Energy Availability and Interstitial Fluid Glucose Changes in Elite Male Japanese Triathletes during Training Camp: A Case Study
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Experimental Overview
2.3. Energy and Macronutrient Intakes
2.4. EEE and EA
2.5. IGC
2.6. Statistical Analyses
3. Results
3.1. Energy and Macronutrients Intakes
3.2. EEE
3.3. EA
3.4. IGC Profiles
3.5. Relationships of Nocturnal IGC with EA and EI
3.6. Relationship between EEE and EI
4. Discussion
4.1. Nocturnal IGC
4.2. Daytime IGC
4.3. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Etxebarria, N.; Mujika, I.; Pyne, D.B. Training and competition readiness in triathlon. Sports 2019, 7, 101. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M. Ketogenic low-CHO, high-fat diet: The future of elite endurance sport? J. Physiol. 2021, 599, 819–843. [Google Scholar] [CrossRef] [PubMed]
- Paris, H.L.; Fulton, T.J.; Wilhite, D.P.; Baranauskas, M.N.; Chapman, R.F.; Mickleborough, T.D. “Train-High Sleep-Low” Dietary Periodization Does Not Alter Ventilatory Strategies During Cycling Exercise. J. Am. Coll. Nutr. 2020, 39, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Jesus, F.; Sousa, M.; Nunes, C.L.; Francisco, R.; Rocha, P.; Minderico, C.S.; Sardinha, L.B.; Silva, A.M. Energy availability over one athletic season: An observational study among athletes from different sports. Int. J. Sport. Nutr. Exerc. Metab. 2022, 32, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Nattiv, A.; Loucks, A.B.; Manore, M.M.; Sanborn, C.F.; Sundgot-Borgen, J.; Warren, M.P.; American College of Sports Medicine. American College of Sports Medicine position stand. The female athlete triad. Med. Sci. Sports Exerc. 2007, 39, 1867–1882. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Ackerman, K.E.; Bailey, D.M.; Burke, L.M.; Constantini, N.; Hackney, A.C.; Heikura, I.A.; Melin, A.; Pensgaard, A.M.; Stellingwerff, T.; et al. 2023 International Olympic Committee’s (IOC) consensus statement on relative energy deficiency in sport (REDs). Br. J. Sports Med. 2023, 57, 1073–1097. [Google Scholar] [CrossRef] [PubMed]
- Torstveit, M.K.; Fahrenholtz, I.L.; Lichtenstein, M.B.; Stenqvist, T.B.; Melin, A.K. Exercise dependence, eating disorder symptoms and biomarkers of Relative Energy Deficiency in Sports (RED-S) among male endurance athletes. BMJ Open Sport Exerc. Med. 2019, 5, e000439. [Google Scholar] [CrossRef] [PubMed]
- Loucks, A.B.; Thuma, J.R. Luteinizing hormone pulsatility is disrupted at a threshold of energy availability in regularly menstruating women. J. Clin. Endocrinol. Metab. 2003, 88, 297–311. [Google Scholar] [CrossRef]
- Flockhart, M.; Nilsson, L.C.; Tais, S.; Ekblom, B.; Apró, W.; Larsen, F.J. Excessive exercise training causes mitochondrial functional impairment and decreases glucose tolerance in healthy volunteers. Cell Metab. 2021, 33, 957–970.e6. [Google Scholar] [CrossRef] [PubMed]
- Ajjan, R.A.; Cummings, M.H.; Jennings, P.; Leelarathna, L.; Rayman, G.; Wilmot, E.G. Accuracy of flash glucose monitoring and continuous glucose monitoring technologies: Implications for clinical practice. Diabetes Vasc. Dis. Res. 2018, 15, 175–184. [Google Scholar] [CrossRef]
- Bowler, A.M.; Whitfield, J.; Marshall, L.; Coffey, V.G.; Burke, L.M.; Cox, G.R. The use of continuous glucose monitors in sport: Possible applications and considerations. Int. J. Sport Nutr. Exerc. Metab. 2022, 33, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Koehler, K.; Hoerner, N.R.; Gibbs, J.C.; Zinner, C.; Braun, H.; De Souza, M.J.; Schaenzer, W. Low energy availability in exercising men is associated with reduced leptin and insulin but not with changes in other metabolic hormones. J. Sports Sci. 2016, 34, 1921–1929. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.R.; Hackney, A.C.; Smith-Ryan, A.; Kucera, K.; Registar-Mihalik, J.; Ondrak, K. Prevalence of low energy availability in competitively trained male endurance athletes. Medicina 2019, 55, 665. [Google Scholar] [CrossRef] [PubMed]
- Jurov, I.; Keay, N.; Rauter, S. Reducing energy availability in male endurance athletes: A randomized trial with a three-step energy reduction. J. Int. Soc. Sports Nutr. 2022, 19, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Standards for Anthropometric Assessment; International Society for Advancement in Kinanthropometry: Murcia, Spain, 2019. [Google Scholar]
- Martin, C.K.; Han, H.; Coulon, S.M.; Allen, H.R.; Champagne, C.M.; Anton, S.D. A novel method to remotely measure food intake of free-living individuals in real time: The remote food photography method. Br. J. Nutr. 2009, 101, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.J. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am. J. Clin. Nutr. 1980, 33, 2372–2374. [Google Scholar] [CrossRef]
- Thompson, J.; Manore, M.M. Predicted and measured resting metabolic rate of male and female endurance athletes. J. Am. Diet. Assoc. 1996, 96, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C., Jr.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. Compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Beermann, B.L.; Lee, D.G.; Almstedt, H.C.; McCormack, W.P. Nutritional intake and energy availability of collegiate distance runners. J. Am. Coll. Nutr. 2020, 39, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Loucks, A.B. Energy balance and body composition in sports and exercise. J. Sports Sci. 2004, 22, 1–14. [Google Scholar] [CrossRef]
- Fokkert, M.J.; van Dijk, P.R.; Edens, M.A.; Abbes, S.; de Jong, D.; Slingerland, R.J.; Bilo, H.J. Performance of the FreeStyle Libre Flash glucose monitoring system in patients with type 1 and 2 diabetes mellitus. BMJ Open. Diabetes. Res. Care 2017, 5, e000320. [Google Scholar] [CrossRef] [PubMed]
- Akintola, A.A.; Noordam, R.; Jansen, S.W.; de Craen, A.J.; Ballieux, B.E.; Cobbaert, C.M.; Mooijaart, S.P.; Pijl, H.; Westendorp, R.G.; van Heemst, D. Accuracy of continuous glucose monitoring measurements in normo-glycemic individuals. PLoS ONE 2015, 10, e0139973. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.L.; DE Souza, M.J.; Wagstaff, D.A.; Williams, N.I. Menstrual disruption with exercise is not linked to an energy availability threshold. Med. Sci. Sports Exerc. 2018, 50, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Langan-Evans, C.; Germaine, M.; Artukovic, M.; Artukovic, M.; Oxborough, D.L.; Areta, J.L.; Close, G.L.; Morton, J.P. The psychological and physiological consequences of low energy availability in a male combat sport athlete. Med. Sci. Sports Exerc. 2021, 53, 673–683. [Google Scholar] [CrossRef]
- Fagerberg, P. Negative consequences of low energy availability in natural male bodybuilding: A review. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 385–402. [Google Scholar] [CrossRef]
- De Souza, M.J.; Koltun, K.J.; Williams, N.I. The role of energy availability in reproductive function in the female athlete Triad and extension of its effects to men: An initial working model of a similar syndrome in male athletes. Sports Med. 2019, 49, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.; Pretty, C.G.; Desaive, T.; Chase, J.G. Blood glucose levels of subelite athletes during 6 days of free living. J. Diabetes Sci. Technol. 2016, 10, 1335–1343. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Jentjens, R.L.; Moseley, L. Nutritional considerations in triathlon. Sports Med. 2005, 35, 163–181. [Google Scholar] [CrossRef] [PubMed]
- Heikura, I.A.; Quod, M.; Strobel, N.; Palfreeman, R.; Civil, R.; Burke, L.M. Alternate-day low energy availability during spring classics in professional cyclists. Int. J. Sports Physiol. Perform. 2019, 14, 1233–1243. [Google Scholar] [CrossRef]
- Sylow, L.; Kleinert, M.; Richter, E.A.; Jensen, T.E. Exercise-stimulated glucose uptake-regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 2017, 13, 133–148. [Google Scholar] [CrossRef]
- Hargreaves, M.; Spriet, L.L. Exercise Metabolism: Fuels for the Fire. Cold Spring Harb. Perspect. Med. 2018, 8, a029744. [Google Scholar] [CrossRef] [PubMed]
- Marliss, E.B.; Vranic, M. Intense exercise has unique effects on both insulin release and its roles in glucoregulation: Implications for diabetes. Diabetes 2002, 51, S271–S283. [Google Scholar] [CrossRef] [PubMed]
- Silverman, H.G.; Mazzeo, R.S. Hormonal responses to maximal and submaximal exercise in trained and untrained men of various ages. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1996, 51, B30–B37. [Google Scholar] [CrossRef] [PubMed]
- Bloom, S.R.; Johnson, R.H.; Park, D.M.; Rennie, M.J.; Sulaiman, W.R. Differences in the metabolic and hormonal response to exercise between racing cyclists and untrained individuals. J. Physiol. 1976, 258, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Sengoku, Y.; Nakamura, K.; Ogata, H.; Nabekura, Y.; Nagasaka, S.; Tokuyama, K. Continuous glucose monitoring during a 100-km race: A case study in an elite ultramarathon runner. Int. J. Sports Physiol. Perform. 2015, 10, 124–127. [Google Scholar] [CrossRef]
- Dela, F.; Mikines, K.J.; von Linstow, M.; Galbo, H. Twenty-four-hour profile of plasma glucose and glucoregulatory hormones during normal living conditions in trained and untrained men. J. Clin. Endocrinol. Metab. 1991, 73, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.L.; Garabello, G.; Pugh, J.; Morton, J.; Langan-Evans, C.; Louis, J.; Borgersen, R.; Areta, J.L. Patterns of energy availability of free-living athletes display day-to-day variability that is not reflected in laboratory-based protocols: Insights from elite male road cyclists. J. Sports Sci. 2022, 40, 1849–1856. [Google Scholar] [CrossRef]
- Koehler, K. Low resting metabolic rate in exercise associated amenorrhea is no due to a reduced proportion of highly active metabolic tissue compartments. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E480–E487. [Google Scholar] [CrossRef]
- Heikura, I.A.; Stellingwerff, T.; Areta, J.L. Low energy availability in female athletes: From the lab to the field. Eur. J. Sport. Sci. 2022, 22, 709–719. [Google Scholar] [CrossRef]
- Vrolix, R.; Mensink, R.P. Variability of the glycemic response to single food products in healthy subjects. Contemp. Clin. Trials 2010, 31, 5–11. [Google Scholar] [CrossRef]
- Kondo, S.; Tanisawa, K.; Suzuki, K.; Terada, S.; Higuchi, M. Preexercise carbohydrate ingestion and transient hypoglycemia: Fasting versus feeding. Med. Sci. Sports Exerc. 2019, 51, 168–173. [Google Scholar] [CrossRef] [PubMed]
Day | Energy | Carbohydrate | Protein | Fat | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(kcal) | (g) | (g/kgBW) | for Energy | (g) | (g/kgBW) | for Energy | (g) | for Energy | ||
Subject 1 | A1 | 3808 | 509.5 | 8.8 | 53% | 140.9 | 2.4 | 15% | 134.0 | 32% |
A2 | 4855 | 605.6 | 10.5 | 50% | 190.2 | 3.3 | 16% | 185.8 | 34% | |
A3 | 4693 | 581.5 | 10.1 | 50% | 170.0 | 3.0 | 14% | 187.4 | 36% | |
A4 | 3740 | 425.0 | 7.4 | 46% | 162.2 | 2.8 | 17% | 154.6 | 37% | |
B1 | 3925 | 484.7 | 8.5 | 49% | 144.7 | 2.5 | 15% | 156.4 | 36% | |
B2 | 4124 | 555.6 | 9.7 | 54% | 162.3 | 2.8 | 16% | 139.1 | 30% | |
B3 | 4439 | 614.9 | 10.8 | 56% | 136.7 | 2.4 | 12% | 159.2 | 32% | |
B4 | 3554 | 456.7 | 8.0 | 51% | 134.9 | 2.4 | 15% | 131.9 | 34% | |
Subject 2 | A1 | 4499 | 635.0 | 9.6 | 56% | 177.4 | 2.7 | 16% | 138.8 | 28% |
A2 | 5357 | 707.7 | 10.7 | 53% | 229.3 | 3.5 | 17% | 178.8 | 30% | |
A3 | 5286 | 657.1 | 10.0 | 50% | 220.0 | 3.3 | 17% | 197.5 | 33% | |
A4 | 5345 | 668.4 | 10.1 | 50% | 221.4 | 3.4 | 17% | 198.4 | 33% | |
B1 | 5238 | 708.8 | 11.0 | 54% | 201.5 | 3.1 | 15% | 177.4 | 31% | |
B2 | 4869 | 633.4 | 9.8 | 52% | 178.3 | 2.8 | 15% | 180.2 | 33% | |
B3 | 4808 | 628.7 | 9.7 | 52% | 159.9 | 2.5 | 13% | 183.7 | 35% | |
B4 | 4428 | 606.2 | 9.4 | 55% | 152.0 | 2.4 | 14% | 155.0 | 31% | |
Subject 3 | A1 | 4902 | 769.3 | 12.3 | 63% | 181.1 | 2.9 | 15% | 122.3 | 22% |
A2 | 5834 | 890.4 | 14.2 | 61% | 235.0 | 3.7 | 16% | 148.0 | 23% | |
A3 | 5539 | 842.4 | 13.4 | 61% | 208.6 | 3.3 | 15% | 148.2 | 24% | |
A4 | 5727 | 823.4 | 13.1 | 58% | 218.2 | 3.5 | 15% | 173.4 | 27% | |
B1 | 4229 | 744.0 | 11.9 | 70% | 115.5 | 1.9 | 11% | 87.9 | 19% | |
B2 | 4526 | 630.6 | 10.1 | 56% | 157.6 | 2.5 | 14% | 152.6 | 30% | |
B3 | 4959 | 759.1 | 12.2 | 61% | 155.4 | 2.5 | 13% | 144.5 | 26% | |
B4 | 4914 | 824.2 | 13.2 | 67% | 160.3 | 2.6 | 13% | 108.4 | 20% | |
Subject 4 | A1 | 4578 | 607.4 | 9.1 | 53% | 209.0 | 3.1 | 18% | 145.8 | 29% |
A2 | 6004 | 652.9 | 9.8 | 44% | 244.8 | 3.7 | 16% | 268.1 | 40% | |
A3 | 4531 | 475.5 | 7.1 | 42% | 209.3 | 3.1 | 18% | 199.1 | 40% | |
A4 | 3722 | 365.6 | 5.5 | 39% | 167.5 | 2.5 | 18% | 176.6 | 43% | |
Subject 5 | B1 | 3935 | 478.2 | 6.9 | 49% | 134.9 | 1.9 | 14% | 164.7 | 37% |
B2 | 4133 | 585.2 | 8.4 | 57% | 135.0 | 1.9 | 13% | 139.1 | 30% | |
B3 | 4389 | 632.1 | 9.1 | 58% | 136.6 | 2.0 | 12% | 146.0 | 30% | |
B4 | 3491 | 498.1 | 7.2 | 57% | 113.3 | 1.6 | 13% | 116.2 | 30% |
Subject | 1 | 2 | 3 | 4 | 5 | ||||
---|---|---|---|---|---|---|---|---|---|
Days of Measurement | A1–A4 | B1–B4 | A1–A4 | B1–B4 | A1–A4 | B1–B4 | A1–A4 | B1–B4 | |
Mean EEE (kcal/day) | Total | 2338 ± 866 (1169–3332) | 2235 ± 881 (902–3080) | 2692 ± 996 (1348–3835) | 2686 ± 440 (1938–3068) | 1989 ± 267 (1615–2332) | 2489 ± 1148 (513–3342) | 2584 ± 1198 (819–3874) | 2903 ± 464 (2114–3307) |
Swimming | 795 ± 192 | 547 ± 226 | 916 ± 218 | 840 ± 115 | 849 ± 212 | 659 ± 92 | 922 ± 226 | 905 ± 124 | |
Cycling | 912 ± 651 | 1089 ± 788 | 1051 ± 748 | 1242 ± 692 | 536 ± 114 | 1169 ± 752 | 1015 ± 812 | 1340 ± 746 | |
Running | 632 ± 130 | 564 ± 283 | 726 ± 151 | 605 ± 173 | 604 ± 80 | 661 ± 424 | 589 ± 362 | 658 ± 196 | |
Mean DE (h/day) | Total | 4.34 ± 1.12 (3.53–5.73) | 4.31 ± 1.50 (1.85–5.85) | 4.28 ± 1.19 (2.75–5.73) | 4.04 ± 0.24 (3.63–4.20) | 3.36 ± 0.51 (2.73–4.08) | 3.56 ± 1.53 (0.93–4.68) | 4.21 ± 1.28 (2.48–5.73) | 3.99 ± 0.32 (3.43–4.20) |
Swimming | 1.34 ± 0.34 | 1.11 ± 0.22 | 1.41 ± 0.29 | 1.31 ± 0.09 | 1.36 ± 0.34 | 1.04 ± 0.17 | 1.34 ± 0.34 | 1.31 ± 0.09 | |
Cycling | 1.72 ± 0.87 | 1.98 ± 1.42 | 1.72 ± 0.87 | 1.83 ± 0.66 | 1.02 ± 0.15 | 1.48 ± 1.12 | 1.59 ± 1.05 | 1.83 ± 0.66 | |
Running | 1.27 ± 0.25 | 1.07 ± 0.53 | 1.15 ± 0.22 | 0.91 ± 0.36 | 0.98 ± 0.09 | 0.83 ± 0.51 | 0.90 ± 0.56 | 0.86 ± 0.28 |
Subject 1 | Day | A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | ||
Daytime (6 a.m.–9 p.m.) | Mean ± SD (mg/dL) | 147 ± 18 | 151 ± 22 | 145 ± 16 | 141 ± 16 | 120 ± 10 | 118 ± 13 | 112 ± 15 | 109 ± 11 | ||
CV (%) | 12.0 | 14.4 | 11.1 | 11.6 | 8.1 | 11.4 | 13.3 | 10.5 | |||
Maximum (mg/dL) | 197 | 197 | 178 | 178 | 151 | 160 | 153 | 140 | |||
Minimum (mg/dL) | 118 | 111 | 114 | 105 | 103 | 89 | 88 | 84 | |||
≧110 mg/dL (%) | 100 | 100 | 100 | 97 | 82 | 71 | 56 | 46 | |||
≧140 mg/dL (%) | 62 | 71 | 59 | 56 | 2 | 5 | 3 | 2 | |||
Nocturnal time (11 p.m.–6 a.m.) | Mean ± SD (mg/dL) | 122 ± 7 | 123 ± 8 | 120 ± 8 | 118 ± 9 | 102 ± 4 | 95 ± 2 | 107 ± 5 | 95 ± 5 | ||
Minimum (mg/dL) | 110 | 112 | 105 | 106 | 96 | 91 | 100 | 87 | |||
≧100 mg/dL (%) | 100 | 100 | 100 | 100 | 72 | 0 | 100 | 14 | |||
Subject 2 | Day | A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | ||
Daytime (6 a.m.–9 p.m.) | Mean ± SD (mg/dL) | 138 ± 18 | 136 ± 17 | 134 ± 18 | 131 ± 17 | 136 ± 12 | 132 ± 18 | 127 ± 15 | 129 ± 16 | ||
CV (%) | 13.1 | 12.2 | 13.7 | 13.2 | 9.1 | 13.4 | 11.8 | 12.1 | |||
Maximum (mg/dL) | 189 | 175 | 199 | 188 | 161 | 176 | 164 | 179 | |||
Minimum (mg/dL) | 110 | 102 | 101 | 104 | 103 | 106 | 97 | 105 | |||
≧110 mg/dL (%) | 100 | 95 | 95 | 87 | 98 | 92 | 89 | 89 | |||
≧140 mg/dL (%) | 38 | 46 | 38 | 28 | 39 | 33 | 18 | 28 | |||
Nocturnal time (11 p.m.–6 a.m.) | Mean ± SD (mg/dL) | 111 ± 8 | 107 ± 6 | 105 ± 7 | 112 ± 7 | 112 ± 7 | 107 ± 7 | 109 ± 10 | 97 ± 3 | ||
Minimum (mg/dL) | 100 | 96 | 96 | 102 | 98 | 98 | 97 | 93 | |||
≧100 mg/dL (%) | 100 | 90 | 83 | 100 | 97 | 76 | 76 | 24 | |||
Subject 3 | Day | A1 | A2 | A3 | A4 | B1 | B2 | B3 | B4 | ||
Daytime (6 a.m.–9 p.m.) | Mean ± SD (mg/dL) | 142 ± 15 | 143 ± 19 | 143 ± 20 | 146 ± 20 | 128 ± 18 | 122 ± 16 | 121 ± 18 | 122 ± 16 | ||
CV (%) | 10.9 | 13.1 | 14.0 | 13.7 | 13.7 | 12.9 | 14.6 | 13.3 | |||
Maximum (mg/dL) | 181 | 187 | 189 | 184 | 158 | 161 | 159 | 166 | |||
Minimum (mg/dL) | 113 | 99 | 101 | 107 | 76 | 97 | 78 | 83 | |||
≧110 mg/dL (%) | 100 | 93 | 89 | 98 | 89 | 72 | 74 | 69 | |||
≧140 mg/dL (%) | 53 | 64 | 61 | 57 | 31 | 13 | 13 | 10 | |||
Nocturnal time (11 p.m.–6 a.m.) | Mean ± SD (mg/dL) | 105 ± 10 | 113 ± 9 | 109 ± 11 | 113 ± 10 | 98 ± 4 | 108 ± 11 | 99 ± 6 | 99 ± 5 | ||
Minimum (mg/dL) | 91 | 97 | 99 | 102 | 92 | 97 | 92 | 92 | |||
≧100 mg/dL (%) | 59 | 97 | 97 | 100 | 21 | 86 | 45 | 62 | |||
Subject 4 | Day | A1 | A2 | A3 | A4 | ||||||
Daytime (6 a.m.–9 p.m.) | Mean ± SD (mg/dL) | 149 ± 24 | 141 ± 23 | 127 ± 22 | 127 ± 23 | ||||||
CV (%) | 16.0 | 16.0 | 17.5 | 18.1 | |||||||
Maximum (mg/dL) | 243 | 194 | 206 | 197 | |||||||
Minimum (mg/dL) | 110 | 105 | 98 | 98 | |||||||
≧110 mg/dL (%) | 100 | 98 | 85 | 77 | |||||||
≧140 mg/dL (%) | 57 | 48 | 21 | 21 | |||||||
Nocturnal time (11 p.m.–6 a.m.) | Mean ± SD (mg/dL) | 107 ± 6 | 109 ± 8 | 98 ± 6 | 103 ± 4 | ||||||
Minimum (mg/dL) | 99 | 99 | 90 | 98 | |||||||
≧100 mg/dL (%) | 90 | 97 | 24 | 76 | |||||||
Subject 5 | Day | B1 | B2 | B3 | B4 | ||||||
Daytime (6 a.m.–9 p.m.) | Mean ± SD (mg/dL) | 114 ± 20 | 121 ± 20 | 114 ± 16 | 116 ± 16 | ||||||
CV (%) | 17.2 | 16.4 | 14.4 | ||||||||
Maximum (mg/dL) | 174 | 161 | 165 | 168 | |||||||
Minimum (mg/dL) | 76 | 85 | 93 | 89 | |||||||
≧110 mg/dL (%) | 51 | 71 | 53 | 71 | |||||||
≧140 mg/dL (%) | 15 | 20 | 7 | 7 | |||||||
Nocturnal time (11 p.m.–6 a.m.) | Mean ± SD (mg/dL) | 85 ± 9 | 89 ± 9 | 88 ± 6 | 87 ± 6 | ||||||
Minimum (mg/dL) | 71 | 76 | 77 | 78 | |||||||
≧100 mg/dL (%) | 10 | 14 | 7 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiromatsu, C.; Goto, K. Energy Availability and Interstitial Fluid Glucose Changes in Elite Male Japanese Triathletes during Training Camp: A Case Study. Nutrients 2024, 16, 2048. https://doi.org/10.3390/nu16132048
Hiromatsu C, Goto K. Energy Availability and Interstitial Fluid Glucose Changes in Elite Male Japanese Triathletes during Training Camp: A Case Study. Nutrients. 2024; 16(13):2048. https://doi.org/10.3390/nu16132048
Chicago/Turabian StyleHiromatsu, Chiyori, and Kazushige Goto. 2024. "Energy Availability and Interstitial Fluid Glucose Changes in Elite Male Japanese Triathletes during Training Camp: A Case Study" Nutrients 16, no. 13: 2048. https://doi.org/10.3390/nu16132048
APA StyleHiromatsu, C., & Goto, K. (2024). Energy Availability and Interstitial Fluid Glucose Changes in Elite Male Japanese Triathletes during Training Camp: A Case Study. Nutrients, 16(13), 2048. https://doi.org/10.3390/nu16132048