/10.3390/nu16132110
APA StyleTermannsen, A. -D., Søndergaard, C. S., Færch, K., Andersen, T. H., Raben, A., & Quist, J. S. (2024). Effects of Plant-Based Diets on Markers of Insulin Sensitivity: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients, 16(13), 2110. https://doi.org/10.3390/nu16132110