Predictive Roles of Basal Metabolic Rate and Muscle Mass in Lung Function among Patients with Obese Asthma: A Prospective Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Multidimensional Clinical Assessment and Data Collection
2.3. Definition of Obesity
2.4. Body Composition and BMR Measurements
2.5. Definition of Low Muscle Mass
2.6. Lung Function and FENO
2.7. Asthma Control, Quality of Life, and Exacerbation
2.8. Peripheral Blood and Sputum Induction
2.9. Statistical Analysis
3. Results
3.1. Subject Characteristics
3.2. Anthropometric, Body Composition, and BMR Characteristics
3.3. Roles of BMR and Muscle Mass in Predicting Obese Asthma
3.4. Mediation Analyses of BMR and Muscle Mass in Relationship between Obesity and Lung Function
3.5. BMR and Muscle Mass Associated with Future Lung Function
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peters, U.; Dixon, A.E.; Forno, E. Obesity and asthma. J. Allergy Clin. Immunol. 2018, 141, 1169–1179. [Google Scholar] [CrossRef]
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2022. Available online: https://ginasthma.org/wp-content/uploads/2022/07/GINA-Main-Report-2022-FINAL-22-07-01-WMS.pdf (accessed on 1 January 2023).
- Miethe, S.; Karsonova, A.; Karaulov, A.; Renz, H. Obesity and asthma. J. Allergy Clin. Immunol. 2020, 146, 685–693. [Google Scholar] [CrossRef]
- Dixon, A.E.; Peters, U. The effect of obesity on lung function. Expert Rev. Respir. Med. 2018, 12, 755–767. [Google Scholar] [CrossRef]
- Jenkins, S.C.; Moxham, J. The effects of mild obesity on lung function. Respir. Med. 1991, 85, 309–311. [Google Scholar] [CrossRef]
- Pelosi, P.; Croci, M.; Ravagnan, I.; Tredici, S.; Pedoto, A.; Lissoni, A.; Gattinoni, L. The effects of body mass on lung volumes, respiratory mechanics, and gas exchange during general anesthesia. Anesth. Analg. 1998, 87, 654–660. [Google Scholar] [CrossRef]
- Sharp, J.T.; Henry, J.P.; Sweany, S.K.; Meadows, W.R.; Pietras, R.J. Effects of mass loading the respiratory system in man. J. Appl. Physiol. 1964, 19, 959–966. [Google Scholar] [CrossRef]
- Al Ghobain, M. The effect of obesity on spirometry tests among healthy non-smoking adults. BMC Pulm. Med. 2012, 12, 10. [Google Scholar] [CrossRef]
- Schachter, L.M.; Salome, C.M.; Peat, J.K.; Woolcock, A.J. Obesity is a risk for asthma and wheeze but not airway hyperresponsiveness. Thorax 2001, 56, 4–8. [Google Scholar] [CrossRef]
- Sin, D.D.; Jones, R.L.; Man, S.F. Obesity is a risk factor for dyspnea but not for airflow obstruction. Arch. Intern. Med. 2002, 162, 1477–1481. [Google Scholar] [CrossRef]
- Zerah, F.; Harf, A.; Perlemuter, L.; Lorino, H.; Lorino, A.M.; Atlan, G. Effects of obesity on respiratory resistance. Chest 1993, 103, 1470–1476. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, K.; Yuan, Y.; Liu, L.; Zhang, S.; Wang, C.; Wang, G.; Zhang, H.; Wang, L.; Cheng, G.; et al. Body composition-specific asthma phenotypes: Clinical implications. Nutrients 2022, 14, 2525. [Google Scholar] [CrossRef]
- Connor Gorber, S.; Tremblay, M.; Moher, D.; Gorber, B. A comparison of direct vs. Self-report measures for assessing height, weight and body mass index: A systematic review. Obes. Rev. 2007, 8, 307–326. [Google Scholar] [CrossRef]
- Hattori, A.; Sturm, R. The obesity epidemic and changes in self-report biases in BMI. Obesity 2013, 21, 856–860. [Google Scholar] [CrossRef]
- Müller, M.J. From BMI to functional body composition. Eur. J. Clin. Nutr. 2013, 67, 1119–1121. [Google Scholar] [CrossRef]
- Abdel-Hamid, T.K. Modeling the dynamics of human energy regulation and its implications for obesity treatment. Syst. Dyn. Rev. 2002, 18, 431–471. [Google Scholar] [CrossRef]
- Sabounchi, N.S.; Rahmandad, H.; Ammerman, A. Best-fitting prediction equations for basal metabolic rate: Informing obesity interventions in diverse populations. Int. J. Obes. 2013, 37, 1364–1370. [Google Scholar] [CrossRef]
- Cunningham, J.J. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am. J. Clin. Nutr. 1980, 33, 2372–2374. [Google Scholar] [CrossRef]
- Cunningham, J.J. Body composition as a determinant of energy expenditure: A synthetic review and a proposed general prediction equation. Am. J. Clin. Nutr. 1991, 54, 963–969. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. A biometric study of human basal metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Maffeis, C.; Schutz, Y.; Micciolo, R.; Zoccante, L.; Pinelli, L. Resting metabolic rate in six- to ten-year-old obese and nonobese children. J. Pediatr. 1993, 122, 556–562. [Google Scholar] [CrossRef]
- Poehlman, E.T. Energy expenditure and requirements in aging humans. J. Nutr. 1992, 122, 2057–2065. [Google Scholar] [CrossRef] [PubMed]
- Speakman, J.R.; Westerterp, K.R. Associations between energy demands, physical activity, and body composition in adult humans between 18 and 96 y of age. Am. J. Clin. Nutr. 2010, 92, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Tershakovec, A.M.; Kuppler, K.M.; Zemel, B.; Stallings, V.A. Age, sex, ethnicity, body composition, and resting energy expenditure of obese african american and white children and adolescents. Am. J. Clin. Nutr. 2002, 75, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, L.; Zurlo, F.; Ravussin, E. Aging and energy expenditure. Am. J. Clin. Nutr. 1991, 53, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Bhopal, R.S.; Rafnsson, S.B. Could mitochondrial efficiency explain the susceptibility to adiposity, metabolic syndrome, diabetes and cardiovascular diseases in south Asian populations? Int. J. Epidemiol. 2009, 38, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Itagi, A.; Kalaskar, A.; Dukpa, P.; Chandi, D.; Yunus, G. Sex differences in spirometric measures and its association with basal metabolic rate in obese and healthy normal weight middle-aged subjects. Indian J. Respir. Care 2022, 11, 14–19. [Google Scholar] [CrossRef]
- Agha, M.A.; Wahsh, R.A.E. Basal metabolic rate in bronchial asthma and chronic obstructive pulmonary disease patients. Egypt. J. Chest Dis. Tuberc. Egypt. J. Chest Dis. Tuberc. 2013, 62, 39–44. [Google Scholar] [CrossRef]
- Brellenthin, A.G.; Lee, D.C.; Bennie, J.A.; Sui, X.; Blair, S.N. Resistance exercise, alone and in combination with aerobic exercise, and obesity in Dallas, Texas, us: A prospective cohort study. PLoS Med. 2021, 18, e1003687. [Google Scholar] [CrossRef] [PubMed]
- The Asia-pacific perspective: Redefining obesity and its treatment who expert consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- WHO; IASO; IOTF. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; International Diabetes Institute: Melbourne, Australia, 2000. [Google Scholar]
- World Health Organization (WHO). Physical status: The use and interpretation of anthropometry. Report of a who expert committee. World Health Organ. Tech. Rep. Ser. 1995, 854, 1–452. [Google Scholar]
- Jackson, A.W.; Lee, D.C.; Sui, X.; Morrow, J.R., Jr.; Church, T.S.; Maslow, A.L.; Blair, S.N. Muscular strength is inversely related to prevalence and incidence of obesity in adult men. Obesity 2010, 18, 1988–1995. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; LaMonte, M.J.; Laditka, J.N.; Hardin, J.W.; Chase, N.; Hooker, S.P.; Blair, S.N. Cardiorespiratory fitness and adiposity as mortality predictors in older adults. JAMA 2007, 298, 2507–2516. [Google Scholar] [CrossRef]
- Meunier, N.; Beattie, J.H.; Ciarapica, D.; O’Connor, J.M.; Andriollo-Sanchez, M.; Taras, A.; Coudray, C.; Polito, A. Basal metabolic rate and thyroid hormones of late-middle-aged and older human subjects: The zenith study. Eur. J. Clin. Nutr. 2005, 59 (Suppl. S2), S53–S57. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part i: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef]
- Montazeri-Najafabady, N.; Dabbaghmanesh, M.H.; Nasimi, N.; Sohrabi, Z.; Estedlal, A.; Asmarian, N. Importance of tp53 codon 72 and intron 3 duplication 16 bp polymorphisms and their haplotypes in susceptibility to sarcopenia in Iranian older adults. BMC Geriatr. 2022, 22, 103. [Google Scholar] [CrossRef]
- James, E.; Goodall, S.; Nichols, S.; Walker, K.; Carroll, S.; O’Doherty, A.F.; Ingle, L. Serum transthyretin and aminotransferases are associated with lean mass in people with coronary heart disease: Further insights from the care-cr study. Front. Med. 2023, 10, 1094733. [Google Scholar] [CrossRef]
- Buckinx, F.; Reginster, J.Y.; Dardenne, N.; Croisiser, J.L.; Kaux, J.F.; Beaudart, C.; Slomian, J.; Bruyère, O. Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: A cross-sectional study. BMC Musculoskelet. Disord. 2015, 16, 60. [Google Scholar] [CrossRef]
- Fujimoto, K.; Inage, K.; Eguchi, Y.; Orita, S.; Toyoguchi, T.; Yamauchi, K.; Suzuki, M.; Kubota, G.; Sainoh, T.; Sato, J.; et al. Dual-energy X-ray absorptiometry and bioelectrical impedance analysis are beneficial tools for measuring the trunk muscle mass of patients with low back pain. Spine Surg. Relat. Res. 2019, 3, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Ahn, S.; Kim, Y.J.; Ji, M.J.; Kim, K.M.; Choi, S.H.; Jang, H.C.; Lim, S. Comparison between dual-energy X-ray absorptiometry and bioelectrical impedance analyses for accuracy in measuring whole body muscle mass and appendicular skeletal muscle mass. Nutrients 2018, 10, 738. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European working group on sarcopenia in older people. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.-Y.; Chen, L.-Y.; Hsu, P.-S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian working group for sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; van Kan, G.A.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The fnih sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Jian, W.; Gao, Y.; Hao, C.; Wang, N.; Ai, T.; Liu, C.; Xu, Y.; Kang, J.; Yang, L.; Shen, H.; et al. Reference values for spirometry in Chinese aged 4–80 years. J. Thorac. Dis. 2017, 9, 4538–4549. [Google Scholar] [CrossRef]
- Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.-C.; Plummer, A.L.; Taylor, D.R.; American Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels (FENO) for Clinical Applications. An official ats clinical practice guideline: Interpretation of exhaled nitric oxide levels (Feno) for clinical applications. Am. J. Respir. Crit. Care Med. 2011, 184, 602–615. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.L.; Zhang, X.; Liu, L.; Wang, G.; Chen-Yu Hsu, A.; Huang, D.; Oliver, B.G. Total IgE variability is associated with future asthma exacerbations: A 1-year prospective cohort study. J. Allergy Clin. Immunol. Pract. 2021, 9, 2812–2824. [Google Scholar] [CrossRef]
- Jia, C.E.; Zhang, H.P.; Lv, Y.; Liang, R.; Jiang, Y.Q.; Powell, H.; Fu, J.J.; Wang, L.; Gibson, P.G.; Wang, G. The asthma control test and asthma control questionnaire for assessing asthma control: Systematic review and meta-analysis. J. Allergy Clin. Immunol. 2013, 131, 695–703. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Zhang, L.; Liu, Y.; Wang, G.; Zhang, H.P.; Wang, L.; Kang, D.Y.; Oliver, B.G.; Wan, H.J.; et al. Age-related clinical characteristics, inflammatory features, phenotypes, and treatment response in asthma. J. Allergy Clin. Immunol. Pract. 2023, 11, 210–219.e3. [Google Scholar] [CrossRef]
- Juniper, E.F.; Guyatt, G.H.; Ferrie, P.J.; Griffith, L.E. Measuring quality of life in asthma. Am. Rev. Respir. Dis. 1993, 147, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.F.; Luo, X.C.; Chen, Y.; Zhang, Y.J.; Li, Y.; Hu, B.; Lu, W.-X.; Li, L.-Y.; Zhu, Y.-J. The use of juniper’s asthma quality of life questionnaire in Chinese asthmatics. Zhonghua Nei Ke Za Zhi 2003, 42, 760–763. [Google Scholar] [PubMed]
- Zhou, X.; Ding, F.M.; Lin, J.T.; Yin, K.S. Validity of asthma control test for asthma control assessment in Chinese primary care settings. Chest 2009, 135, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ats guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Baines, K.J.; Fu, J.J.; Wood, L.G.; Simpson, J.L.; McDonald, V.M.; Cowan, D.C.; Taylor, D.R.; Cowan, J.O.; Gibson, P.G. Sputum mast cell subtypes relate to eosinophilia and corticosteroid response in asthma. Eur. Respir. J. 2016, 47, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Zheng, J.; Liu, Y.; Wang, J.; Wang, G.; Zhang, H.P.; Kang, D.Y.; Peng, Z.G.; Ji, Y.L.; et al. Depressive symptom-associated il-1β and TNF-α release correlates with impaired bronchodilator response and neutrophilic airway inflammation in asthma. Clin. Exp. Allergy 2019, 49, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zheng, J.; Zhang, L.; Liu, Y.; Chen, G.P.; Zhang, H.P.; Wang, L.; Kang, D.Y.; Wood, L.G.; Wang, G. Systemic inflammation mediates the detrimental effects of obesity on asthma control. Allergy Asthma Proc. 2018, 39, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Merghani, T.H.; Alawad, A.O.; Ibrahim, R.M.; Abdelmoniem, A.M. Prediction of basal metabolic rate in overweight/obese and non-obese subjects and its relation to pulmonary function tests. BMC Res. Notes 2015, 8, 353. [Google Scholar] [CrossRef] [PubMed]
- Tzankoff, S.P.; Norris, A.H. Effect of muscle mass decrease on age-related BMR changes. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1977, 43, 1001–1006. [Google Scholar] [CrossRef]
- Carnethon, M.R.; De Chavez, P.J.; Biggs, M.L.; Lewis, C.E.; Pankow, J.S.; Bertoni, A.G.; Golden, S.H.; Liu, K.; Mukamal, K.J.; Campbell-Jenkins, B.; et al. Association of weight status with mortality in adults with incident diabetes. JAMA 2012, 308, 581–590. [Google Scholar] [CrossRef]
- Kokkinos, P.; Myers, J.; Faselis, C.; Doumas, M.; Kheirbek, R.; Nylen, E. BMI-mortality paradox and fitness in African American and Caucasian men with type 2 diabetes. Diabetes Care 2012, 35, 1021–1027. [Google Scholar] [CrossRef]
- Tseng, C.H. Obesity paradox: Differential effects on cancer and noncancer mortality in patients with type 2 diabetes mellitus. Atherosclerosis 2013, 226, 186–192. [Google Scholar] [CrossRef]
- Nadi, E.; Zeraati, F.; Ansari, M.; Tavana, S.; Hashemi, H.; Falah, M. Association of asthma severity with body mass index among adults. Acta Medica Iran. 2007, 45, 383–388. [Google Scholar]
- Cornier, M.A.; Després, J.P.; Davis, N.; Grossniklaus, D.A.; Klein, S.; Lamarche, B.; Lopez-Jimenez, F.; Rao, G.; St-Onge, M.-P.; Towfighi, A.; et al. Assessing adiposity: A scientific statement from the American heart association. Circulation 2011, 124, 1996–2019. [Google Scholar] [CrossRef]
- Dutton, D.J.; McLaren, L. The usefulness of “corrected” body mass index vs. Self-reported body mass index: Comparing the population distributions, sensitivity, specificity, and predictive utility of three correction equations using Canadian population-based data. BMC Public Health 2014, 14, 430. [Google Scholar] [CrossRef] [PubMed]
- Mirra, D.; Cione, E.; Spaziano, G.; Esposito, R.; Sorgenti, M.; Granato, E.; Cerqua, I.; Muraca, L.; Iovino, P.; Gallelli, L.; et al. Circulating MicroRNAs Expression Profile in Lung Inflammation: A Preliminary Study. J. Clin. Med. 2022, 11, 5446. [Google Scholar] [CrossRef] [PubMed]
- Kolls, J.K.; Busse, W.W.; Finn, P.W. Asthma: Contributing factors, genetics, and pathogenesis. Am. J. Med. 2006, 119, S4–S12. [Google Scholar]
- Holgate, S.T.; Davies, D.E.; Powrie, F.; Wilson, S.J. The role of the airway epithelium in asthma pathophysiology. Eur. Respir. J. 2009, 34, 238–252. [Google Scholar]
- Friedman, J.E.; Kullak-Ublick, G.A. Current concepts of the pathogenesis of nonalcoholic steatohepatitis. Am. J. Gastroenterol. 2008, 103, 2906–2914. [Google Scholar]
- Schwartz, J.D.O.; O’Rourke, M.K. Fractional exhaled nitric oxide as a predictor of response to corticosteroid therapy in asthma. Am. Fam. Physician 2010, 82, 273–274. [Google Scholar]
- Wang, E.; Lu, Q. The role of obesity in the pathogenesis of asthma. Curr. Opin. Pediatr. 2010, 22, 288–295. [Google Scholar]
- Kliemann, N.; Murphy, N.; Viallon, V.; Freisling, H.; Tsilidis, K.K.; Rinaldi, S.; Mancini, F.R.; Fagherazzi, G.; Boutron-Ruault, M.; Boeing, H.; et al. Predicted basal metabolic rate and cancer risk in the European prospective investigation into cancer and nutrition. Int. J. Cancer 2020, 147, 648–661. [Google Scholar] [CrossRef]
- Ruggiero, C.; Metter, E.J.; Melenovsky, V.; Cherubini, A.; Najjar, S.S.; Ble, A.; Senin, U.; Longo, D.L.; Ferrucci, L. High basal metabolic rate is a risk factor for mortality: The Baltimore longitudinal study of aging. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, J.; Hong, P.; Mao, D.; Zhuo, Q.; Chen, X.; Yang, X. Basal metabolic rate of overweight and obese adults in Beijing. J. Hyg. Res. 2016, 45, 739–742, 748. [Google Scholar]
- Syngle, V. Determinants of basal metabolic rate in Indian obese patients. Obes. Med. 2020, 17, 100175. [Google Scholar] [CrossRef]
- Hasson, R.E.; Howe, C.A.; Jones, B.L.; Freedson, P.S. Accuracy of four resting metabolic rate prediction equations: Effects of sex, body mass index, age, and race/ethnicity. J. Sci. Med. Sport 2011, 14, 344–351. [Google Scholar] [CrossRef]
- Johnstone, A.M.; Murison, S.D.; Duncan, J.S.; Rance, K.A.; Speakman, J.R. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am. J. Clin. Nutr. 2005, 82, 941–948. [Google Scholar] [CrossRef]
- Chinn, S.; Jarvis, D.; Burney, P. Relation of bronchial responsiveness to body mass index in the ECRHS. Eur. Community Respir. Health Surv. Thorax 2002, 57, 1028–1033. [Google Scholar] [CrossRef]
- Koenig, S.M. Pulmonary complications of obesity. Am. J. Med. Sci. 2001, 321, 249–279. [Google Scholar] [CrossRef]
- Lazzer, S.; Bedogni, G.; Lafortuna, C.L.; Marazzi, N.; Busti, C.; Galli, R.; de Col, A.; Agosti, F.; Sartorio, A. Relationship between basal metabolic rate, gender, age, and body composition in 8,780 white obese subjects. Obesity 2010, 18, 71–78. [Google Scholar] [CrossRef]
- Zeitlin, S.R.; Bond, S.; Wootton, S.; Gregson, R.K.; Radford, M. Increased resting energy expenditure in childhood asthma: Does this contribute towards growth failure? Arch. Dis. Child. 1992, 67, 1366–1369. [Google Scholar] [CrossRef] [PubMed]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Efron, B. Bootstrap methods: Another look at the jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R. Improvements on cross-validation: The 632+ rule. J. Am. Stat. Assoc. 1997, 92, 548–560. [Google Scholar]
- Efron, B.; Tibshirani, R. The Jackknife, the Bootstrap, and Other Resampling Plans; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1997. [Google Scholar]
- Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Application; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, D.P.; Lockwood, C.M.; Hoffman, J.M.; West, S.G.; Sheets, V. A comparison of methods to test mediation and other intervening variable effects. Psychol. Methods 2002, 7, 83–104. [Google Scholar] [CrossRef] [PubMed]
- MacKinnon, D.P.; Fairchild, A.J.; Fritz, M.S. Mediation analysis. Annu. Rev. Psychol. 2007, 58, 593–614. [Google Scholar] [CrossRef] [PubMed]
- Holguin, F.; Bleecker, E.R.; Busse, W.W.; Calhoun, W.J.; Castro, M.; Erzurum, S.C.; Fitzpatrick, A.M.; Gaston, B.; Israel, E.; Jarjour, N.N.; et al. Obesity and asthma: An association modified by age of asthma onset. J. Allergy Clin. Immunol. 2011, 127, 1486–1493. [Google Scholar]
- Green, D.H. Obesity is associated with an early decrease in lung function in the Dunedin Multidisciplinary Health and Development Study. Clin. Exp. Allergy 2012, 42, 739–749. [Google Scholar]
- Vahlkvist, S.; Inman, M.D.; Pedersen, S. Effect of asthma treatment on fitness, daily activity and body composition in children with asthma. Allergy 2010, 65, 1464–1471. [Google Scholar]
- Beuther, D.A.; Sutherland, E.R. Overweight, obesity, and incident asthma: A meta-analysis of prospective epidemiologic studies. Am. J. Respir Crit. Care Med. 2007, 175, 661–666. [Google Scholar]
- Liang, X.; Chen, X.; Li, J.; Yan, M.; Yang, Y. Study on body composition and its correlation with obesity: A cohort study in 5121 Chinese Han participants. Medicine 2018, 97, e10722. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cheng, K.Y.; Tong, X.; Cheung, W.H.; Chow, S.K.; Law, S.W.; Wong, R.M.Y. The role of obesity in sarcopenia and the optimal body composition to prevent against sarcopenia and obesity. Front. Endocrinol. 2023, 14, 1077255. [Google Scholar] [CrossRef] [PubMed]
- Boneva-Asiova, Z.; Boyanov, M.A. Body composition analysis by leg-to-leg bioelectrical impedance and dual-energy X-ray absorptiometry in non-obese and obese individuals. Diabetes Obes. Metab. 2008, 10, 1012–1018. [Google Scholar] [CrossRef] [PubMed]
- Stewart, S.P.; Bramley, P.N.; Heighton, R.; Green, J.H.; Horsman, A.; Losowsky, M.S.; Smith, M.A. Estimation of body composition from bioelectrical impedance of body segments: Comparison with dual-energy X-ray absorptiometry. Br. J. Nutr. 1993, 69, 645–655. [Google Scholar] [CrossRef]
Variables | Obese Asthma | Non-Obese Asthma | Total | t/U/χ2 | p-Value |
---|---|---|---|---|---|
n (%) | 282 (47.2) | 316 (52.8) | 598 | ||
Age, years, median (Q1, Q3) | 48.0 (41.0, 60.00) | 40.0 (31.0, 48.0) | 45.0 (35.0, 55.0) | 7.078 * | <0.001 |
Female, n (%) | 183 (64.9) | 207 (65.5) | 390 (65.2) | 0.025 | 0.875 |
Atopy, n (%) | 99 (35.1) | 101 (32.0) | 200 (33.4) | 0.616 | 0.433 |
Asthma duration, years, median (Q1, Q3) | 1.0 (0, 4.0) | 1.0 (1.0, 6.0) | 1.0 (0, 6.0) | −0.372 | 0.710 |
Early-onset asthma, n (%) | 54 (19.2) | 62 (19.6) | 116 (19.4) | 0.008 | 0.930 |
History of family asthma, n (%) | 98 (34.8) | 109 (34.5) | 207 (34.6) | 0.001 | 0.971 |
Medications | |||||
ICS (BDP equivalent) dose, μg/day, median (Q1, Q3) | 400 (400, 1000) | 400 (400, 1000) | 400 (400, 1000) | −0.042 | 0.966 |
ICS/LABA, n (%) | 165 (58.5) | 182 (57.6) | 347 (58.0) | 0.065 | 0.789 |
Anti-leukotrienes, n (%) | 36 (12.8) | 49 (15.5) | 85 (14.2) | 1.068 | 0.301 |
Leukotriene, n (%) | 98 (34.8) | 118 (37.3) | 216 (36.1) | 0.365 | 0.546 |
OCS, n (%) | 10 (3.5) | 9 (2.8) | 19 (3.2) | 0.237 | 0.626 |
Asthma control | |||||
ACQ-6, median (Q1, Q3) | 0.67 (0.17, 1.50) | 0.67 (0, 1.34) | 0.67 (0, 1.5) | 2.107 * | 0.036 |
Uncontrolled asthma (ACQ ≥ 1.5) | 72 (25.5) | 54 (17.1) | 126 (21.1) | 6.388 | 0.011 |
AQLQ scores, median (Q1, Q3) | 5.88 (5.09. 6.32) | 5.97 (5.46, 6.50) | 5.94 (5.31, 6.41) | −1.587 | 0.113 |
SAE in the past year, n (%) | 86 (30.5) | 78 (24.7) | 164 (27.4) | 2.530 | 0.112 |
Spirometry | |||||
FEV1, mean (SD) | |||||
L | 1.99 (0.76) | 2.29 (0.81) | 2.16 (0.80) | −4.647 * | <0.001 |
% | 71.1 (20.1) | 75.7 (21.5) | 74.4 (20.5) | −2.382 | 0.018 |
FVC, mean (SD) | |||||
L | 3.02(0.93) | 3.33(0.85) | 3.20 (0.91) | −4.548 | <0.001 |
% | 89.3(17.3) | 92.8 (16.4) | 91.6 (16.0) | −2.542 | 0.011 |
FEV1/FVC, %, mean (SD) | 65.5 (12.3) | 68.2 (14.8) | 67.0 (13.1) | −2.509 | 0.012 |
Comorbidities, n (%) | |||||
Rhinitis | 166 (58.9) | 191 (60.4) | 357 (59.7) | 0.154 | 0.695 |
Nasal polyps | 26 (9.2) | 33 (10.4) | 59 (9.9) | 0.223 | 0.637 |
Bronchiectasis | 12 (4.3) | 16 (5.1) | 28 (4.7) | 0.200 | 0.654 |
Sleep apnea | 3 (1.1) | 5 (1.6) | 8 (1.3) | 0.293 | 0.589 |
GERD | 21 (7.4) | 14 (4.4) | 35 (5.9) | 2.531 | 0.112 |
Diabetes | 10 (3.5) | 4 (1.3) | 14 (2.3) | 3.440 | 0.064 |
Eczema | 46 (16.3) | 54 (17.1) | 100 (16.7) | 0.046 | 0.830 |
Variables | Obese Asthma | Non-Obese Asthma | Total | t/U/χ2 | p-Value |
---|---|---|---|---|---|
n (%) | 282 (47.2) | 316 (52.8) | 598 | ||
Serum IgE, median (Q1, Q3), IU/mL | 108.50 (42.52, 264.25) | 152.19 (46.77, 323.99) | 104.18 (39.30, 301.62) | −1.948 | 0.051 |
FeNO, ppb, median (Q1, Q3) | 35.5 (18.0, 65.0) | 42.5 (22.0,83.8) | 39.0 (20.0, 73.3) | −2.546 | 0.011 |
Blood cells, median (Q1, Q3) | |||||
Neutrophils | |||||
% | 59.11 (53.09, 64.58) | 59.55 (53.19, 65.41) | 59.32 (53.12, 64.99) | −1.726 | 0.084 |
×109/L | 4.60 (3.60, 6.16) | 3.24 (2.55, 4.08) | 3.41 (2.70, 4.42) | −3.480 | 0.001 |
Eosinophils | |||||
% | 3.63 (2.02, 5.93) | 3.76 (1.99, 6.76) | 3.68 (2.0, 6.27) | −2.414 | 0.016 |
×109/L | 0.22 (0.12, 0.35) | 0.25 (0.12,0.41) | 0.22 (0.11, 0.36) | −1.157 | 0.247 |
≥300 cells/μL, n (%) | 102 (36.6) | 128 (40.5) | 230 (38.7) | 0.974 | 0.324 |
Eosinophilic asthma *, n (%) | 118 (41.8) | 143 (45.3) | 261 (43.6) | 0.726 | 0.394 |
Sputum cells, median (Q1, Q3), (n = 353) | |||||
Neutrophils, % | 43.50 (17.63, 74.50) | 34.5 (13.25, 64.47) | 39.0 (15.19, 68.49) | −1.636 | 0.102 |
Eosinophils, % | 0.25 (0, 2.75) | 0.25 (0, 4.25) | 0.25 (0, 3.54) | −0.770 | 0.442 |
Eosinophils, ≥3%, n (%) | 48 (26.1) | 51 (30.2) | 99 (28.0) | 0.730 | 0.393 |
Variables | Obese Asthma | Non-Obese Asthma | Total | t/χ2 | p-Value |
---|---|---|---|---|---|
n (%) | 282 (47.2) | 316 (52.8) | 598 | ||
Anthropometric data | |||||
Weight, kg, mean (SD) | 64.25 (11.45) | 53.79 (7.72) | 58.72 (10.98) | 12.944 | <0.001 |
Height, cm, mean (SD) | 158.98 (8.34) | 159.69 (7.01) | 159.35 (7.67) | −1.126 | 0.261 |
BMI, kg/m2, mean (SD) | 25.29 (3.15) | 21.05 (2.29) | 23.05 (3.45) | 18.676 | <0.001 |
≥28, n (%) | 59 (20.9) | 0 (0) | 59 (9.9) | 73.35 | <0.001 |
Waist, cm, mean (SD) | 89.61 (89.61) | 75.06 (6.80) | 82.05 (10.42) | 22.940 | <0.001 |
Men (n = 208) | 93.47 (7.94) | 79.64 (7.05) | 86.16 (10.18) | 12.798 | <0.001 |
≥90 cm, n (%) | 62 (62.6) | 0 (0) | 62 (29.8) | 101.899 | <0.001 |
Women (n = 390) | 87.62 (7.48) | 72.56 (5.18) | 79.9 (9.88) | 22.28 | <0.001 |
≥80 cm, n (%) | 164 (89.6) | 0 (0) | 164 (42.1) | 321.952 | <0.001 |
Hip, cm, mean (SD) | 97.66 (6.17) | 89.73 (5.70) | 93.54 (7.13) | 15.837 | <0.001 |
WHR, mean (SD) | 0.92 (0.06) | 0.84 (0.06) | 0.88 (0.07) | 15.812 | <0.001 |
Men (n = 208) | 0.95 (0.05) | 0.88 (0.07) | 0.91(0.07) | 7.902 | <0.001 |
Women (n = 390) | 0.90 (0.06) | 0.81 (0.05) | 0.86 (0.07) | 16.37 | <0.001 |
BMR | |||||
BMR, kcal/d, mean (SD) | 1284.27 (235.71) | 1210.08 (255.19) | 1240.92 (258.49) | 3.679 | <0.001 |
BMR/BMI, mean (SD) | 51.10 (8.83) | 57.88 (12.22) | 54.69 (11.26) | −7.836 | <0.001 |
BMR/Height2, kcal/m2, mean (SD) | 505.81(71.09) | 473.80 (89.42) | 488.89 (82.79) | 4.807 | <0.001 |
Body composition | |||||
FM, kg, mean (SD) | 21.02 (5.50) | 13.10 (3.63) | 16.84 (6.07) | 20.524 | <0.001 |
PBF, %, mean (SD) | 32.79 (5.94) | 24.39 (6.16) | 28.35 (7.36) | 16.916 | <0.001 |
Men (n = 208) | 28.36 (4.19) | 19.30 (4.38) | 23.61 (6.24) | 15.198 | <0.001 |
≥25, n (%) | 81 (81.8) | 0 (0) | 81 (38.9) | 146.062 | <0.001 |
Women (n = 390) | 35.18 (5.34) | 27.07 (5.20) | 30.89 (6.65) | 15.168 | <0.001 |
≥35, n (%) | 106 (57.9) | 0 (0) | 106 (27.2) | 164.65 | <0.001 |
VFA, cm2, mean (SD) | 95.85 (30.27) | 55.40 (19.22) | 74.48 (32.17) | 19.247 | <0.001 |
Men (n = 208) | 89.27 (25.67) | 50.15 (17.98) | 68.77 (29.40) | 12.612 | <0.001 |
Women (n = 390) | 99.41 (31.99) | 58.16 (19.31) | 77.52 (33.19) | 15.17 | <0.001 |
Muscle mass | |||||
SMM, kg, mean (SD) | 23.53 (5.22) | 22.10 (4.31) | 22.78 (4.81) | 3.645 | <0.001 |
SMM/Height2, kg/m2 | 9.22 (1.35) | 8.61 (1.20) | 8.90 (1.31) | 5.830 | <0.001 |
Men (n = 208) | 10.26 (1.23) | 9.64 (0.91) | 9.93(1.12) | 4.101 | <0.001 |
Women (n = 390) | 8.66 (1.05) | 8.07 (0.95) | 8.34 (1.04) | 5.830 | <0.001 |
ALM, kg, mean (SD) | 17.85 (4.19) | 16.68 (3.50) | 17.23 (3.88) | 3.666 | <0.001 |
Men (n = 208) | 21.78 (3.67) | 20.21 (2.70) | 20.96 (3.29) | 4.471 | 0.001 |
Women (n = 390) | 15.72 (2.63) | 14.83 (2.21) | 15.25 (2.45) | 3.629 | <0.001 |
SMI (ALM/Height2), kg/m2, mean (SD) | 6.98 (1.11) | 6.49 (0.96) | 6.72 (1.06) | 5.823 | <0.001 |
Men (n = 208) | 7.84 (7.84) | 7.34 (0.65) | 7.58 (0.84) | 4.354 | <0.001 |
Women (n = 390) | 6.52 (0.89) | 6.04 (0.78) | 6.28 (0.87) | 5.73 | <0.001 |
ALM/BMI, m2, mean (SD) | 0.71 (0.14) | 0.79 (0.15) | 0.75 (0.15) | −7.285 | <0.001 |
Men (n = 208) | 0.84 (0.12) | 0.93 (0.11) | 0.89 (0.13) | −5.905 | <0.001 |
Women (n = 390) | 0.64 (0.09) | 0.72 (0.11) | 0.68 (0.11) | −7.988 | <0.001 |
Low muscle mass, n (%) | |||||
EWGSOP | |||||
SMI | 45 (16.0) | 85 (26.9) | 130 (21.7) | 10.485 | 0.001 |
SMM/Height2 | 14 (5.0) | 23 (7.3) | 37 (6.2) | 1.375 | 0.241 |
EWGSOP2 | |||||
ALM | 3 (1.1) | 4 (1.3) | 7 (1.2) | 0.053 | 0.819 |
SMI | 62 (22.0) | 140 (44.3) | 202 (33.8) | 33.182 | <0.001 |
FNIH | |||||
ALM/BMI | 46 (16.3) | 12 (3.8) | 58 (9.7) | 26.65 | <0.001 |
IWGS | |||||
SMI | 51 (18.1) | 103 (32.6) | 154 (25.8) | 16.408 | <0.001 |
SMM/Height2 | 8 (2.8) | 13 (4.1) | 21(3.5) | 0.742 | 0.389 |
AWGS | |||||
SMI | 29 (10.3) | 69 (21.8) | 98 (16.4) | 14.512 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zhang, L.; Liu, Y.; Liu, L.; Wang, J.; Wang, C.; Zhang, S.; Cheng, G.; Wang, L. Predictive Roles of Basal Metabolic Rate and Muscle Mass in Lung Function among Patients with Obese Asthma: A Prospective Cohort Study. Nutrients 2024, 16, 1809. https://doi.org/10.3390/nu16121809
Zhang X, Zhang L, Liu Y, Liu L, Wang J, Wang C, Zhang S, Cheng G, Wang L. Predictive Roles of Basal Metabolic Rate and Muscle Mass in Lung Function among Patients with Obese Asthma: A Prospective Cohort Study. Nutrients. 2024; 16(12):1809. https://doi.org/10.3390/nu16121809
Chicago/Turabian StyleZhang, Xin, Li Zhang, Ying Liu, Lei Liu, Ji Wang, Changyong Wang, Shuwen Zhang, Gaiping Cheng, and Lei Wang. 2024. "Predictive Roles of Basal Metabolic Rate and Muscle Mass in Lung Function among Patients with Obese Asthma: A Prospective Cohort Study" Nutrients 16, no. 12: 1809. https://doi.org/10.3390/nu16121809
APA StyleZhang, X., Zhang, L., Liu, Y., Liu, L., Wang, J., Wang, C., Zhang, S., Cheng, G., & Wang, L. (2024). Predictive Roles of Basal Metabolic Rate and Muscle Mass in Lung Function among Patients with Obese Asthma: A Prospective Cohort Study. Nutrients, 16(12), 1809. https://doi.org/10.3390/nu16121809