The Association between Dietary Nutrient Intake and Acceleration of Aging: Evidence from NHANES
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Dietary Nutrient Intake
2.3. Assessment of Phenotypic Age and Phenotypic Age Acceleration
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Association between Individual Dietary Nutrient Intake and Accelerated Aging
4. Discussion
4.1. Strengths
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanasi, E.; Ayilavarapu, S.; Jones, J. The aging population: Demographics and the biology of aging. Periodontology 2000 2016, 72, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Zhu, C.; Wang, H.; Ji, M.; Huang, Y.; Wei, X.; Zhang, J.; Wang, Y.; Yin, R.; Dai, J.; et al. Association between biological aging and lung cancer risk: Cohort study and Mendelian randomization analysis. iScience 2023, 26, 106018. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. [Google Scholar] [CrossRef] [PubMed]
- Benetos, A.; Okuda, K.; Lajemi, M.; Kimura, M.; Thomas, F.; Skurnick, J.; Labat, C.; Bean, K.; Aviv, A. Telomere length as an indicator of biological aging: The gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 2001, 37, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany N. Y.) 2018, 10, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kuo, P.L.; Horvath, S.; Crimmins, E.; Ferrucci, L.; Levine, M. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. PLoS Med. 2018, 15, e1002718. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Duan, W.; Jia, X.; Huang, X.; Liu, Y.; Meng, F.; Ni, C. Associations of combined phenotypic ageing and genetic risk with incidence of chronic respiratory diseases in the UK Biobank: A prospective cohort study. Eur. Respir. J. 2024, 63, 2301720. [Google Scholar] [CrossRef]
- Gao, X.; Geng, T.; Jiang, M.; Huang, N.; Zheng, Y.; Belsky, D.W.; Huang, T. Accelerated biological aging and risk of depression and anxiety: Evidence from 424,299 UK Biobank participants. Nat. Commun. 2023, 14, 2277. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cao, X.; Zhang, J.; Fu, J.; Mohedaner, M.; Danzengzhuoga; Sun, X.; Yang, G.; Yang, Z.; Kuo, C.L.; et al. Accelerated aging mediates the associations of unhealthy lifestyles with cardiovascular disease, cancer, and mortality. J. Am. Geriatr. Soc. 2024, 72, 181–193. [Google Scholar] [CrossRef]
- Ruan, Z.; Li, D.; Huang, D.; Liang, M.; Xu, Y.; Qiu, Z.; Chen, X. Relationship between an ageing measure and chronic obstructive pulmonary disease, lung function: A cross-sectional study of NHANES, 2007–2010. BMJ Open 2023, 13, e076746. [Google Scholar] [CrossRef]
- Campisi, J.; Kapahi, P.; Lithgow, G.J.; Melov, S.; Newman, J.C.; Verdin, E. From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019, 571, 183–192. [Google Scholar] [CrossRef]
- Partridge, L.; Deelen, J.; Slagboom, P.E. Facing up to the global challenges of ageing. Nature 2018, 561, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Gong, H.; Yu, Q.; Yuan, M.; Jiang, Y.; Wang, J.; Huang, P.; Zhou, J. The Relationship between Dietary Copper intake and Telomere Length in Hypertension. J. Nutr. Health Aging 2022, 26, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Wu, M.; Yang, S.; Wang, Y.; Li, H. Association of dietary selenium intake with telomere length in middle-aged and older adults. Clin. Nutr. 2020, 39, 3086–3091. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.A. Dietary Fiber and Telomere Length in 5674 U.S. Adults: An NHANES Study of Biological Aging. Nutrients 2018, 10, 400. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Gao, W.; Zhao, Z.; Xu, X.; Bu, H.; Su, H.; Mao, G.; Chen, J. Dietary flavonoids intake contributes to delay biological aging process: Analysis from NHANES dataset. J. Transl. Med. 2023, 21, 492. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Chen, X.; Ding, Y.; Chen, X.; He, X. Composite dietary antioxidant index associated with delayed biological aging: A population-based study. Aging (Albany N. Y.) 2024, 16, 15–27. [Google Scholar] [CrossRef]
- Zhu, X.; Xue, J.; Maimaitituerxun, R.; Xu, H.; Zhou, Q.; Zhou, Q.; Dai, W.; Chen, W. Relationship between dietary macronutrients intake and biological aging: A cross-sectional analysis of NHANES data. Eur. J. Nutr. 2024, 63, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.D.; Ferderber, C.; Kinder, B.; Wei, Y.J. Trends in Dietary Vitamin A Intake Among US Adults by Race and Ethnicity, 2003–2018. JAMA 2023, 329, 1026–1029. [Google Scholar] [CrossRef]
- Chen, S.; Liu, J.; Kang, X.; Cui, K.; Zhang, D. Association of dietary mineral mixture with depressive symptoms: A combination of Bayesian approaches. Prev. Med. 2023, 175, 107661. [Google Scholar] [CrossRef]
- Zhu, G.; Li, Z.; Tang, L.; Shen, M.; Zhou, Z.; Wei, Y.; Zhao, Y.; Bai, S.; Song, L. Associations of Dietary Intakes with Gynecological Cancers: Findings from a Cross-Sectional Study. Nutrients 2022, 14, 5026. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, Y.; Liu, F.; Chen, H.; Tan, T.; Yao, P.; Tang, Y. Biological aging mediates the associations between urinary metals and osteoarthritis among U.S. adults. BMC Med. 2022, 20, 207. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.; Belsky, D.W. A toolkit for quantification of biological age from blood chemistry and organ function test data: BioAge. Geroscience 2021, 43, 2795–2808. [Google Scholar] [CrossRef]
- Iranpour, S.; Sabour, S. Inverse association between caffeine intake and depressive symptoms in US adults: Data from National Health and Nutrition Examination Survey (NHANES) 2005–2006. Psychiatry Res. 2019, 271, 732–739. [Google Scholar] [CrossRef]
- Wu, Z.; Ruan, Z.; Liang, G.; Wang, X.; Wu, J.; Wang, B. Association between dietary magnesium intake and peripheral arterial disease: Results from NHANES 1999–2004. PLoS ONE 2023, 18, e0289973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Qiu, H. Association between Dietary Zinc Intake and Hyperuricemia among Adults in the United States. Nutrients 2018, 10, 568. [Google Scholar] [CrossRef]
- Zheng, G.; Cai, Y.; Guo, Y.; Song, F.; Hu, Y.; Li, L.; Zhu, L. The association between dietary selenium intake and Hashimoto’s thyroiditis among US adults: National Health and Nutrition Examination Survey (NHANES), 2007–2012. J. Endocrinol. Investig. 2023, 46, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, G.N.; Sanlier, N. The relationship between nutrition and depression in the life process: A mini-review. Exp. Gerontol. 2023, 172, 112072. [Google Scholar] [CrossRef]
- McEligot, A.J.; Poynor, V.; Sharma, R.; Panangadan, A. Logistic LASSO Regression for Dietary Intakes and Breast Cancer. Nutrients 2020, 12, 2652. [Google Scholar] [CrossRef]
- Yong, L.C.; Brown, C.C.; Schatzkin, A.; Dresser, C.M.; Slesinski, M.J.; Cox, C.S.; Taylor, P.R. Intake of vitamins E, C, and A and risk of lung cancer. The NHANES I epidemiologic followup study. First National Health and Nutrition Examination Survey. Am. J. Epidemiol. 1997, 146, 231–243. [Google Scholar] [CrossRef]
- Wang, X.; Sarker, S.K.; Cheng, L.; Dang, K.; Hu, J.; Pan, S.; Zhang, J.; Xu, X.; Li, Y. Association of dietary inflammatory potential, dietary oxidative balance score and biological aging. Clin. Nutr. 2024, 43, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Paul, L. Diet, nutrition and telomere length. J. Nutr. Biochem. 2011, 22, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Arruda, L.F.; Arruda, S.F.; Campos, N.A.; de Valencia, F.F.; Siqueira, E.M. Dietary iron concentration may influence aging process by altering oxidative stress in tissues of adult rats. PLoS ONE 2013, 8, e61058. [Google Scholar] [CrossRef]
- Barbagallo, M.; Veronese, N.; Dominguez, L.J. Magnesium in Aging, Health and Diseases. Nutrients 2021, 13, 463. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Wang, J.; Feng, J.; Cao, B. Zinc in Cognitive Impairment and Aging. Biomolecules 2022, 12, 1000. [Google Scholar] [CrossRef] [PubMed]
- Suwannasom, N.; Kao, I.; Pruß, A.; Georgieva, R.; Bäumler, H. Riboflavin: The Health Benefits of a Forgotten Natural Vitamin. Int. J. Mol. Sci. 2020, 21, 950. [Google Scholar] [CrossRef] [PubMed]
- Nwanaji-Enwerem, J.C.; Colicino, E.; Gao, X.; Wang, C.; Vokonas, P.; Boyer, E.W.; Baccarelli, A.A.; Schwartz, J. Associations of Plasma Folate and Vitamin B6 With Blood DNA Methylation Age: An Analysis of One-Carbon Metabolites in the VA Normative Aging Study. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Kato, N.; Kimoto, A.; Zhang, P.; Bumrungkit, C.; Karunaratne, S.; Yanaka, N.; Kumrungsee, T. Relationship of Low Vitamin B6 Status with Sarcopenia, Frailty, and Mortality: A Narrative Review. Nutrients 2024, 16, 177. [Google Scholar] [CrossRef] [PubMed]
- Kannan, K.; Jain, S.K. Effect of vitamin B6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H2O2-treated U937 monocytes. Free Radic. Biol. Med. 2004, 36, 423–428. [Google Scholar] [CrossRef]
- Yu, X.; Liang, X.; Han, K.; Shi, F.; Meng, N.; Li, Q. Anti-Aging Effect of Dietary Fiber Compound Mediated by Guangxi Longevity Dietary Pattern on Natural Aging Mice. Nutrients 2022, 14, 3181. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Chen, Y.J. Association between Dietary Calcium and Potassium and Diabetic Retinopathy: A Cross-Sectional Retrospective Study. Nutrients 2022, 14, 1086. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Cao, T.; Liu, C.; Wang, D.; Zhang, H.; Tong, J.; Lin, Z. Association between magnesium, copper, and potassium intakes with risk of rheumatoid arthritis: A cross-sectional study from National Health and Nutrition Examination Survey (NHANES). BMC Public Health 2023, 23, 2085. [Google Scholar] [CrossRef] [PubMed]
- Leitão, C.; Mignano, A.; Estrela, M.; Fardilha, M.; Figueiras, A.; Roque, F.; Herdeiro, M.T. The Effect of Nutrition on Aging-A Systematic Review Focusing on Aging-Related Biomarkers. Nutrients 2022, 14, 554. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ke, Z.; Luo, J. Thiamine Deficiency and Neurodegeneration: The Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy. Mol. Neurobiol. 2017, 54, 5440–5448. [Google Scholar] [CrossRef] [PubMed]
- Rogeri, P.S.; Zanella, R., Jr.; Martins, G.L.; Garcia, M.D.A.; Leite, G.; Lugaresi, R.; Gasparini, S.O.; Sperandio, G.A.; Ferreira, L.H.B.; Souza-Junior, T.P.; et al. Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients 2021, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Volaklis, K.; Fuchs, D.; Burtscher, M. Role of Dietary Protein and Muscular Fitness on Longevity and Aging. Aging Dis. 2018, 9, 119–132. [Google Scholar] [CrossRef] [PubMed]
- van Dronkelaar, C.; van Velzen, A.; Abdelrazek, M.; van der Steen, A.; Weijs, P.J.M.; Tieland, M. Minerals and Sarcopenia; The Role of Calcium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on Muscle Mass, Muscle Strength, and Physical Performance in Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2018, 19, 6–11.e13. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Zheng, Y.; Joyce, B.T.; Jiang, H.; Greenland, P.; Jacobs, D.R., Jr.; Zhang, K.; Liu, L.; Allen, N.B.; Wilkins, J.T.; et al. Relative contributions of six lifestyle- and health-related exposures to epigenetic aging: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Clin. Epigenet. 2022, 14, 85. [Google Scholar] [CrossRef] [PubMed]
- Nannini, D.R.; Joyce, B.T.; Zheng, Y.; Gao, T.; Wang, J.; Liu, L.; Jacobs, D.R.; Schreiner, P.J.; Liu, C.; Dai, Q.; et al. Alcohol consumption and epigenetic age acceleration in young adults. Aging (Albany N. Y.) 2023, 15, 371–395. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Lai, M.; Nannini, D.R.; Hou, L.; Joehanes, R.; Huan, T.; Levy, D.; Ma, J.; Liu, C. Alcohol consumption and epigenetic age acceleration across human adulthood. Aging (Albany N. Y.) 2023, 15, 10938–10971. [Google Scholar] [CrossRef]
- Monacelli, F.; Acquarone, E.; Giannotti, C.; Borghi, R.; Nencioni, A. Vitamin C, Aging and Alzheimer’s Disease. Nutrients 2017, 9, 670. [Google Scholar] [CrossRef]
- Ostojic, S.M.; Hillesund, E.R.; Øverby, N.C.; Vik, F.N.; Medin, A.C. Individual nutrients and serum klotho levels in adults aged 40–79 years. Food Sci. Nutr. 2023, 11, 3279–3286. [Google Scholar] [CrossRef] [PubMed]
- Popa, D.S.; Bigman, G.; Rusu, M.E. The Role of Vitamin K in Humans: Implication in Aging and Age-Associated Diseases. Antioxidants 2021, 10, 566. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Ishigami, A. Anti-aging effects of coffee. Aging (Albany N. Y.) 2017, 9, 1863–1864. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Zhang, W.; Zhang, Y.; Zhang, M.; Zhang, Y.; Niu, X.; Zhao, Q.; Liu, Z.; Li, Y.; Diao, A. Caffeine promotes the expression of telomerase reverse transcriptase to regulate cellular senescence and aging. Food Funct. 2021, 12, 2914–2924. [Google Scholar] [CrossRef]
- Abdoli, F.; Davoudi, M.; Momeni, F.; Djafari, F.; Dolatshahi, B.; Hosseinzadeh, S.; Aliyaki, H.; Khalili, Z. Estimate the prevalence of daily caffeine consumption, caffeine use disorder, caffeine withdrawal and perceived harm in Iran: A cross-sectional study. Sci. Rep. 2024, 14, 7644. [Google Scholar] [CrossRef]
- Huang, C.; Liang, Z.; Ma, J.; Hu, D.; Yao, F.; Qin, P. Total sugar, added sugar, fructose, and sucrose intake and all-cause, cardiovascular, and cancer mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Nutrition 2023, 111, 112032. [Google Scholar] [CrossRef]
PhenoAgeAceel < 0 Unweighted Sample Size (%) or Mean (SD) a | PhenoAgeAceel ≥ 0 Unweighted Sample Size (%) or Mean (SD) a | p-Value b | |
---|---|---|---|
All participants | 1642 (35.0) | 3050 (65.0) | |
Age | 48.2 (17.5) | 50.0 (17.3) | 0.044 |
Sex | |||
Female | 789 (49.3) | 1511 (49.6) | 0.851 |
Male | 853 (50.7) | 1539 (50.4) | |
Ethnicity | |||
White | 654 (70.5) | 1270 (67.8) | |
Black | 267 (6.7) | 585 (8.7) | 0.010 |
Mexican | 190 (6.0) | 480 (9.0) | |
Other | 531 (16.8) | 715 (14.6) | |
Educational level | |||
Pre-high school | 260 (8.2) | 586 (11.5) | <0.001 |
Post-high school | 1076 (75.6) | 1706 (61.7) | |
High school | 305 (16.2) | 754 (26.8) | |
Exercise | |||
No | 642 (28.3) | 1707 (49.7) | <0.001 |
Yes | 999 (71.7) | 1337 (50.3) | |
Diabetes | |||
No | 1527 (95.1) | 2405 (83.5) | <0.001 |
Yes | 115 (4.9) | 643 (16.5) | |
History of disease | |||
No | 706 (44.0) | 819 (27.5) | <0.001 |
Yes | 933 (56.0) | 2225 (72.5) | |
Smoking status | |||
No | 1087 (67.9) | 1612 (52.3) | <0.001 |
Yes | 554 (32.1) | 1435 (47.7) | |
BMI (kg/m2) | |||
25 ≤ BMI < 30 | 605 (36.2) | 927 (28.9) | <0.001 |
30 ≤ BMI | 333 (21.7) | 1564 (53.6) | |
BMI < 25 | 696 (42.2) | 529 (17.6) | |
Family PIR | |||
<100% | 1284 (91.9) | 2210 (86.9) | <0.001 |
>100% | 205 (8.1) | 548 (13.1) | |
Drinking status | |||
No | 208 (11.6) | 379(11.8) | 0.925 |
Yes | 1121 (88.4) | 1980(88.2) | |
Hyperlipemia | |||
No | 1070 (68.1) | 1859 (63.8) | 0.077 |
Yes | 565 (31.9) | 1163 (36.2) | |
Hypertension | |||
No | 1174 (74.8) | 1735 (61.9) | <0.001 |
Yes | 468 (25.2) | 1307 (38.1) | |
PhenoAge | 45.0 (17.7) | 55.7 (18.2) | <0.001 |
PhenoAgeAceel | −3.1 (2.3) | 5.7 (4.8) | <0.001 |
PhenoAgeAceel < 0 Mean (SD) a | PhenoAgeAceel ≥ 0 Mean (SD) a | p-Value b | |
---|---|---|---|
Macronutrients | |||
Protein (gm) | 80.4 [60.3, 102.1] | 75.9 [58.2, 99.4] | 0.003 |
Carbohydrate (gm) | 233.0 [174.1, 293.3] | 224.6 [168.3, 291.2] | 0.165 |
Total sugars (gm) | 88.9 [60.3, 125.0] | 90.4 [59.9, 130.6] | 0.419 |
Total fat (gm) | 79.9 [58.9, 103.1] | 78.1 [58.2, 103.5] | 0.549 |
Cholesterol (mg) | 248.2 [162.0, 364.0] | 268.0 [173.0, 402.0] | 0.029 |
Total saturated fatty acids (gm) | 24.9 [17.9, 34.5] | 25.6 [18.1, 34.7] | 0.529 |
Total monounsaturated fatty acids (gm) | 27.8 [20.3, 37.0] | 26.5 [19.3, 35.7] | 0.194 |
Total polyunsaturated fatty acids (gm) | 18.4 [13.1, 23.7] | 17.6 [12.4, 24.6] | 0.428 |
Vitamins | |||
Vitamin E (mg) | 8.7 [6.1, 12.2] | 7.7 [5.4, 10.9] | <0.001 |
Retinol (mcg) | 372.7 [224.1, 567.4] | 360.0 [223.0, 546.2] | 0.478 |
Vitamin A (mcg) | 611.5 [399.9, 896.0] | 530.2 [352.0, 791.3] | <0.001 |
Alpha-carotene (mcg) | 122.0 [38.5, 624.5] | 73.5 [22.5, 375.0] | <0.001 |
Beta-carotene (mcg) | 1650.2 [666.3, 3811.3] | 1112.2 [453.2, 2559.2] | <0.001 |
Beta-cryptoxanthin (mcg) | 43.3 [18.5, 104.5] | 41.5 [16.0, 92.9] | 0.064 |
Lycopene (mcg) | 2634.0 [866.5, 6716.5] | 2568.8 [810.0, 6761.0] | 0.469 |
Lutein + zeaxanthin (mcg) | 1076.5 [599.6, 2233.7] | 900.5 [510.0, 1719.0] | <0.001 |
Vitamin B1 (mg) | 1.6 [1.1, 2.0] | 1.4 [1.1, 1.9] | 0.003 |
Vitamin B2 (mg) | 2.0 [1.5, 2.7] | 1.9 [1.4, 2.5] | 0.005 |
Niacin (mg) | 24.5 [18.0, 32.5] | 23.8 [17.5, 30.7] | 0.057 |
Vitamin B6 (mg) | 1.9 [1.4, 2.7] | 1.8 [1.3, 2.5] | <0.001 |
Total choline (mg) | 312.4 [230.8, 415.2] | 316.0 [227.3, 416.8] | 0.806 |
Vitamin B12 (mcg) | 3.9 [2.6, 6.2] | 4.0 [2.6, 6.0] | 0.698 |
Vitamin C (mg) | 73.5 [35.1, 123.6] | 55.5 [28.0, 100.5] | <0.001 |
Vitamin D (mcg) | 3.6 [2.0, 6.1] | 3.5 [1.9, 5.8] | 0.139 |
Vitamin K (mcg) | 101.4 [61.1, 170.0] | 84.6 [51.6, 143.2] | <0.001 |
Minerals | |||
Calcium (mg) | 913.2 [658.5, 1246.4] | 875.5 [623.9, 1169.4] | 0.009 |
Phosphorus (mg) | 1335.5 [1060.8, 1729.2] | 1299.7 [1007.5, 1640.8] | 0.005 |
Magnesium (mg) | 310.1 [238.8, 403.5] | 279.0 [210.5, 355.5] | <0.001 |
Iron (mg) | 13.7 [10.2, 18.2] | 12.8 [9.7, 16.9] | 0.001 |
Zinc (mg) | 10.5 [7.9, 14.5] | 10.0 [7.3, 13.6] | 0.001 |
Copper (mg) | 1.2 [0.9, 1.6] | 1.1 [0.8, 1.4] | <0.001 |
Sodium (mg) | 3351.6 [2489.1, 4319.0] | 3255.9 [2474.4, 4148.6] | 0.397 |
Potassium (mg) | 2669.0 [2077.3, 3392.3] | 2493.0 [1916.4, 3120.0] | <0.001 |
Selenium (mcg) | 110.0 [80.7, 144.3] | 107.9 [78.0, 141.1] | 0.099 |
Other nutritional components | |||
Dietary fiber (gm) | 17.6 [12.3, 24.4] | 15.1 [10.7, 21.0] | <0.001 |
Caffeine (mg) | 123.5 [47.5, 236.8] | 139.5 [48.0, 252.1] | 0.245 |
Theobromine (mg) | 13.4 [0.0, 41.0] | 14.9 [0.0, 44.5] | 0.707 |
Alcohol (gm) | 0.0 [0.0, 12.9] | 0.0 [0.0, 5.6] | <0.001 |
Variable | Model 1 | Model 2 | ||
---|---|---|---|---|
Β (95% CI) | p-Value | Β (95% CI) | p-Value | |
Macronutrients | ||||
Protein | −1.143 (−1.854, −0.432) | 0.004 | −0.822 (−1.439, −0.205) | 0.023 |
Carbohydrate | −0.206 (−0.758, 0.346) | 0.472 | 0.006 (−0.610, 0.623) | 0.984 |
Total sugars | 0.323 (−0.113, 0.760) | 0.160 | 0.479 (0.037, 0.920) | 0.055 |
Total fat | −0.323 (−1.122, 0.476) | 0.436 | −0.530 (−1.208, 0.147) | 0.151 |
Cholesterol | 0.361 (−0.018, 0.740) | 0.074 | 0.054 (−0.320, 0.427) | 0.783 |
Total saturated fatty acids | 0.236 (−0.453, 0.925) | 0.508 | −0.234 (−0.867, 0.399) | 0.483 |
Total monounsaturated fatty acids | −0.576 (−1.299, 0.147) | 0.131 | −0.626 (−1.222, −0.030) | 0.062 |
Total polyunsaturated fatty acids | −0.545 (−1.171, 0.080) | 0.100 | −0.482 (−1.045, 0.080) | 0.119 |
Vitamins | ||||
Vitamin E | −1.662 (−2.314, −1.010) | <0.001 | −1.023 (−1.598, −0.449) | 0.004 |
Retinol | −0.295 (−0.873, 0.284) | 0.328 | −0.296 (−0.824, 0.232) | 0.294 |
Vitamin A | −0.900 (−1.492, −0.308) | 0.007 | −0.589 (−1.059, −0.120) | 0.030 |
Alpha-carotene | −0.296 (−0.439, −0.154) | <0.001 | −0.050 (−0.163, 0.062) | 0.399 |
Beta-carotene | −0.696 (−0.921, −0.471) | <0.001 | −0.300 (−0.457, −0.143) | 0.003 |
Beta-cryptoxanthin | −0.131 (−0.250, −0.013) | 0.040 | 0.025 (−0.115, 0.164) | 0.736 |
Lycopene | −0.014 (−0.071, 0.044) | 0.647 | 0.005 (−0.056, 0.066) | 0.872 |
Lutein + zeaxanthin | −0.791 (−1.038, −0.544) | <0.001 | −0.217 (−0.429, −0.006) | 0.067 |
Vitamin B1 | −1.121 (−1.638, −0.603) | <0.001 | −0.693 (−1.181, −0.204) | 0.017 |
Vitamin B2 | −1.143 (−1.783, −0.504) | 0.002 | −0.789 (−1.303, −0.275) | 0.011 |
Niacin | −0.727 (−1.349, −0.105) | 0.031 | −0.462 (−1.035, 0.111) | 0.140 |
Vitamin B6 | −0.974 (−1.464, −0.483) | 0.001 | −0.643 (−1.092, −0.194) | 0.016 |
Total choline | −0.562 (−1.176, 0.053) | 0.086 | −0.462 (−0.997, 0.073) | 0.116 |
Vitamin B12 | −0.197 (−0.548, 0.154) | 0.281 | −0.300 (−0.710, 0.111) | 0.178 |
Vitamin C | −0.857 (−1.135, −0.579) | <0.001 | −0.334 (−0.651, −0.016) | 0.062 |
Vitamin D | −0.197 (−0.419, 0.025) | 0.094 | −0.044 (−0.254, 0.166) | 0.689 |
Vitamin K | −1.106 (−1.461, −0.751) | <0.001 | −0.465 (−0.791, −0.138) | 0.016 |
Minerals | ||||
Calcium | −0.702 (−1.243, −0.161) | 0.018 | −0.478 (−0.959, 0.002) | 0.075 |
Phosphorus | −1.432 (−2.251, −0.614) | 0.002 | −0.894 (−1.605, −0.184) | 0.030 |
Magnesium | −2.444 (−3.201, −1.686) | <0.001 | −1.126 (−1.913, −0.339) | 0.016 |
Iron | −1.280 (−1.911, −0.648) | 0.001 | −0.919 (−1.532, −0.305) | 0.013 |
Zinc | −1.078 (−1.660, −0.496) | 0.001 | −0.860 (−1.438, −0.282) | 0.013 |
Copper | −2.125 (−2.940, −1.311) | <0.001 | −1.111 (−1.782, −0.439) | 0.007 |
Sodium | −0.175 (−0.856, 0.506) | 0.619 | −0.292 (−0.862, 0.279) | 0.336 |
Potassium | −2.034 (−2.728, −1.341) | <0.001 | −0.908 (−1.517, −0.298) | 0.013 |
Selenium | −0.587 (−1.185, 0.010) | 0.066 | −0.428 (−0.980, 0.123) | 0.154 |
Other nutritional components | ||||
Dietary fiber | −2.068 (−2.711, −1.426) | <0.001 | −1.190 (−1.708, −0.672) | 0.001 |
Caffeine | 0.067 (−0.057, 0.191) | 0.299 | 0.012 (−0.092, 0.115) | 0.830 |
Theobromine | −0.041 (−0.115, 0.033) | 0.286 | 0.006 (−0.060, 0.071) | 0.870 |
Alcohol | −0.166 (−0.227, −0.105) | <0.001 | −0.089 (−0.148, −0.030) | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Li, P.; Jiang, Y.; Yang, X.; Luo, Y.; Tao, L.; Guo, X.; Gao, B. The Association between Dietary Nutrient Intake and Acceleration of Aging: Evidence from NHANES. Nutrients 2024, 16, 1635. https://doi.org/10.3390/nu16111635
Ma J, Li P, Jiang Y, Yang X, Luo Y, Tao L, Guo X, Gao B. The Association between Dietary Nutrient Intake and Acceleration of Aging: Evidence from NHANES. Nutrients. 2024; 16(11):1635. https://doi.org/10.3390/nu16111635
Chicago/Turabian StyleMa, Jianhua, Pingan Li, Yue Jiang, Xinghua Yang, Yanxia Luo, Lixin Tao, Xiuhua Guo, and Bo Gao. 2024. "The Association between Dietary Nutrient Intake and Acceleration of Aging: Evidence from NHANES" Nutrients 16, no. 11: 1635. https://doi.org/10.3390/nu16111635
APA StyleMa, J., Li, P., Jiang, Y., Yang, X., Luo, Y., Tao, L., Guo, X., & Gao, B. (2024). The Association between Dietary Nutrient Intake and Acceleration of Aging: Evidence from NHANES. Nutrients, 16(11), 1635. https://doi.org/10.3390/nu16111635