Antithrombotic Effect of Oil from the Pulp of Bocaiúva—Acrocomia aculeata (Jacq.) Lodd. ex Mart. (Arecaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining the Oil from the Pulp of A. aculeata (AAPO)
2.2. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.3. Blood Collection and Obtaining Plasma
2.4. Toxicity Assays
2.4.1. Evaluation of In Vitro Toxicity by the Trypan Blue Exclusion Test
2.4.2. Evaluation of In Vivo Systemic Toxicity in Galleria Mellonella Model
2.5. Determination of Platelet Aggregation
2.6. Evaluation of Blood Coagulation
2.7. Platelet Activation
2.7.1. Expression of Platelet Surface P-Selectin
2.7.2. Assessment of Platelet Activation by Intraplatelet Content of ROS
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chemical Analyses of AAPO
3.2. In Vitro and In Vivo Toxicity
3.3. Effect of AAPO on Human Platelet Aggregation
3.4. Effect of AAPO on Blood Coagulation
3.5. Platelet Activation
3.5.1. Effects of AAPO on Platelet Surface P-Selectin Expression
3.5.2. Content of ROS Produced by Platelets after Exposure to AAPO
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khodadi, E. Platelet function in cardiovascular disease: Activation of molecules and activation by molecules. Cardiovasc. Toxicol. 2019, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- van der Meijden, P.E.; Heemskerk, J.W. Platelet biology and functions: New concepts and clinical perspectives. Nat. Rev. Cardiol. 2018, 16, 166–179. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Arthur, J.F.; Gardiner, E.F.; Andrews, R.K.; Zeng, L.; Xu, K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol. 2018, 14, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Montenont, E.; Echagarruga, C.; Allen, N.; Araldi, E.; Suarez, Y.; Berger, J.S. Platelet WDR1 suppresses platelet activity and is associated with cardiovascular disease. Blood 2016, 128, 2033–2042. [Google Scholar] [CrossRef] [PubMed]
- Chan, N.; Sobieraj-Teague, M.; Eikelboom, J.W. Direct oral anticoagulants: Evidence and unresolved issues. Lancet 2020, 396, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Melnikova, I. The anticoagulants market. Nat. Rev. Drug Discov. 2009, 8, 353. [Google Scholar] [CrossRef]
- Calixto, J.B. The role of natural products in modern drug discovery. An. Acad. Bra. Ciênc. 2019, 91, e20190105. [Google Scholar] [CrossRef]
- Borges, C.E.; Santos, J.C.B.D.; Evaristo, A.B.; da Cunha, T.G.; Von dos Santos Veloso, R.; Barroso, G.M.; da Silva, R.S. Distribution and future projection of potential cultivation areas for Acrocomia aculeata (Arecaceae) worldwide: The emerging energy culture of the tropics. Theor. Appl. Climatol. 2021, 146, 1069–1078. [Google Scholar] [CrossRef]
- Ciconini, G.; Favaro, S.P.; Roscoe, R.; Miranda, C.H.B.; Tapeti, C.F.; Miyahira, M.A.M.; Bearari, L.; Galvani, F.; Borsato, A.V.; Colnago, L.A.; et al. Biometry and oil contents of Acrocomia aculeata fruits from the Cerrados and Pantanal biomes in Mato Grosso do Sul, Brazil. Ind. Crop. Prod. 2013, 45, 208–214. [Google Scholar] [CrossRef]
- Souza, F.G.; Araújo, F.F.; Farias, D.P.; Zanotto, A.W.; Neri-Numa, I.A.; Pastore, G.M. Brazilian fruits of Arecaceae family: An overview of some representatives with promising food, therapeutic and industrial applications. Food Res. Int. 2020, 138, 109690. [Google Scholar] [CrossRef]
- Costa, G.L.A.; Buccini, D.F.; Arruda, A.L.A.; Favaro, S.P.; Moreno, S.E. Phytochemical profile, anti-inflammatory, antimutagenic and antioxidant properties of Acrocomia aculeata (Jacq.) Lodd. pulp oil. Food Sci. Technol. 2020, 40, 963–971. [Google Scholar] [CrossRef]
- Nunes, Â.A.; Buccini, D.F.; Jaques, J.A.S.; Portugal, L.C.; Guimarães, R.C.A.; Favaro, S.P.; Caldas, R.A.; Carvalho, C.M.E. Effect of Acrocomia aculeata kernel oil on adiposity in type 2 diabetic rats. Plant Foods Hum. Nutr. 2017, 73, 61–67. [Google Scholar] [CrossRef]
- Jacobowski, A.C.; Parisotto, E.B.; Aydos, L.R.; Serafim de Souza, R.; Viveros, S.; Colín-Gonzalez, A.L.; Silva, I.S.; Sanjinez-Argandoña, E.J.; Wilhelm Filho, D.; Angel, A.S.; et al. Neuroprotective Effects of Acrocomia aculeata Pulp Oil Microcapsules on Rats Subjected to Chronic Stress. J. Med. Food 2021, 24, 1068–1075. [Google Scholar] [CrossRef]
- Sant’ Ana, C.T.; Agrizzi Verediano, T.; Grancieri, M.; Toledo, R.C.L.; Tako, E.; Costa, N.M.B.; Martino, H.S.D.; de Barros, F.A.R. Macauba (Acrocomia aculeata) pulp oil prevents adipogenesis, inflammation and oxidative stress in mice fed a high-fat diet. Nutrients 2023, 15, 1252. [Google Scholar] [CrossRef]
- Monteiro-Alfredo, T.; Oliveira, S.; Amaro, A.; Rosendo-Silva, D.; Antunes, K.; Pires, A.S.; Teixo, R.; Abrantes, A.M.; Botelho, M.F.; Castelo-Branco, M.; et al. Hypoglycaemic and antioxidant properties of Acrocomia aculeata (Jacq.) Lodd ex Mart. extract are associated with better vascular function of Type 2 diabetic rats. Nutrients 2021, 13, 2856. [Google Scholar] [CrossRef] [PubMed]
- Traesel, G.K.; de Souza, J.C.; de Barros, A.L.; Souza, M.A.; Schmitz, W.O.; Muzzi, R.M.; Oesterreich, S.A.; Arena, A.C. Acute and subacute (28 days) oral toxicity assessment of the oil extracted from Acrocomia aculeata pulp in rats. Food Chem. Toxicol. 2014, 74, 320–325. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Lopez, E.; Ortega-Liébana, M.D.C.; Salido, S.; Salido, G.M.; Altarejos, J.; Rosado, J.A.; Redondo, P.C. Evaluation of the antiaggregant activity of ascorbyl phenolic esters with antioxidant properties. J. Physiol. Biochem. 2015, 71, 415–434. [Google Scholar] [CrossRef]
- Megaw, J.; Thompson, T.P.; Lafferty, R.A.; Gilmore, B.F. Galleria mellonella as a novel in vivo model for assessment of the toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids. Chemosphere 2015, 139, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.S.; de Souza, A.C.S.; Soares, D.C.L.; Lima, C.C.; de Moraes, A.C.R.; Gkionis, S.V.; Arenhart, T.; Rodrigues, L.G.G.; Ferreira, S.R.S.; Pedrosa, R.C.; et al. Chemical profile, antimicrobial potential, and antiaggregant activity of supercritical fluid extract from Agaricus bisporus. Chem. Pap. 2022, 76, 6205–6214. [Google Scholar] [CrossRef]
- Merten, M.; Thiagarajan, P. P-Selectin expression on platelets determines size and stability of platelet aggregates. Circulation 2000, 102, 1931–1936. [Google Scholar] [CrossRef] [PubMed]
- Reiniers, M.J.; van Golen, R.F.; Bonnet, S.; Broekgaarden, M.; van Gulik, T.M.; Egmond, M.R.; Heger, M. Preparation and practical applications of 2′,7′-dichlorodihydrofluorescein in redox assays. Anal. Chem. 2017, 89, 3853–3857. [Google Scholar] [CrossRef]
- Lescano, C.H.; Oliveira, I.P.; Silva, L.R.; Baldivia, D.S.; Sanjinez-Argandoña, E.J.; Arruda, E.J.; Moraes, I.C.F.; Lima, F.F. Nutrients content, characterization and oil extraction from Acrocomia aculeata (Jacq.) Lodd. fruits. Afr. J. Food Sci. 2015, 9, 113–119. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, W.; Lai, Y.; Zhang, B.; Zhang, D. Edible plant oil: Global status, health issues, and perspectives. Front. Plant Sci. 2020, 11, 1315. [Google Scholar] [CrossRef]
- del Río, J.C.; Evaristo, A.B.; Marques, G.; Martín-Ramos, P.; Martín-Gil, J.; Gutiérrez, A. Chemical composition and thermal behavior of the pulp and kernel oils from macauba palm (Acrocomia aculeata) fruit. Ind. Crop. Prod. 2016, 84, 294–304. [Google Scholar] [CrossRef]
- Hiane, P.A.; Ramos, F.M.M.; Ramos, M.I.L.; Macedo, M.L.R. Bocaiúva, Acrocomia aculeata (Jacq.) Lodd., pulp and kernel oils: Characterization and fatty acid composition. Braz. J. Food Technol. 2005, 8, 256–259. [Google Scholar]
- Perdomo, L.; Beneit, N.; Otero, Y.F.; Escribano, Ó.; Díaz-Castroverde, S.; Gómez-Hernández, A.; Benito, M. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc. Diabetol. 2015, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Palomino, O.; Giordani, V.; Chowen, J.; Fernández-Alfonso, M.; Goya, L. Physiological doses of oleic and palmitic acids protect human endothelial cells from oxidative stress. Molecules 2022, 27, 5217. [Google Scholar] [CrossRef] [PubMed]
- Vesga-Jiménez, D.J.; Martin, C.; Barreto, G.E.; Aristizábal-Pachón, A.F.; Pinzón, A.; González, J. Fatty Acids: An insight into the pathogenesis of neurodegenerative diseases and therapeutic potential. Int. J. Mol. Sci. 2022, 23, 2577. [Google Scholar] [CrossRef]
- Micera, M.; Botto, A.; Geddo, F.; Antoniotti, S.; Bertea, C.M.; Levi, R.; Gallo, M.P.; Querio, G. Squalene: More than a step toward sterols. Antioxidants 2020, 9, 688. [Google Scholar] [CrossRef]
- Alves, N.F.B.; Queiroz, T.M.; Travassos, R.A.; Magnani, M.; Braga, V.A. Acute treatment with lauric acid reduces blood pressure and oxidative stress in spontaneously hypertensive rats. Basic Clin. Pharmacol. Toxicol. 2017, 120, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Cansız, D.; Ünal, İ.; Üstündağ, Ü.V.; Alturfan, A.A.; Altinoz, M.A.; Elmacı, İ.; Emekli-Alturfan, E. Caprylic acid ameliorates rotenone induced inflammation and oxidative stress in the gut-brain axis in Zebrafish. Mol. Biol. Rep. 2021, 48, 5259–5273. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Luo, Y.; Wang, L.; Li, Y.; Shi, Y.; Cui, Y.; Xue, M. Acute and subacute toxicity of ethanol extracts from Salvia przewalskii Maxim in rodents. J. Ethnopharmacol. 2010, 131, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wu, Z.; Wang, Y.; Kai, G.; Singor Njateng, G.S.; Cai, S.; Cao, J.; Cheng, G. Acute and subacute toxicity evaluation of ethanol extract from aerial parts of Epigynum auritum in mice. Food Chem. Toxicol. 2019, 131, 110534. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S.K.; Azharuddin, M.; Dasgupta, A.K.; Ganguli, B.; SenRoy, S.; Patra, H.K.; Deb, S. Probing ADP induced aggregation kinetics during platelet-nanoparticle interactions: Functional dynamics analysis to rationalize safety and benefits. Front. Bioeng. Biotechnol. 2019, 7, 163. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, M. The platelet P2 receptors. In Platelets; Academic Press: Cambridge, MA, USA, 2019; pp. 259–277. [Google Scholar] [CrossRef]
- Martin, A.C.; Zlotnik, D.; Bonete, G.P.; Baron, E.; Decouture, B.; Belleville-Rolland, T.; Le Bonniec, B.; Poirault-Chassac, S.; Alessi, M.C.; Gaussem, P.; et al. Epinephrine restores platelet functions inhibited by ticagrelor: A mechanistic approach. Eur. J. Pharmacol. 2020, 866, 172798. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, E.; Rodríguez-Pérez, W.; Guzmán, L.; Alarcón, M.; Navarrete, S.; Forero-Doria, O.; Palomo, I. Mauritia flexuosa presents in vitro and in vivo antiplatelet and antithrombotic Activities. Evi. Based Complement. Alternat. Med. 2013, 2013, 653257. [Google Scholar] [CrossRef]
- Yang, Q.; Alemany, R.; Casas, J.; Kitajka, K.; Lanier, S.M.; Escribá, P.V. Influence of the membrane lipid structure on signal processing via g protein-coupled receptors. Mol. Pharmacol. 2005, 68, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hu, S.; Ma, Y.; Zhao, B.; Yang, W.; Lu, Y.; Li, P.; Du, S. Novel Pheretima guillelmi-derived antithrombotic protein DPf3: Identification, characterization, in vitro evaluation and antithrombotic mechanisms investigation. Int. J. Biol. Macromol. 2020, 154, 545–556. [Google Scholar] [CrossRef]
- Azevedo, A.P.; Farias, J.C.; Costa, G.C.; Ferreira, S.C.; Aragão-Filho, W.C.; Sousa, P.R.; Pinheiro, M.T.; Maciel, M.C.; Silva, L.A.; Lopes, A.S.; et al. Anti-thrombotic effect of chronic oral treatment with Orbignya phalerata Mart. J. Ethnopharmacol. 2007, 111, 155–159. [Google Scholar] [CrossRef]
- Purdy, M.; Obi, A.; Myers, D.; Wakefield, T. P- and E-selectin in venous thrombosis and non-venous pathologies. J. Thromb. Haemost. 2022, 20, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Sun, X.; Liu, S.; Yang, P.; Lin, J.; Feng, J.; Cruz, M.A.; Dong, J.F.; Fang, Y.; Wu, J. Shear stress accumulation enhances von willebrand factor-induced platelet P-Selectin translocation in a PI3K/Akt pathway-dependent manner. Front. Cell Dev. Biol. 2021, 9, 642108. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yang, F.; Zhou, W.; Xiao, N.; Luo, M.; Tang, Z. The initiation of oxidative stress and therapeutic strategies in wound healing. Biomed. Pharmacother. 2023, 157, 114004. [Google Scholar] [CrossRef]
- Hosseini, E.; Solouki, A.; Roudsari, Z.O.; Kargar, F.; Ghasemzadeh, M. Reducing state attenuates ectodomain shedding of GPVI while restoring adhesion capacities of stored platelets: Evidence addressing the controversy around the effects of redox condition on thrombosis. J. Thromb. Thrombolysis 2020, 50, 123–134. [Google Scholar] [CrossRef] [PubMed]
Peak | 1RT (min) | Compound | Area (%) | 2RI |
---|---|---|---|---|
1 | 6.66 | Caproic acid | 2.00 | 991 |
2 | 6.87 | β-Myrcene | 0.27 | 1002 |
3 | 8.05 | β-phellandrene | 1.73 | 1034 |
4 | 13.58 | Caprylic acid | 3.09 | 1186 |
5 | 14.21 | Ethyl octanoate | 0.16 | 1200 |
6 | 21.36 | Capric acid | 0.38 | 1375 |
7 | 29.24 | Lauric acid | 3.58 | 1573 |
8 | 36.35 | Myristic acid | 1.01 | 1768 |
9 | 39.82 | Isobutyl phthalate | 0.30 | 1870 |
10 | 41.47 | β-Springene | 0.55 | 1920 |
11 | 42.32 | Palmitoleic acid | 1.45 | 1947 |
12 | 43.16 | Palmitic acid | 21.51 | 1973 |
13 | 43.91 | Ethyl palmitate | 0.28 | 1996 |
14 | 49.19 | Linoleic acid | 0.24 | 2137 |
15 | 48.66 | Oleic acid | 51.25 | 2154 |
16 | 49.13 | Ethyl oleate | 8.45 | 2169 |
17 | 61.15 | Hexacosane | 0.77 | 2619 |
18 | 62.76 | Heptacosane | 0.14 | 2700 |
19 | 65.20 | Squalene | 2.37 | 2831 |
20 | 66.37 | Nonacosane | 0.46 | 2901 |
Sample 1 | Blood Coagulation Test 2 | |||
---|---|---|---|---|
PT | aPTT | |||
Time (s) | IRN 3 | Time (s) | Ratio 4 | |
Normal control (Standard) | 14 ± 0.32 | - | 28 ± 2.20 | - |
Negative control | 15 ± 0.22 | 1.1 | 26 ± 1.53 | 0.9 |
AAPO (50 μg/mL) | 16 ± 2.63 | 1.2 | 30 ± 0.62 | 1.1 |
AAPO (100 μg/mL) | 17 ± 1.57 | 1.2 | 28 ± 1.24 | 1.0 |
AAPO (200 μg/mL) | 17 ± 1.22 | 1.2 | 26 ± 3.93 | 0.9 |
AAPO (400 μg/mL) | 17± 1.17 | 1.3 | 27 ± 1.12 | 1.0 |
AAPO (800 μg/mL) | 16 ± 0.76 | 1.2 | 24 ± 2.08 | 0.8 |
Heparin (17 IU/mL of blood) | >100 | - | >100 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoça, I.T.; Basilio, D.C.L.S.; de Araujo, A.J.P.; Ota, R.S.N.; de Souza, K.F.S.; Cassemiro, N.S.; Lagatta, D.C.; Paredes-Gamero, E.J.; Macedo, M.L.R.; Silva, D.B.; et al. Antithrombotic Effect of Oil from the Pulp of Bocaiúva—Acrocomia aculeata (Jacq.) Lodd. ex Mart. (Arecaceae). Nutrients 2024, 16, 2024. https://doi.org/10.3390/nu16132024
Espinoça IT, Basilio DCLS, de Araujo AJP, Ota RSN, de Souza KFS, Cassemiro NS, Lagatta DC, Paredes-Gamero EJ, Macedo MLR, Silva DB, et al. Antithrombotic Effect of Oil from the Pulp of Bocaiúva—Acrocomia aculeata (Jacq.) Lodd. ex Mart. (Arecaceae). Nutrients. 2024; 16(13):2024. https://doi.org/10.3390/nu16132024
Chicago/Turabian StyleEspinoça, Isabelly Teixeira, Denise Caroline Luiz Soares Basilio, Anna Júlia Papa de Araujo, Rafael Seiji Nakano Ota, Kamylla Fernanda Souza de Souza, Nadla Soares Cassemiro, Davi Campos Lagatta, Edgar Julian Paredes-Gamero, Maria Lígia Rodrigues Macedo, Denise Brentan Silva, and et al. 2024. "Antithrombotic Effect of Oil from the Pulp of Bocaiúva—Acrocomia aculeata (Jacq.) Lodd. ex Mart. (Arecaceae)" Nutrients 16, no. 13: 2024. https://doi.org/10.3390/nu16132024
APA StyleEspinoça, I. T., Basilio, D. C. L. S., de Araujo, A. J. P., Ota, R. S. N., de Souza, K. F. S., Cassemiro, N. S., Lagatta, D. C., Paredes-Gamero, E. J., Macedo, M. L. R., Silva, D. B., Sardi, J. d. C. O., Wilhelm-Filho, D., Jacobowski, A. C., & Parisotto, E. B. (2024). Antithrombotic Effect of Oil from the Pulp of Bocaiúva—Acrocomia aculeata (Jacq.) Lodd. ex Mart. (Arecaceae). Nutrients, 16(13), 2024. https://doi.org/10.3390/nu16132024