Exploring Determinants of Successful Weight Loss with the Use of a Smartphone Healthcare Application: Secondary Analysis of a Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Interventions
2.4. Measurements
2.4.1. Basic Characteristics and Body Weight
2.4.2. Dietary Intake and PA
2.4.3. App Usage
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics and Change in Body Weight
3.2. App Usage Frequency
3.3. Correlation of App Usage Frequency and Weight Loss
3.4. Logistic Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO World Obesity Day 2022—Accelerating Action to Stop Obesity. Available online: https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity (accessed on 11 February 2023).
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults. Circulation 2014, 129, S102–S138. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, A.N.; Lachman, M.E. Behavior change with fitness technology in sedentary adults: A review of the evidence for increasing physical activity. Front. Public Health 2017, 4, 289. [Google Scholar] [CrossRef]
- Shi, Y.; Wakaba, K.; Kiyohara, K.; Hayashi, F.; Tsushita, K.; Nakata, Y. Effectiveness and components of web-based interventions on weight changes in adults who were overweight and obese: A systematic review with meta-analyses. Nutrients 2022, 15, 179. [Google Scholar] [CrossRef] [PubMed]
- Nakata, Y.; Sasai, H.; Gosho, M.; Kobayashi, H.; Shi, Y.; Ohigashi, T.; Mizuno, S.; Murayama, C.; Kobayashi, S.; Sasaki, Y. A smartphone healthcare application, CALO mama Plus, to promote weight loss: A randomized controlled trial. Nutrients 2022, 14, 4608. [Google Scholar] [CrossRef] [PubMed]
- West, D.S.; Harvey-Berino, J.; Krukowski, R.A.; Skelly, J.M. Pretreatment weight change is associated with obesity treatment outcomes. Obesity 2011, 19, 1791–1795. [Google Scholar] [CrossRef] [PubMed]
- Krukowski, R.A.; Harvey-Berino, J.; Bursac, Z.; Ashikaga, T.; West, D.S. Patterns of success: Online self-monitoring in a web-based behavioral weight control program. Health Psychol. 2013, 32, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Unick, J.L.; Neiberg, R.H.; Hogan, P.E.; Cheskin, L.J.; Dutton, G.R.; Jeffery, R.; Nelson, J.A.; Pi-Sunyer, X.; West, D.S.; Wing, R.R.; et al. Weight change in the first 2 months of a lifestyle intervention predicts weight changes 8 years later. Obesity 2015, 23, 1353–1356. [Google Scholar] [CrossRef] [PubMed]
- Ohkawara, K.; Oshima, Y.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I.; Tanaka, S. Real-time estimation of daily physical activity intensity by a triaxial accelerometer and a gravity-removal classification algorithm. Br. J. Nutr. 2011, 105, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Kawaguchi, K.; Tanaka, S.; Ohkawara, K.; Hikihara, Y.; Ishikawa-Takata, K.; Tabata, I. Classifying household and locomotive activities using a triaxial accelerometer. Gait Posture 2010, 31, 370–374. [Google Scholar] [CrossRef]
- Masse, L.C.; Fuemmeler, B.F.; Anderson, C.B.; Matthews, C.E.; Trost, S.G.; Catellier, D.J.; Treuth, M. Accelerometer data reduction: A comparison of four reduction algorithms on select outcome variables. Med. Sci. Sport. Exerc. 2005, 37 (Suppl. 11), S544–S554. [Google Scholar] [CrossRef]
- Troiano, R.P.; Berrigan, D.; Dodd, K.W.; Masse, L.C.; Tilert, T.; McDowell, M. Physical activity in the United States measured by accelerometer. Med. Sci. Sport. Exerc. 2008, 40, 181–188. [Google Scholar] [CrossRef]
- Muramoto, A.; Matsushita, M.; Kato, A.; Yamamoto, N.; Koike, G.; Nakamura, M.; Numata, T.; Tamakoshi, A.; Tsushita, K. Three percent weight reduction is the minimum requirement to improve health hazards in obese and overweight people in Japan. Obes. Res. Clin. Pract. 2014, 8, e466–e475. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.B.; Cubellis, L.T.; Wexler, R.K.; Taylor, C.A.; Spees, C.K. Differences in Adherence to American Heart Association’s Life’s Essential 8, Diet Quality, and Weight Loss Strategies Between Those With and Without Recent Clinically Significant Weight Loss in a Nationally Representative Sample of US Adults. J Am Heart Assoc. 2023, 12, e026777. [Google Scholar] [CrossRef]
- Stansbury, M.L.; Harvey, J.R.; Krukowski, R.A.; Pellegrini, C.A.; Wang, X.; West, D.S. Distinguishing early patterns of physical activity goal attainment and weight loss in online behavioral obesity treatment using latent class analysis. Transl. Behav. Med. 2021, 11, 2164–2173. [Google Scholar] [CrossRef] [PubMed]
- Unick, J.L.; Hogan, P.E.; Neiberg, R.H.; Cheskin, L.J.; Dutton, G.R.; Evans-Hudnall, G.; Jeffery, R.; Kitabchi, A.E.; Nelson, J.A.; Pi-Sunyer, F.X.; et al. Look AHEAD Research Group. Evaluation of early weight loss thresholds for identifying nonresponders to an intensive lifestyle intervention. Obes. (Silver Spring) 2014, 22, 1608–1616. [Google Scholar] [CrossRef]
- Carels, R.A.; Cacciapaglia, H.M.; Douglass, O.M.; Rydin, S.; O’Brien, W.H. The early identification of poor treatment outcome in a women’s weight loss program. Eat. Behav. 2003, 4, 265–282. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kam, H.J.; Kim, Y.; Lee, Y.; Lee, J.H. Understanding time series patterns of weight and meal history reports in mobile weight loss intervention programs: Data-driven analysis. J. Med. Internet Res. 2020, 22, e17521. [Google Scholar] [CrossRef]
- Burke, L.E.; Wang, J.; Sevick, M.A. Self-monitoring in weight loss: A systematic review of the literature. J. Am. Diet. Assoc. 2011, 111, 92–102. [Google Scholar] [CrossRef]
- Painter, S.L.; Ahmed, R.; Hill, J.O.; Kushner, R.F.; Lindquist, R.; Brunning, S.; Margulies, A. What matters in weight loss? An in-depth analysis of self-monitoring. J. Med. Internet Res. 2017, 19, e160. [Google Scholar] [CrossRef]
- Eguchi, A.; Kawamura, Y.; Kawashima, T.; Ghaznavi, C.; Ishimura, K.; Kohsaka, S.; Matsuo, S.; Mizuno, S.; Sasaki, Y.; Takahashi, A.; et al. The efficacy of an mHealth App in facilitating weight loss among Japanese fitness center members: Regression analysis study. JMIR Form. Res. 2023, 7, e48435. [Google Scholar] [CrossRef]
- Delahanty, L.M.; Peyrot, M.; Shrader, P.J.; Williamson, D.A.; Meigs, J.B.; Nathan, D.M. DPP Research Group. Pretreatment, psychological, and behavioral predictors of weight outcomes among lifestyle intervention participants in the Diabetes Prevention Program (DPP). Diabetes Care 2013, 36, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Varela, C.; Oda-Montecinos, C.; Andrés, A.; Saldaña, C. Effectiveness of web-based feedback interventions for people with overweight and obesity: Systematic review and network meta-analysis of randomized controlled trials. J. Eat. Disord. 2021, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Heideman, W.H.; de Wit, M.; Middelkoop, B.J.; Nierkens, V.; Stronks, K.; Verhoeff, A.P.; Snoek, F.J. DiAlert: A prevention program for overweight first degree relatives of type 2 diabetes patients: Results of a pilot study to test feasibility and acceptability. Trials 2012, 13, 178. [Google Scholar] [CrossRef] [PubMed]
Total | Women | Men | |
---|---|---|---|
Participants, n (%) | 68 (100.0) | 18 (26.5) | 50 (73.5) |
Age (years), mean (SD) | 42.3 (9.2) | 40.8 (11.2) | 42.8 (8.5) |
BMI (kg/m2), mean (SD) | 27.2 (3.2) | 27.3 (3.3) | 27.0 (3.1) |
BMI 23–25, n (%) | 16 (23.5) | 0 (0.0) | 16 (32.0) |
BMI 25–30, n (%) | 40 (58.8) | 12 (66.7) | 28 (56.0) |
BMI ≥ 30, n (%) | 6 (8.8) | 6 (33.3) | 0 (0.0) |
Having exercise habit, n (%) | 20 (29.4) | 3 (16.7) | 17 (34.0) |
Having walking habit, n (%) | 34 (50.0) | 10 (55.6) | 24 (48.0) |
Faster walking speed, n (%) | 41 (60.3) | 8 (44.4) | 33 (66.0) |
Having medical history, n (%) | 27 (39.7) | 2 (11.1) | 25 (50.0) |
Having family medical history, n (%) | 50 (73.5) | 15 (83.3) | 35 (70.0) |
University graduate or higher, n (%) | 49 (72.1) | 6 (33.3) | 43 (86.0) |
Annual income of JPY 7 million or more, n (%) | 40 (58.8) | 7 (38.9) | 33 (66.0) |
Living alone, n (%) | 14 (20.6) | 5 (27.8) | 9 (18.0) |
Single, n (%) | 21 (30.9) | 11 (61.1) | 10 (20.0) |
Have lost more than 3 kg in the past, n (%) | 34 (50.0) | 10 (55.6) | 24 (48.0) |
Gained 10 kg more than weight at age 20, n (%) | 4 (5.9) | 1 (5.6) | 3 (6.0) |
Currently smoking, n (%) | 5 (7.4) | 0 (0) | 5 (10.0) |
Employed full-time, n (%) | 61 (89.7) | 12 (66.7) | 49 (98.0) |
Shiftwork, n (%) | 2 (2.9) | 0 (0) | 2 (4.0) |
Step count, mean (SD) # | 7998 (3585) | 7739 (3368) | 8223 (3518) |
Items | Mean (SD) | Median | Range |
---|---|---|---|
Diet input | 3.21 (0.51) | 3.29 | (1.86, 4.00) |
Exercise input | 0.48 (0.52) | 0.29 | (0.00, 2.00) |
Weight input | 0.82 (0.26) | 1.00 | (0.14, 1.00) |
Mood input | 0.80 (0.27) | 1.00 | (0.00, 1.00) |
Sleep input | 0.86 (0.23) | 1.00 | (0.14, 1.00) |
Variables | Univariate Analysis | Multivariate Analysis * | ||
---|---|---|---|---|
OR (95%CI) | p-Value | OR (95%CI) | p-Value | |
Being a woman | 0.395 (0.114, 1.370) | 0.143 | ||
Age | 0.996 (0.944, 1.051) | 0.891 | ||
Have lost more than 3 kg in the past | 1.895 (0.696, 5.157) | 0.211 | ||
Gained 10 kg more than weight at age 20 | 0.556 (0.055, 5.648) | 0.619 | ||
Having exercise habit | 0.654 (0.214, 2.000) | 0.457 | ||
Having walking habit | 0.308 (0.109, 0.870) | 0.026 * | 0.248 (0.079, 0.786) | 0.018 * |
Faster walking speed | 0.258 (0.091, 0.731) | 0.011 * | 0.324 (0.105, 1.004) | 0.051 |
Having medical history | 2.244 (0.816, 6.168) | 0.117 | ||
Having family medical history | 3.929 (1.009, 15.300) | 0.049 * | 4.269 (0.972, 18.746) | 0.055 |
University graduate or higher | 1.372 (0.445, 4.227) | 0.581 | ||
Annual income of JPY 7 million or more | 1.407 (0.510, 3.882) | 0.509 | ||
Living alone | 0.629 (0.174, 2.266) | 0.478 | ||
Single | 0.589 (0.194, 1.792) | 0.351 | ||
Diet input in the first week | 1.186 (0.446, 3.153) | 0.732 | ||
Exercise input in the first week | 1.124 (0.439, 2.877) | 0.807 | ||
Weight input in the first week | 10.644 (0.862, 131.375) | 0.065 | ||
Mood input in the first week | 4.277 (0.523, 34.968) | 0.175 | ||
Sleep input in the first week | 2.495 (0.244, 25.502) | 0.441 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Sasaki, Y.; Ishimura, K.; Mizuno, S.; Nakata, Y. Exploring Determinants of Successful Weight Loss with the Use of a Smartphone Healthcare Application: Secondary Analysis of a Randomized Clinical Trial. Nutrients 2024, 16, 2108. https://doi.org/10.3390/nu16132108
Shi Y, Sasaki Y, Ishimura K, Mizuno S, Nakata Y. Exploring Determinants of Successful Weight Loss with the Use of a Smartphone Healthcare Application: Secondary Analysis of a Randomized Clinical Trial. Nutrients. 2024; 16(13):2108. https://doi.org/10.3390/nu16132108
Chicago/Turabian StyleShi, Yutong, Yuki Sasaki, Keiko Ishimura, Shinichiro Mizuno, and Yoshio Nakata. 2024. "Exploring Determinants of Successful Weight Loss with the Use of a Smartphone Healthcare Application: Secondary Analysis of a Randomized Clinical Trial" Nutrients 16, no. 13: 2108. https://doi.org/10.3390/nu16132108
APA StyleShi, Y., Sasaki, Y., Ishimura, K., Mizuno, S., & Nakata, Y. (2024). Exploring Determinants of Successful Weight Loss with the Use of a Smartphone Healthcare Application: Secondary Analysis of a Randomized Clinical Trial. Nutrients, 16(13), 2108. https://doi.org/10.3390/nu16132108