Reciprocal and Differential Influences of Mediterranean Diet and Physical Activity on Adiposity in a Cohort of Young and Older than 40 Years Adults
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Sample
2.2. Participants
2.3. Questionnaire and Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yeung, S.S.Y.; Kwan, M.; Woo, J. Healthy Diet for Healthy Aging. Nutrients 2021, 13, 4310. [Google Scholar] [CrossRef] [PubMed]
- WHO Global Strategy and Action Plan on Ageing and Health. Available online: https://www.who.int/publications/i/item/9789241513500 (accessed on 12 March 2024).
- Dominguez, L.J.; Veronese, N.; Baiamonte, E.; Guarrera, M.; Parisi, A.; Ruffolo, C.; Tagliaferri, F.; Barbagallo, M. Healthy Aging and Dietary Patterns. Nutrients 2022, 14, 889. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Sayón-Orea, C.; Santiago, S.; Bes-Rastrollo, M.; Martínez-González, M.A.; Pastor, M.R.; Moreno-Aliaga, M.J.; Tur, J.A.; Garcia, A.; Martínez, J.A. Determinants of Self-Rated Health Perception in a Sample of a Physically Active Population: PLENUFAR VI Study. Int. J. Environ. Res. Public Health 2018, 15, 2104. [Google Scholar] [CrossRef] [PubMed]
- Graham, H.; White, P.C. Social determinants and lifestyles: Integrating environmental and public health perspectives. Public Health 2016, 141, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Macia, L.; Galy, O.; Nanan, R.K.H. Editorial: Modern Lifestyle and Health: How Changes in the Environment Impacts Immune Function and Physiology. Front. Immunol. 2021, 12, 762166. [Google Scholar] [CrossRef] [PubMed]
- Budreviciute, A.; Damiati, S.; Sabir, D.K.; Onder, K.; Schuller-Goetzburg, P.; Plakys, G.; Katileviciute, A.; Khoja, S.; Kodzius, R. Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors. Front. Public Health 2020, 8, 574111. [Google Scholar] [CrossRef] [PubMed]
- Katz, D.L.; Meller, S. Can we say what diet is best for health? Annu. Rev. Public Health 2014, 35, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, D.; Ceriello, A.; Esposito, K. The effects of diet on inflammation: Emphasis on the metabolic syndrome. J. Am. Coll. Cardiol. 2006, 48, 677–685. [Google Scholar] [CrossRef]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Afshin, A.; Reitsma, M.B.; Murray, C.J.L. Health Effects of Overweight and Obesity in 195 Countries. N. Engl. J. Med. 2017, 377, 1496–1497. [Google Scholar] [PubMed]
- Micha, R.; Peñalvo, J.L.; Cudhea, F.; Imamura, F.; Rehm, C.D.; Mozaffarian, D. Association Between Dietary Factors and Mortality from Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA 2017, 317, 912–924. [Google Scholar] [CrossRef] [PubMed]
- González-Gross, M.; Meléndez, A. Sedentarism, active lifestyle and sport: Impact on health and obesity prevention. Nutr. Hosp. 2013, 28, 89–98. [Google Scholar] [PubMed]
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.; Lee, I.-M. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Galeano, H.; Garatachea, N.; Lucia, A. Exercise as a Polypill for Chronic Diseases. Prog. Mol. Biol. Transl. Sci. 2015, 135, 497–526. [Google Scholar]
- Piepoli, M.F. Exercise rehabilitation in heart disease: The real “polypill” for primary and secondary prevention. Monaldi Arch. Chest Dis. 2005, 64, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Lemos, E.; Nunes, S.; Teixeira, F.; Reis, F. Regular physical exercise training assists in preventing type 2 diabetes development: Focus on its antioxidant and anti-inflammatory properties. Cardiovasc. Diabetol. 2011, 10, 741545. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Gomar, F.; Fiuza-Luces, C.; Lucia, A. Exercise as the master polypill of the 21st century for the prevention of cardiovascular disease. Int. J. Cardiol. 2015, 181, 360–361. [Google Scholar] [CrossRef]
- Fiuza-Luces, C.; Garatachea, N.; Berger, N.A.; Lucia, A. Exercise is the real polypill. Physiology 2013, 28, 330–358. [Google Scholar] [CrossRef]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Kahlmeier, S. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Fenwick, P.H.; Jeejeebhoy, K.; Dhaliwal, R.; Royall, D.; Brauer, P.; Tremblay, A.; Klein, D.; Mutch, D.M. Lifestyle genomics and the metabolic syndrome: A review of genetic variants that influence response to diet and exercise interventions. Crit. Rev. Food Sci. Nutr. 2019, 59, 2028–2039. [Google Scholar] [CrossRef] [PubMed]
- Serra, M.C.; Dondero, K.R.; Larkins, D.; Burns, A.; Addison, O. Healthy Lifestyle and Cognition: Interaction between Diet and Physical Activity. Curr. Nutr. Rep. 2020, 9, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, L.; Gross, J.; Lanzi, S.; Quansah, D.Y.; Puder, J.; Horsch, A. How diet, physical activity and psychosocial well-being interact in women with gestational diabetes mellitus: An integrative review. BMC Pregnancy Childbirth 2019, 19, 60. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.L.; Holscher, H.D. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv. Nutr. 2021, 12, 2190–2215. [Google Scholar] [CrossRef] [PubMed]
- Higuera-Gómez, A.; Ribot-Rodríguez, R.; Micó, V.; Cuevas-Sierra, A.; San Cristóbal, R.; Martínez, J.A. Lifestyle and Health-Related Quality of Life Relationships Concerning Metabolic Disease Phenotypes on the Nutrimdea Online Cohort. Int. J. Environ. Res. Public Health 2022, 20, 767. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Lopez, O.; Milagro, F.I.; Riezu-Boj, J.I.; Martinez, J.A. Epigenetic signatures underlying inflammation: An interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm. Res. 2021, 70, 29–49. [Google Scholar] [CrossRef] [PubMed]
- Di Giosia, P.; Stamerra, C.A.; Giorgini, P.; Jamialahamdi, T.; Butler, A.E.; Sahebkar, A. The role of nutrition in inflammaging. Ageing Res. Rev. 2022, 77, 101596. [Google Scholar] [CrossRef] [PubMed]
- Padua, E.; Caprio, M.; Feraco, A.; Camajani, E.; Gorini, S.; Armani, A.; Ruscello, B.; Bellia, A.; Strollo, R.; Lombardo, M. The Impact of Diet and Physical Activity on Fat-to-Lean Mass Ratio. Nutrients 2023, 16, 19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; Wang, X.; Zhang, X. Physical Exercise and Diet: Regulation of Gut Microbiota to Prevent and Treat Metabolic Disorders to Maintain Health. Nutrients 2023, 15, 1539. [Google Scholar] [CrossRef]
- Higuera-Gomez, A.; Ribot-Rodriguez, R.; San-Cristobal, R.; Martín-Hernández, R.; Mico, V.; Espinosa-Salinas, I.; de Molina, A.R.; Martinez, J.A. HRQoL and nutritional well-being dissimilarities between two different online collection methods: Value for digital health implementation. Digit. Health 2022, 8. [Google Scholar] [CrossRef]
- Schmidt, S.; Vilagut, G.; Garin, O.; Cunillera, O.; Tresserras, R.; Brugulat, P.; Mompart, A.; Medina, A.; Ferrer, M.; Alonso, J. Reference guidelines for the 12-Item Short-Form Health Survey version 2 based on the Catalan general population. Med. Clin. 2012, 139, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Vilagut, G.; Valderas, J.M.; Ferrer, M.; Garin, O.; López-García, E.; Alonso, J. Interpretation of SF-36 and SF-12 questionnaires in Spain: Physical and mental components. Med. Clin. 2008, 130, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; García-Arellano, A.; Toledo, E.; Salas-Salvadó, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Aros, F.; Gomez-Gracia, E.; et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: The PREDIMED trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Muñoz, S.; Corella, C.; Abarca-Sos, A.; Zaragoza, J. Validation of three short physical activity questionnaires with accelerometers among university students in Spain. J. Sports Med. Phys. Fit. 2017, 57, 1660–1668. [Google Scholar] [CrossRef] [PubMed]
- Mantilla Toloza, S.; Gómez-Conesa, A. International Physical Activity Questionnaire. An adequate instrument in population physical activity monitoring. Rev. Iberoam. Fisioter. Kinesiol. 2007, 10, 48–52. [Google Scholar] [CrossRef]
- Carbayo Herencia, J.A.; Rosich, N.; Panisello Royo, J.M.; Carro, A.; Allins Presas, J.; Panisello, M.; Solera Albero, J.; Tárraga López, P.J. Influence of the confinement that occurred in Spain due to the SARS-CoV-2 virus outbreak on adherence to the Mediterranean diet. Clin. Investig. Arterioscler. 2021, 33, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Andreo-López, M.C.; Contreras-Bolívar, V.; Muñoz-Torres, M.; García-Fontana, B.; García-Fontana, C. Influence of the Mediterranean Diet on Healthy Aging. Int. J. Mol. Sci. 2023, 24, 4491. [Google Scholar] [CrossRef] [PubMed]
- Eckstrom, E.; Neukam, S.; Kalin, L.; Wright, J. Physical Activity and Healthy Aging. Clin. Geriatr. Med. 2020, 36, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Celis-Morales, C.; Livingstone, K.M.; Marsaux, C.F.M.; Macready, A.L. Effect of personalized nutrition on healthrelated behaviour change: Evidence from the Food4me European randomized controlled trial. Int. J. Epidemiol. 2017, 46, 578–588. [Google Scholar] [PubMed]
- Strasser, B.; Wolters, M.; Weyh, C.; Krüger, K.; Ticinesi, A. The Effects of Lifestyle and Diet on Gut Microbiota Composition, Inflammation and Muscle Performance in Our Aging Society. Nutrients 2021, 13, 2045. [Google Scholar] [CrossRef]
- Yang, G.; Cao, X.; Li, X.; Zhang, J.; Ma, C.; Zhang, N.; Lu, Q.; Crimmins, E.M.; Gill, T.M.; Chen, X.; et al. Association of Unhealthy Lifestyle and Childhood Adversity with Acceleration of Aging among UK Biobank Participants. JAMA Netw. Open. 2022, 5, e2230690. [Google Scholar] [CrossRef] [PubMed]
- Putra, I.C.S.; Kamarullah, W.; Prameswari, H.S.; Pramudyo, M.; Iqbal, M.; Achmad, C.; Akbar, M.R.; Tiksnadi, B.B. Metabolically unhealthy phenotype in normal weight population and risk of mortality and major adverse cardiac events: A meta-analysis of 41 prospective cohort studies. Diabetes Metab. Syndr. 2022, 16, 102635. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Brazier, J. Health, Health-Related Quality of Life, and Quality of Life: What is the Difference? Pharmacoeconomics 2016, 34, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Ribot-Rodriguez, R.; Higuera-Gomez, A.; San-Cristobal, R.; Martín-Hernández, R.; Micó, V.; Espinosa-Salinas, I.; Ramírez de Molina, A.; Martínez, J.A. Cardiometabolic Health Status, Ethnicity and Health-Related Quality of Life (HRQoL) Disparities in an Adult Population: NutrIMDEA Observational Web-Based Study. Int. J. Environ. Res. Public Health 2022, 19, 2948. [Google Scholar] [CrossRef] [PubMed]
- Benatov, J.; Ochnik, D.; Rogowska, A.M.; Arzenšek, A.; Mars Bitenc, U. Prevalence and Sociodemographic Predictors of Mental Health in a Representative Sample of Young Adults from Germany, Israel, Poland, and Slovenia: A Longitudinal Study during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 1334. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.C.; Tou, N.X.; Low, J.A. Internet Use and Effects on Mental Well-being During the Lockdown Phase of the COVID-19 Pandemic in Younger versus Older Adults: Observational Cross-Sectional Study. JMIR Form. Res. 2024, 8, e46824. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.C.; Tou, N.X.; Low, J.A. A comparative study on mental health and adaptability between older and younger adults during the COVID-19 circuit breaker in Singapore. BMC Public Health 2022, 22, 507. [Google Scholar] [CrossRef]
- Jarosz, E.; Gugushvili, A. BMI and dissatisfaction with life: Contextual factors and socioemotional costs of obesity. Qual. Life Res. 2022, 31, 1167–1177. [Google Scholar] [CrossRef]
- Pano, O.; Sayón-Orea, C.; Gea, A.; Bes-Rastrollo, M.; Martínez-González, M.; Martínez, J.A. Nutritional Determinants of Quality of Life in a Mediterranean Cohort: The SUN Study. Int. J. Environ. Res. Public Health 2020, 17, 3897. [Google Scholar] [CrossRef]
- Laxy, M.; Teuner, C.; Holle, R.; Kurz, C. The association between BMI and health-related quality of life in the US population: Sex, age and ethnicity matters. Int. J. Obes. 2018, 42, 318–326. [Google Scholar] [CrossRef]
- Sayón-Orea, C.; Bes-Rastrollo, M.; Carlos, S.; Beunza, J.J.; Basterra-Gortari, F.J.; Martínez-González, M.A. Association between sleeping hours and siesta and the risk of obesity: The SUN Mediterranean Cohort. Obes. Facts. 2013, 6, 337–347. [Google Scholar] [CrossRef]
- Biddle, S.J.; Petrolini, I.; Pearson, N. Interventions designed to reduce sedentary behaviours in young people: A review of reviews. Br. J. Sports Med. 2014, 48, 182–186. [Google Scholar] [CrossRef]
- Pagoto, S.L.; Schneider, K.L.; Oleski, J.L.; Luciani, J.M.; Bodenlos, J.S.; Whited, M.C. Male inclusion in randomized controlled trials of lifestyle weight loss interventions. Obesity 2012, 20, 1234–1239. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística. Nota técnica. Encuesta Nacional de Salud de España 2017. Principales Resultados. Ministerio de Sanidad, Consumo y Bienestar Social. Available online: https://www.sanidad.gob.es/estadEstudios/estadisticas/encuestaNacional/encuesta2017.htm (accessed on 26 February 2024).
- Ohlsson, B.; Manjer, J. Sociodemographic and Lifestyle Factors in relation to Overweight Defined by BMI and “Normal-Weight Obesity”. J. Obes. 2020, 2020, 2070297. [Google Scholar] [CrossRef]
- Gutiérrez-Fisac, J.L.; Rodríguez Artalejo, F.; Guallar-Castillon, P.; Banegas Banegas, J.R.; del Rey Calero, J. Determinants of geographical variations in body mass index (BMI) and obesity in Spain. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 342–347. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef]
- Rowen, D.; Carlton, J.; Elliott, J. PROM Validation Using Paper-Based or Online Surveys: Data Collection Methods Affect the Sociodemographic and Health Profile of the Sample. Value Health 2019, 22, 845–850. [Google Scholar] [CrossRef]
- Celis-Morales, C.; Foster, H.; O’Donovan, C.; Woolhead, C.; Marsaux, C. Validation of Web-based self-reported socio-demographic and anthropometric data collected in the Food4Me Study. Proc. Nutr. Soc. 2014, 73, E78. [Google Scholar] [CrossRef]
- Lecube, A.; Sánchez, E.; Monereo, S.; Medina-Gómez, G.; Bellido, D.; García-Almeida, J.M.; Martínez de Icaya, P.; Malagón, M.M.; Goday, A.; Tinahones, F.J.; et al. Factors Accounting for Obesity and Its Perception among the Adult Spanish Population: Data from 1,000 Computer-Assisted Telephone Interviews. Obes. Facts. 2020, 13, 322–332. [Google Scholar] [CrossRef]
- Heponiemi, T.; Kaihlanen, A.-M.; Kouvonen, A.; Leemann, L.; Taipale, S.; Gluschkoff, K. The role of age and digital competence on the use of online health and social care services: A cross-sectional population-based survey. Digit. Health 2022, 8, 20552076221074485. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Sánchez-Villegas, A.; De Irala, J.; Marti, A.; Martínez, J.A. Mediterranean Diet and Stroke: Objectives and Design of the SUN Project. Nutr. Neurosci. 2002, 5, 65–73. [Google Scholar] [CrossRef]
- Bao, Y.; Bertoia, M.L.; Lenart, E.B.; Stampfer, M.J.; Willett, W.C.; Speizer, F.E.; Chavarro, J.E. Origin, Methods, and Evolution of the Three Nurses’ Health Studies. Am. J. Public Health 2016, 106, 1573–1581. [Google Scholar] [CrossRef]
- Khandpur, N.; Rossato, S.; Drouin-Chartier, J.-P.; Du, M.; Steele, E.M.; Sampson, L.; Monteiro, C.; Zhang, F.F.; Willett, W.; Fung, T.T.; et al. Categorising ultra-processed foods in large-scale cohort studies: Evidence from the Nurses’ Health Studies, the Health Professionals Follow-up Study, and the Growing Up Today Study. J. Nutr. Sci. 2021, 10, e77. [Google Scholar] [CrossRef]
- Shan, Z.; Li, Y.; Baden, M.Y.; Bhupathiraju, S.N.; Wang, D.D.; Sun, Q.; Rexrode, K.M.; Rimm, E.B.; Qi, L.; Willett, W.C.; et al. Association between Healthy Eating Patterns and Risk of Cardiovascular Disease. JAMA Intern. Med. 2020, 180, 1090–1100. [Google Scholar] [CrossRef]
Age | Sex | BMI | |||||||
---|---|---|---|---|---|---|---|---|---|
<40 Years Old | ≥40 Years Old | p-Value | Men | Women | p-Value | Low | High | p-Value | |
n | 4079 | 7804 | 3826 | 8057 | 5953 | 5930 | |||
General characteristics | |||||||||
Sex (%) | <0.001 | - | <0.001 | ||||||
Men | 30.89 | 69.11 | 100 | 0 | 32.33 | 67.67 | |||
Women | 35.96 | 64.04 | 0 | 100 | 58.53 | 41.47 | |||
Age (%) | - | <0.001 | <0.001 | ||||||
<40 years old | 100 | 0 | 28.98 | 71.02 | 63.89 | 36.11 | |||
≥40 years old | 0 | 100 | 33.88 | 66.12 | 42.89 | 57.11 | |||
Education (%) | <0.001 | <0.001 | 0.001 | ||||||
High school or less | 5.56 | 94.44 | 51.39 | 48.61 | 31.94 | 68.06 | |||
More than high school | 35.43 | 64.57 | 31.38 | 68.62 | 50.97 | 49.03 | |||
Obesity (%) | 30.4 | 5.55 | <0.001 | 5.15 | 4.47 | 0.1009 | 0.44 | 13.48 | <0.001 |
Diabetes (%) | 0.66 | 2.95 | <0.001 | 3.14 | 1.70 | <0.001 | 1.35 | 3.85 | <0.001 |
Hypertension (%) | 1.37 | 11.75 | <0.001 | 12.89 | 5.96 | <0.001 | 4.12 | 16.61 | <0.001 |
Dyslipidemia (%) | 6.13 | 20.52 | <0.001 | 19.34 | 13.79 | <0.001 | 12.55 | 21.85 | <0.001 |
Anthropometric measurement | |||||||||
Weight (kg) | 63.0 (55.0;73.0) | 68.0 (59.0;78.0) | <0.001 | 77.0 (70.0;85.0) | 61.0 (55.0;68.0) | <0.001 | 60.0 (55.0;67.0) | 80.0 (73.0;89.0) | <0.001 |
BMI (kg/m2) | 22.27 (20.42;24.61) | 24.01 (21.80;26.73) | <0.001 | 24.69 (22.84;27.13) | 22.67 (20.66;25.28) | <0.001 | 21.99 (20.43;23.44) | 27.53 (26.04;29.78) | <0.001 |
Dietary habits | |||||||||
MEDAS (points) | 9 (8;10) | 9 (8;11) | <0.001 | 9 (8;10) | 9 (8;11) | 0.8575 | 9 (8;11) | 9 (8;10) | <0.001 |
Number of meals (%) | <0.001 | <0.001 | <0.001 | ||||||
1 or 2 meals | 31.61 | 68.39 | 50.91 | 49.09 | 43.52 | 56.48 | |||
3 meals | 31.11 | 68.89 | 35.26 | 64.74 | 48.76 | 51.24 | |||
4 meals | 37.68 | 62.32 | 27.81 | 72.19 | 52.97 | 47.03 | |||
5 or more meals | 37.48 | 62.52 | 25.42 | 74.58 | 50.80 | 49.20 | |||
Snacking habits (%) | 50.36 | 42.75 | <0.001 | 40.98 | 47.44 | <0.001 | 44.00 | 48.26 | <0.001 |
Water consumption (%) | <0.001 | 0.5109 | 0.1547 | ||||||
1–4 glasses/day | 28.86 | 71.14 | 31.83 | 68.17 | 50.50 | 49.50 | |||
≥5 glasses/day | 37.59 | 62.41 | 32.41 | 67.59 | 49.86 | 50.14 | |||
Lifestyle factors | |||||||||
Physical activity (METs-min/w) | 2381.95 (2054.44) | 2460.57 (2166.25) | 0.3483 | 2910.20 (2459.52) | 2207.22 (1911.13) | <0.001 | 2580.00 (2173.26) | 2130.55 (2001.09) | <0.001 |
Nap habit (%) | 21.92 | 32.19 | <0.001 | 36.49 | 24.95 | <0.001 | 26.04 | 34.05 | <0.001 |
Sleep weekday (%) | <0.001 | <0.001 | 0.1272 | ||||||
≤8 h | 33.89 | 66.11 | 32.45 | 67.55 | 49.97 | 50.03 | |||
>8 h | 48.99 | 51.01 | 23.63 | 76.37 | 54.47 | 45.53 | |||
PCS (points) | 56.06 (53.41;58.34) | 55.29 (51.32;56.98) | <0.001 | 55.49 (53.39;57.05) | 55.49 (51.63;57.44) | 0.5261 | 56.06 (53.35;57.78) | 54.99 (51.02;56.71) | <0.001 |
MCS (points) | 44.82 (31.53;50.62) | 48.69 (39.60;52.51) | <0.001 | 49.61 (40.92;53.12) | 46.62 (34.37;51.55) | <0.001 | 46.98 (35.72;51.56) | 48.28 (36.90;52.51) | <0.001 |
MEDAS | Physical Activity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
<9 Points | ≥9 Points | p-Value ** | Low | High | p-Value ** | p-Value *** | |||||
♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ♂ | ♀ | ||||
n | 1355 | 2724 | 2471 | 5333 | 1564 | 4372 | 2262 | 3685 | |||
Age (%) | 0.305 | 0.724 | 0.792 | ||||||||
<40 years old | 30.83 | 69.17 * | 27.75 | 72.25 * | 23.08 | 76.92 * | 29.91 | 70.09 * | |||
≥40 years old | 34.80 | 65.20 | 33.46 | 66.54 | 25.76 | 74.24 | 35.15 | 64.85 | |||
Education (%) | 0.374 | 0.272 | 0.792 | ||||||||
High school or less | 59.26 | 40.74 * | 46.67 | 53.33 * | 66.67 | 33.33 * | 49.21 | 50.79 | |||
More than high school | 32.35 | 67.65 | 30.88 | 69.12 | 24.35 | 75.65 | 32.48 | 67.52 | |||
Obesity (%) | 6.94 | 6.13 | 4.17 | 3.62 | 0.365 | 7.35 | 5.63 * | 3.63 | 3.09 | 0.053 | 0.967 |
Diabetes (%) | 2.80 | 2.42 | 3.32 | 1.33 * | 0.003 | 3.64 | 1.88 * | 2.79 | 1.49 * | 0.859 | 0.244 |
Hypertension (%) | 11.88 | 5.91 * | 13.44 | 5.98 * | 0.371 | 15.60 | 6.68 * | 11.01 | 5.10 * | 0.397 | 0.139 |
Dyslipidemia (%) | 18.45 | 13.44 * | 19.83 | 13.97 * | 0.690 | 21.93 | 15.42 * | 17.55 | 11.86 * | 0.804 | 0.580 |
Anthropometric measurement | |||||||||||
Weight (kg) | 80.96 (15.25) | 64.12 (12.71) * | 77.49 (12.10) | 62.36 (10.85) * | <0.001 | 81.06 (15.04) | 64.34 (12.47) * | 77.10 (11.88) | 61.31 (10.09) * | 0.055 | 0.227 |
BMI (kg/m2) | 25.96 (4.33) | 23.95 (4.54) * | 24.94 (3.48) | 23.16 (3.81) * | 0.182 | 26.03 (4.38) | 23.98 (4.45) * | 24.80 (3.31) | 22.77 (3.51) * | 0.869 | 0.702 |
Dietary habits | |||||||||||
MEDAS (points) | 6.90 (1.28) | 7.08 (1.14) * | 10.29 (1.16) | 10.17 (1.08) * | <0.001 | 8.56 (2.03) | 8.79 (1.84) * | 9.46 (1.93) | 9.52 (1.73) | 0.030 | 0.570 |
Number of meals (%) | 0.563 | 0.563 | 0.196 | ||||||||
1 or 2 meals | 51.07 | 48.93* | 50.75 | 49.25 * | 42.17 | 57.83 * | 53.30 | 46.70 * | |||
3 meals | 36.75 | 63.25 | 34.39 | 65.61 | 28.15 | 71.85 | 36.48 | 63.52 | |||
4 meals | 27.94 | 72.06 | 27.75 | 72.25 | 18.43 | 81.57 | 29.09 | 70.91 | |||
5 or more meals | 20.53 | 79.47 | 27.22 | 72.78 | 13.06 | 86.94 | 26.87 | 73.13 | |||
Snacking habits (%) | 46.86 | 54.22 * | 37.76 | 43.97 * | 0.653 | 44.63 | 50.59 * | 38.46 | 43.69 * | 0.773 | 0.753 |
Water consumption (%) | 0.075 | 0.109 | 0.475 | ||||||||
1–4 glasses/day | 31.62 | 68.38 | 31.98 | 68.02 | 24.75 | 75.25 | 33.39 | 66.61 | |||
≥5 glasses/day | 34.47 | 65.53 | 31.50 | 68.50 | 24.91 | 75.09 | 33.33 | 66.67 | |||
Lifestyle factors | |||||||||||
Physical activity (METs-min/w) | 2301.43 (2232.04) | 1782.37 (1778.86) * | 3244.02 (2514.35) | 2424.27 (1939.86) * | <0.001 | 981.98 (561.29) | 935.59 (550.84) * | 4243.41 (2380.30) | 3716.34 (1852.14) * | <0.001 | 0.143 |
Nap habit weekday (%) | 32.47 | 24.01 * | 38.69 | 25.43 * | 0.030 | 34.65 | 24.11 * | 37.75 | 25.94 * | 0.671 | 0.534 |
Nap habit weekend (%) | 32.47 | 24.01 * | 38.69 | 25.43 * | 0.030 | 34.65 | 24.11 * | 37.75 | 25.94 * | 0.671 | 0.030 |
Sleep weekday (%) | 0.661 | 0.124 | 0.557 | ||||||||
≤8 h | 33.58 | 66.42 * | 31.87 | 68.13 * | 25.13 | 74.87 | 33.58 | 66.42 * | |||
>8 h | 23.24 | 76.76 | 23.90 | 76.10 | 18.99 | 81.01 | 25.00 | 75.00 | |||
PCS (points) | 55.2 (51.5;57.0) | 55.2 (50.9;57.5) * | 55.6 (53.1;57.1) | 55.6 (52.1;57.4) * | 0.895 | 55.0 (51.1;56.7) | 55.0 (50.5;57.0) | 55.9 (54.4;57.3) | 56.1 (53.6;57.8) | 0.147 | 0.047 |
MCS (points) | 48.2 (37.6;52.5) | 44.3 (30.9;50.5) * | 50.2 (43.1;53.5) | 47.5 (36.5;51.8) * | 0.776 | 48.7 (37.9;52.4) | 45.6 (32.6;51.0) * | 50.2 (43.1;53.5) | 47.5 (36.6;51.9) * | 0.947 | 0.559 |
Body Mass Index (BMI) | |||
---|---|---|---|
β | p-Value | R2 | |
<0.001 | 0.1765 | ||
Age (years) | 1.048 | <0.001 | |
Sex (M/W) | −2.001 | <0.001 | |
Educational level | 0.117 | 0.105 | |
Number of meals | 0.096 | 0.020 | |
Snacking (yes/no) | 0.306 | <0.001 | |
Water (glasses) | 0.288 | <0.001 | |
Sleep weeks (hours) | −0.182 | <0.001 | |
PCS (points) | −0.132 | <0.001 | |
MCS (points) | −0.016 | <0.001 | |
MedDiet (points) | −0.286 | <0.001 | |
Physical Activity (METs-d/w) | −0.508 | <0.001 | |
MedDiet#METs | 0.024 | 0.047 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higuera-Gómez, A.; de Cuevillas, B.; Ribot-Rodríguez, R.; San-Cristobal, R.; de la O, V.; Dos Santos, K.; Cuevas-Sierra, A.; Martínez, J.A. Reciprocal and Differential Influences of Mediterranean Diet and Physical Activity on Adiposity in a Cohort of Young and Older than 40 Years Adults. Nutrients 2024, 16, 1777. https://doi.org/10.3390/nu16111777
Higuera-Gómez A, de Cuevillas B, Ribot-Rodríguez R, San-Cristobal R, de la O V, Dos Santos K, Cuevas-Sierra A, Martínez JA. Reciprocal and Differential Influences of Mediterranean Diet and Physical Activity on Adiposity in a Cohort of Young and Older than 40 Years Adults. Nutrients. 2024; 16(11):1777. https://doi.org/10.3390/nu16111777
Chicago/Turabian StyleHiguera-Gómez, Andrea, Begoña de Cuevillas, Rosa Ribot-Rodríguez, Rodrigo San-Cristobal, Víctor de la O, Karina Dos Santos, Amanda Cuevas-Sierra, and J. Alfredo Martínez. 2024. "Reciprocal and Differential Influences of Mediterranean Diet and Physical Activity on Adiposity in a Cohort of Young and Older than 40 Years Adults" Nutrients 16, no. 11: 1777. https://doi.org/10.3390/nu16111777
APA StyleHiguera-Gómez, A., de Cuevillas, B., Ribot-Rodríguez, R., San-Cristobal, R., de la O, V., Dos Santos, K., Cuevas-Sierra, A., & Martínez, J. A. (2024). Reciprocal and Differential Influences of Mediterranean Diet and Physical Activity on Adiposity in a Cohort of Young and Older than 40 Years Adults. Nutrients, 16(11), 1777. https://doi.org/10.3390/nu16111777