Trace Element Deficiency in Systemic Sclerosis—Too Much Effort for Some Traces?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussions
4.1. Absolute and/or Functional Iron Deficiency?
4.1.1. Iron Status in SSc Population
4.1.2. Potential Impact of Iron on SSc Pathogenesis
4.2. Zinc Deficiency—A Potential Risk Factor for Disease Progression?
4.2.1. Zinc Status in SSc Population
4.2.2. Potential Impact of Zinc on SSc Pathogenesis
4.3. Copper Inadequacy—A Key Element of Exacerbated Oxidative Stress?
4.3.1. Copper Status SSc Population
4.3.2. Potential Impact of Copper on SSc Pathogenesis
4.4. Selenium Deficiency—A Promising Central Piece in the SSc Pathogenic Puzzle?
4.4.1. Selenium Status in SSc Population
4.4.2. Potential Impact of Selenium on SSc Pathogenesis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hughes, M.; Herrick, A.L. Systemic sclerosis. Br. J. Hosp. Med. 2019, 80, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Muangchan, C.; Markland, J.; Robinson, D.; Jones, N.; Khalidi, N.; Docherty, P.; Kaminska, E.; Masetto, A.; Sutton, E.; Mathieu, J.P.; et al. The 15% Rule in Scleroderma: The Frequency of Severe Organ Complications in Systemic Sclerosis. A Systematic Review. J. Rheumatol. 2013, 40, 1545–1556. [Google Scholar] [CrossRef] [PubMed]
- Steen, V.D.; Medsger, T.A. Changes in causes of death in systemic sclerosis, 1972–2002. Ann. Rheum. Dis. 2007, 66, 940–944. [Google Scholar] [CrossRef] [PubMed]
- De Almeida Chaves, S.; Porel, T.; Mounié, M.; Alric, L.; Astudillo, L.; Huart, A.; Lairez, O.; Michaud, M.; Prévot, G.; Ribes, D.; et al. Sine scleroderma, limited cutaneous, and diffused cutaneous systemic sclerosis survival and predictors of mortality. Arthritis Res. Ther. 2021, 23, 295. [Google Scholar] [CrossRef] [PubMed]
- Pope, J.E.; Denton, C.P.; Johnson, S.R.; Fernandez-Codina, A.; Hudson, M.; Nevskaya, T. State-of-the-art evidence in the treatment of systemic sclerosis. Nat. Rev. Rheumatol. 2023, 19, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Pinheiro, A.C.; Roque, L.C.S.C.; Gonçalves, R.S.G.; Duarte, A.L.B.P.; Dantas, A.T. Nutritional risk in patients with systemic sclerosis. Clin. Rheumatol. 2020, 39, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Frech, T. Gastrointestinal and Hepatic Disease in Systemic Sclerosis Tracy. Rheum. Dis. Clin. N. Am. 2018, 44, 15–28. [Google Scholar] [CrossRef]
- Smirani, R.; Poursac, N.; Naveau, A.; Schaeverbeke, T.; Devillard, R.; Truchetet, M.E. Orofacial consequences of systemic sclerosis: A systematic review. J. Scleroderma Relat. Disord. 2018, 3, 81–90. [Google Scholar] [CrossRef]
- Türk, İ.; Cüzdan, N.; Çiftçi, V.; Arslan, D.; Doğan, M.C.; Unal, İ. Malnutrition, associated clinical factors, and depression in systemic sclerosis: A cross-sectional study. Clin. Rheumatol. 2020, 39, 57–67. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Watad, A.; Gizunterman, A.; McGonagle, D.; Mahagna, H.; Comaneshter, D.; Amital, H.; Cohen, A.D.; Amital, D. The burden of depression in systemic sclerosis patients: A nationwide population-based study. J. Affect. Disord. 2019, 243, 427–431. [Google Scholar] [CrossRef]
- Bagnato, G.; Pigatto, E.; Bitto, A.; Pizzino, G.; Irrera, N.; Abignano, G.; Ferrera, A.; Sciortino, D.; Wilson, M.; Squadrito, F.; et al. The PREdictor of MAlnutrition in Systemic Sclerosis (PREMASS) Score: A Combined Index to Predict 12 Months Onset of Malnutrition in Systemic Sclerosis. Front. Med. 2021, 8, 651748. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Shenkin, A.; Schweinlin, A.; Amrein, K.; Augsburger, M.; Biesalski, H.K.; Bischoff, S.C.; Casaer, M.P.; Gundogan, K.; Lepp, H.L.; et al. ESPEN micronutrient guideline. Clin. Nutr. 2022, 41, 1357–1424. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Li, J.; Liu, S.; Liu, Z. Serum Concentrations of Trace Elements/Minerals in Patients with Diffuse Systemic Sclerosis. Biol. Trace Elem. Res. 2021, 199, 2440–2443. [Google Scholar] [CrossRef]
- Berger, M.M.; Pantet, O.; Schneider, A.; Ben-Hamouda, N. Micronutrient deficiencies in medical and surgical inpatients. J. Clin. Med. 2019, 8, 931. [Google Scholar] [CrossRef]
- Berger, M.M.; Talwar, D.; Shenkin, A. Pitfalls in the interpretation of blood tests used to assess and monitor micronutrient nutrition status. Nutr. Clin. Pract. 2023, 38, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Chandra, J. Iron deficiency: Beyond anemia. Indian J. Pediatr. 2011, 78, 65–72. [Google Scholar] [CrossRef]
- Westerman, M.P.; Martinez, R.C.; Medsger, T.A.; Totten, R.S.; Rodnan, G.P. Anemia and Scleroderma Frequency, Causes, and Marrow Findings Hematologic evaluation of 164 pa. Arch. Intern. Med. 1968, 122, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet 2021, 397, 233–248. [Google Scholar] [CrossRef]
- Xanthouli, P.; Gordjani, O.; Benjamin, N.; Harutyunova, S.; Egenlauf, B.; Marra, A.M.; Haas, S.; Milde, N.; Blank, N.; Lorenz, H.M.; et al. Hypochromic red cells as a prognostic indicator of survival among patients with systemic sclerosis screened for pulmonary hypertension. Arthritis Res. Ther. 2023, 25, 38. [Google Scholar] [CrossRef] [PubMed]
- Ruiter, G.; Lanser, I.J.; De Man, F.S.; Van der Laarse, W.J.; Wharton, J.; Wilkins, M.R.; Howard, L.S.; Vonk-Noordegraaf, A.; Voskuyl, A.E. Iron deficiency in systemic sclerosis patients with and without pulmonary hypertension. Rheumatology 2014, 53, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Frayha, R.A.; Shulman, L.E.; Stevens, M.B. Hematological abnormalities in scleroderma: A study of 180 cases. Acta Haematol. 1980, 64, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Khanlou, H.; Malhotra, A.; Friedenberg, F.; Rothstein, K. Jejunal telangiectasias as a cause of massive bleeding in a patient with scleroderma. Rev. Rhum. 1999, 66, 119–121. [Google Scholar]
- Jharap, B.; Koudstaal, L.G.; Neefjes-Borst, E.A.; Van Weyenberg, S.J.B. Colonic telangiectasias in progressive systemic sclerosis. Endoscopy 2012, 44 (Suppl. S2), E42–E43. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.; Heal, C.; Henes, J.; Balbir-Gurman, A.; Distler, J.H.W.; Airò, P.; Müller-Ladner, U.; Hunzelmann, N.; Kerzberg, E.; Rudnicka, L.; et al. Digital pitting scars are associated with a severe disease course and death in systemic sclerosis: A study from the EUSTAR cohort. Rheumatology 2022, 61, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Ghrénassia, E.; Avouac, J.; Khanna, D.; Derk, C.T.; Distler, O.; Suliman, Y.A.; Airo, P.; Carreira, P.E.; Foti, R.; Granel, B.; et al. Prevalence, correlates and outcomes of gastric antral vascular ectasia in systemic sclerosis: A eustar case-control study. J. Rheumatol. 2014, 41, 99–105. [Google Scholar] [CrossRef]
- Hung, E.W.; Mayes, M.D.; Sharif, R.; Assassi, S.; Machicao, V.I.; Hosing, C.; St Clair, E.W.; Furst, D.E.; Khanna, D.; Forman, S.; et al. Gastric antral vascular ectasia and its clinical correlates in patients with early diffuse systemic sclerosis in the SCOT trial. J. Rheumatol. 2013, 40, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Morrisroe, K.; Hansen, D.; Stevens, W.; Sahhar, J.; Ngian, G.S.; Hill, C.; Roddy, J.; Walker, J.; Proudman, S.; Nikpour, M. Gastric antral vascular ectasia in systemic sclerosis: A study of its epidemiology, disease characteristics and impact on survival. Arthritis Res. Ther. 2022, 24, 103. [Google Scholar] [CrossRef]
- El-Hawary, A.T.; Mostafa, E.F.; Mohamed, S.Y.; Kotb, L.I. Improvement of iron-deficiency anemia resulting from gastric antral vascular ectasia in patients with systemic sclerosis: Cyclophosphamide versus argon plasma coagulation. Egypt. J. Intern. Med. 2018, 30, 175–181. [Google Scholar] [CrossRef]
- Marie, I.; Leroi, A.M.; Gourcerol, G.; Levesque, H.; Ménard, J.F.; Ducrotte, P. Fructose malabsorption in systemic sclerosis. Medicine 2015, 94, e1601. [Google Scholar] [CrossRef]
- Marie, I.; Ducrotté, P.; Denis, P.; Menard, J.F.; Levesque, H. Small intestinal bacterial overgrowth in systemic sclerosis. Rheumatology 2009, 48, 1314–1319. [Google Scholar] [CrossRef]
- Marie, I.; Leroi, A.M.; Menard, J.F.; Levesque, H.; Quillard, M.; Ducrotte, P. Fecal calprotectin in systemic sclerosis and review of the literature. Autoimmun. Rev. 2015, 14, 547–554. [Google Scholar] [CrossRef]
- Kowal-Bielecka, O.; Fransen, J.; Avouac, J.; Becker, M.; Kulak, A.; Allanore, Y.; Distler, O.; Clements, P.; Cutolo, M.; Czirjak, L.; et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann. Rheum. Dis. 2017, 76, 1327–1339. [Google Scholar] [CrossRef]
- Dupont, R.; Longué, M.; Galinier, A.; Cinq Frais, C.; Ingueneau, C.; Astudillo, L.; Arlet, P.; Adoue, D.; Alric, L.; Prévot, G.; et al. Impact of micronutrient deficiency & malnutrition in systemic sclerosis: Cohort study and literature review. Autoimmun. Rev. 2018, 17, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Lane, D.J.R.; Richardson, D.R. The active role of vitamin C in mammalian iron metabolism: Much more than just enhanced iron absorption! Free Radic. Biol. Med. 2014, 75, 69–83. [Google Scholar] [CrossRef]
- Goubran, H.; Ragab, G.; Seghatchian, J.; Burnouf, T. Blood transfusion in autoimmune rheumatic diseases. Transfus. Apher. Sci. 2022, 61, 103596. [Google Scholar] [CrossRef] [PubMed]
- Fuschiotti, P. Current perspectives on the immunopathogenesis of systemic sclerosis. ImmunoTargets Ther. 2016, 5, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Cardoneanu, A.; Burlui, A.M.; Macovei, L.A.; Bratoiu, I.; Richter, P.; Rezus, E. Targeting Systemic Sclerosis from Pathogenic Mechanisms to Clinical Manifestations: Why IL-6? Biomedicines 2022, 10, 318. [Google Scholar] [CrossRef]
- Varga, E.; Pap, R.; Jánosa, G.; Sipos, K.; Pandur, E. IL-6 Regulates Hepcidin Expression Via the BMP/SMAD Pathway by Altering BMP6, TMPRSS6 and TfR2 Expressions at Normal and Inflammatory Conditions in BV2 Microglia. Neurochem. Res. 2021, 46, 1224–1238. [Google Scholar] [CrossRef]
- Srole, D.N.; Ganz, T.; Pharmacology, M.; Angeles, L.; Angeles, L.; Angeles, L. Erythroferrone structure, function, and physiology: Iron homeostasis and beyond. J. Cell. Physiol. 2021, 236, 4888–4901. [Google Scholar] [CrossRef] [PubMed]
- Morse, J.; Barst, R.; Horn, E.; Cuervo, N.; Deng, Z.; Knowles, J. Pulmonary hypertension in scleroderma spectrum of disease: Lack of bone morphogenetic protein receptor 2 mutations. J. Rheumatol. 2002, 29, 2379–2381. [Google Scholar] [PubMed]
- Hu, W.; Liang, K.; Zhu, H.; Zhao, C.; Hu, H.; Yin, S. Ferroptosis and Its Role in Chronic Diseases. Cells 2022, 11, 2040. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.I.; Sarmento-Ribeiro, A.B.; Gonçalves, A.C. Zinc: From Biological Functions to Therapeutic Potential. Int. J. Mol. Sci. 2023, 24, 4822. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, P.; Benedetti, G.; Albarède, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef]
- Läubli, J.; Dobrota, R.; Maurer, B.; Jordan, S.; Misselwitz, B.; Fox, M.; Distler, O. Impaired micronutrients and prealbumin in patients with established and very early systemic sclerosis. Clin. Exp. Rheumatol. 2020, 38, S120–S126. [Google Scholar]
- Sun, Q.; Hackler, J.; Hilger, J.; Gluschke, H.; Muric, A.; Simmons, S.; Schomburg, L.; Siegert, E. Selenium and copper as biomarkers for pulmonary arterial hypertension in systemic sclerosis. Nutrients 2020, 12, 1894. [Google Scholar] [CrossRef]
- Tikly, M.; Channa, K.; Theodorou, P.; Gulumian, M. Lipid peroxidation and trace elements in systemic sclerosis. Clin. Rheumatol. 2006, 25, 320–324. [Google Scholar] [CrossRef]
- Lundberg, A.; Akesson, A.; Akesson, B. Dietary intake and nutritional status in patients with systemic sclerosis. Ann. Rheum. Dis. 1992, 51, 1143–1148. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, J.; Rattan, S.; DiMarino, A.J.; Cohen, S.; Jimenez, S.A. Review article: Pathogenesis and clinical manifestations of gastrointestinal involvement in systemic sclerosis. Aliment. Pharmacol. Ther. 2017, 45, 883–898. [Google Scholar] [CrossRef]
- Wong, C.; Rinaldi, N.; Ho, E. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol. Nutr. Food Res. 2015, 59, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Colletti, M.; Galardi, A.; De Santis, M.; Guidelli, G.M.; Di Giannatale, A.; Di Luigi, L.; Antinozzi, C. Exosomes in systemic sclerosis: Messengers between immune, vascular and fibrotic components? Int. J. Mol. Sci. 2019, 20, 4337. [Google Scholar] [CrossRef] [PubMed]
- Truchetet, M.E.; Brembilla, N.C.; Chizzolini, C. Current Concepts on the Pathogenesis of Systemic Sclerosis. Clin. Rev. Allergy Immunol. 2023, 64, 262–283. [Google Scholar] [CrossRef] [PubMed]
- Massague, J.; Chen, Y. Controlling TGF-beta signaling. Genes Dev. 2000, 14, 627–644. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.H.; Sermersheim, M.; Li, H.; Lee, P.H.U.; Steinberg, S.M.; Ma, J. Zinc in wound healing modulation. Nutrients 2018, 10, 16. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.F. Copper; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780323661621. [Google Scholar]
- Rubino, J.T.; Franz, K.J. Coordination chemistry of copper proteins: How nature handles a toxic cargo for essential function. J. Inorg. Biochem. 2012, 107, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Qayoom, S.; Sultan, J.; Khan, A.R.; Manzoor, S.; Khan, K. Serum copper and ceruloplasmin levels in systemic sclerosis and various types of morphea in the Kashmir Valley. J. Pak. Assoc. Dermatol. 2015, 25, 9–11. [Google Scholar]
- Abdullah, K.M.; Kaushal, J.B.; Takkar, S.; Sharma, G.; Alsafwani, Z.W.; Pothuraju, R.; Batra, S.K.; Siddiqui, J.A. Copper metabolism and cuproptosis in human malignancies: Unraveling the complex interplay for therapeutic insights. Heliyon 2024, 10, e27496. [Google Scholar] [CrossRef]
- Sun, Y.L.; Bai, T.; Zhou, L.; Zhu, R.T.; Wang, W.J.; Liang, R.P.; Li, J.; Zhang, C.X.; Gou, J.J. SOD3 deficiency induces liver fibrosis by promoting hepatic stellate cell activation and epithelial–mesenchymal transition. J. Cell. Physiol. 2021, 236, 4313–4329. [Google Scholar] [CrossRef]
- Frank, S.; Zacharowski, K.; Wray, G.M.; Thiemermann, C.; Pfeilschifter, J. Identification of copper/zinc superoxide dismutase as a novel nitric oxide-regulated gene in rat glomerular mesangial cells and kidneys of endotoxemic rats. FASEB J. 1999, 13, 869–882. [Google Scholar] [CrossRef]
- Emerit, J.; Samuel, D.; Pavio, N. Cu-Zn super oxide dismutase as a potential antifibrotic drug for hepatitis C related fibrosis. Biomed. Pharmacother. 2006, 60, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Li, X.; Wei, Y. Selenium and Selenoproteins in Health. Biomolecules 2023, 13, 799. [Google Scholar] [CrossRef] [PubMed]
- Dabravolski, S.A.; Sukhorukov, V.N.; Melnichenko, A.A.; Khotina, V.A.; Orekhov, A.N. The Role of Selenium in Atherosclerosis Development, Progression, Prevention and Treatment. Biomedicines 2023, 11, 2010. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Zhang, F.; Huang, J.; Yang, X.; Zhou, X. Selenium deficiency causes hypertension by increasing renal AT 1 receptor expression via GPx1/H2O2/NF-κB pathway. Free Radic. Biol. Med. 2023, 200, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Nikolic-Paterson, D.J.; Li, K.; Li, Y.; Wang, Y.; Chen, X.; Duan, Z.; Zhang, Y.; Liu, P.; Lu, S.; et al. Selenium binding protein 1 protects renal tubular epithelial cells from ferroptosis by upregulating glutathione peroxidase 4: SBP1 protects HK-2 cells from ferroptosis by upregulating GPX4. Chem.-Biol. Interact. 2024, 393, 110944. [Google Scholar] [CrossRef]
- Luo, D.; Tang, X.; Wang, Y.; Ying, S.; He, Y.; Lin, H.; Khoso, P.A.; Li, S. Selenium deficiency exacerbated Bisphenol A-induced intestinal toxicity in chickens: Apoptosis and cell cycle arrest mediated by ROS/P53. Sci. Total Environ. 2024, 913, 169730. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Liu, T.; Yang, J.; Sun, X.; Gao, X. The mechanism of selenium regulating the permeability of vascular endothelial cells through selenoprotein O. Redox Biol. 2024, 70, 103063. [Google Scholar] [CrossRef]
- Dooley, A.; Bruckdorfer, K.R.; Abraham, D.J. Modulation of fibrosis in systemic sclerosis by nitric oxide and antioxidants. Cardiol. Res. Pract. 2012, 2012, 521958. [Google Scholar] [CrossRef]
PICOS Component | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Patients with SSc aged > 18 years | Patients under 18 years |
Intervention | SSc patients with analyzed trace element deficits | SSc patients without any trace element deficiency |
Comparisons | Healthy controls without SSc or SSc patients without trace element deficiency | - |
Outcomes | Mean level of studied trace elements in SSc patients with deficiencies | - |
Study design | Original articles, randomized control trials and observational studies, respectively, such as case–controls or prospective or retrospective cohorts | Editorials, case reports, review articles, published abstracts only |
Trace Element | Author, Level of Evidence | Patients Sample | Trace Element Change Definition | Average Trace Element in SSc Patients (Mean ± SD) | Trace Element Level Change | ||||
---|---|---|---|---|---|---|---|---|---|
Fe | Westerman et al. (1968) [12]—retrospective observational study | 164 SSc | ID—evaluated based on serum Fe, TIBC and MIS | Serum Fe concentrations ≤46 μg/100 cc | 29% SSc—anemia | ||||
Serum TIBC—<299 mg/100 cc | 50% of patients with anemia—Fe store depletion | ||||||||
Frayha et al. (1980) [13]—retrospective observational study | 180 SSc | ID anemia was evaluated based on peripheral blood smear, serum Fe, TIBC and MIS | Not available | 1/3 SSc—ID | |||||
Ruiter et al. (2014) [14]—prospective study | 169 SSc | ID—defined by sTfR levels >28.1 nmol/l | SSc-PH | ID—lower exercise capacity in SSC | |||||
−47 SSc-PH1 | sTfR = 45.1 ± 14.7 nmol/l | ID prevalence—46.1% in SSc-PH versus 16.4% in SSc-nonPH | |||||||
−122 SSc-nonPH | ID survival rate—HR 0.34, 95% CI 0.14, 0.82, p < 0.05 in SSc-PH versus SSc-nonPH patients (HR 0.16, 95% CI 0.02, 1.11, p= 0.06) | ||||||||
SSc-nonPH | |||||||||
sTfR = 34.5 ± 5 nmol/l | |||||||||
El-Hawary et al. [15] (2018)—prospective comparative interventional study | 14 SSc with GAVE | ID proven based on Fe, ferritin levels, transferrin saturation and TIBC | Fe = 43.9 ± 5.9 μg/dl | N/A | |||||
Ferritin = 21.6 ± 3.8 ng/ml | |||||||||
Transferrin saturation = 11.7 ± 4.8% | |||||||||
TIBC = 511.1 ± 18.8 μg/dl | |||||||||
Xanthouli et al. [16] (2023)—retrospective, cohort study | 171 SSc | Ferritin and serum Fe, percentage of hypochromic erythrocytes or red cells (% HRC) | Ferritin = 103.6 ± 128.3 ng/ml | 35% SSc—ID | |||||
Fe = 12.9 ± 6 μmol/L | HRC >2% was associated with lower hemoglobin and Fe levels | ||||||||
Zn, Se, Cu | Lundberg et al. [17] (1992)—case–control study | 30 SSc | Serum levels measurements for Se, Zn and Cu | Se = 0.86 ± 0.24 μmol/L | Se levels significantly lower in SSc versus control | ||||
Cu = 20.9 μmol/L | No difference in Zn and Cu levels | ||||||||
Zn = 14.1 μmol/L | |||||||||
Sun et al. [18] (2020)—case–control study | 66 SSc | Se status: | SSc-PH patients: | Se deficiency: | |||||
30 healthy controls | total serum Se, SELENOP concentrations and GPx3 activity | Serum Se = 91 ± 2 mg/L | -Based on total serum Se: Ssc—14.6% and | ||||||
SELENOP concentrations 3.7 ± 0.8 mg/L | SSc-PH—16% | ||||||||
Total serum Zn | GPX3 278 ± 40 U/L | -Based in SELENOP concentrations: SSc—41.5% and SSc-PH—64% | |||||||
-Based on GPX3 activity—SSc—19.5% and SSc-PH—28%. | |||||||||
Cu status: | Total serum Zn concentration—decreased in SS-PH patients | ||||||||
total serum Cu and CP concentrations | Cu concentration—similar in both groups | ||||||||
CP levels—elevated in SSc group | |||||||||
Fe, Zn, Se, Cu | Tikly et al. [19] (2006)—case–control study | 30 SSc | Serum levels measurements for Se, Fe, Zn and Cu | Fe = 22.7 μg/dL | Decreased Se level in SSC versus control group. | ||||
Zn = 134.1 μg/dL | No difference in Fe, Zn and Cu levels | ||||||||
Se = 82.84 μg/L | |||||||||
Cu = 148.4 μg/dL | |||||||||
Fe, Zn, Se | Marie et al. [20] (2014)—prospective observational cohort study | 80 SSc | Ferritin, Zn and Se serum level measurements | Fructose malabsorbtion | No fructose malabsorbtion | Not reported | |||
−32 fructose malabsorbtion | Ferritin | 82 mmol/L | 735 mmol/L | ||||||
−48 no fructose malabsorbtion | Zn | 11.5 mmol/L | 11.9 mmol/L | ||||||
Se | 0.83 mmol/L | 0.86 mmol/L | |||||||
Fe, Se | Dupont et al. [21] (2018)—retrospective cross-sectional study | 82 SSc | Ferritin and Se serum level measurements | Ferritin = 94 mg/L | From 55 patients with vitamin C deficiency, 19 (35%) also presented Se deficiency | ||||
Se = 61 mg/L | |||||||||
Fe, Cu | Li et al. [15] (2020)—observational case–control study | 51 SSc | Fe and Cu serum level measurements | Fe = 66.20 ± 22.90 μg/dL | Low concentration of serum Cu was detected in SSc patients in comparison with healthy controls | ||||
106 healthy controls | Cu = 12.44 ± 2.86 μmol/L | ||||||||
Lower concentration of serum Cu was detected in SSc patients with pulmonary fibrosis than without pulmonary fibrosis. | |||||||||
Se, Zn | Läubli et al. [22] (2020)—observational, single-center, longitudinal cohort study | 250 SSc | Se and Zn level measurement | Established SSc | Very early SSc | Established SSc | Very early SSc | ||
−176 established SSc | Se | 1.03 μmol/L | 1.07 μmol/L | Se deficiency | 15.60% | 9.10% | |||
−74 very early SSc | Zn | 10.8 μmol/L | 10.8 μmol/L | Zn deficiency | 15% | 10.90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opriș-Belinski, D.; Cobilinschi, C.O.; Caraiola, S.; Ungureanu, R.; Cotae, A.-M.; Grințescu, I.M.; Cobilinschi, C.; Andrei, A.C.; Țincu, R.; Ene, R.; et al. Trace Element Deficiency in Systemic Sclerosis—Too Much Effort for Some Traces? Nutrients 2024, 16, 2053. https://doi.org/10.3390/nu16132053
Opriș-Belinski D, Cobilinschi CO, Caraiola S, Ungureanu R, Cotae A-M, Grințescu IM, Cobilinschi C, Andrei AC, Țincu R, Ene R, et al. Trace Element Deficiency in Systemic Sclerosis—Too Much Effort for Some Traces? Nutrients. 2024; 16(13):2053. https://doi.org/10.3390/nu16132053
Chicago/Turabian StyleOpriș-Belinski, Daniela, Claudia Oana Cobilinschi, Simona Caraiola, Raluca Ungureanu, Ana-Maria Cotae, Ioana Marina Grințescu, Cristian Cobilinschi, Andrei Cosmin Andrei, Radu Țincu, Răzvan Ene, and et al. 2024. "Trace Element Deficiency in Systemic Sclerosis—Too Much Effort for Some Traces?" Nutrients 16, no. 13: 2053. https://doi.org/10.3390/nu16132053
APA StyleOpriș-Belinski, D., Cobilinschi, C. O., Caraiola, S., Ungureanu, R., Cotae, A. -M., Grințescu, I. M., Cobilinschi, C., Andrei, A. C., Țincu, R., Ene, R., & Mirea, L. (2024). Trace Element Deficiency in Systemic Sclerosis—Too Much Effort for Some Traces? Nutrients, 16(13), 2053. https://doi.org/10.3390/nu16132053