Obesity, Dietary Patterns, and Hormonal Balance Modulation: Gender-Specific Impacts
Abstract
:1. Introduction
2. Body Composition and Gender Specificity in Body Fat Distribution
3. Obesity and Hormonal Imbalances in Males
4. Obesity and Hormonal Imbalances in Females
5. Nutritional Influences on Hormonal Balance and Gender-Specific Implications for Obesity-Related Endocrine Disruptions
6. Nutritional Impact on Hormonal Regulation
7. Relevance of Future Research
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hiller-Sturmhöfel, S.; Bartke, A. The Endocrine System: An Overview. Alcohol Health Res. World 1998, 22, 153–164. [Google Scholar]
- Hall, K.D.; Farooqi, I.S.; Friedman, J.M.; Klein, S.; Loos, R.J.F.; Mangelsdorf, D.J.; O’Rahilly, S.; Ravussin, E.; Redman, L.M.; Ryan, D.H.; et al. The Energy Balance Model of Obesity: Beyond Calories in, Calories Out. Am. J. Clin. Nutr. 2022, 115, 1243–1254. [Google Scholar] [CrossRef]
- Calcaterra, V.; Verduci, E.; Stagi, S.; Zuccotti, G. How the Intricate Relationship between Nutrition and Hormonal Equilibrium significantly Influences Endocrine and Reproductive Health in Adolescent Girls. Front. Nutr. 2024, 11, 1337328. [Google Scholar] [CrossRef]
- Köhrle, J. Selenium, Iodine and Iron-Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int. J. Mol. Sci. 2023, 24, 3393. [Google Scholar] [CrossRef]
- Song, R.; Wang, B.; Yao, Q.; Li, Q.; Jia, X.; Zhang, J. The Impact of Obesity on Thyroid Autoimmunity and Dysfunction: A Systematic Review and Meta-Analysis. Front. Immunol. 2019, 10, 2349. [Google Scholar] [CrossRef]
- Stachowicz, M.; Lebiedzińska, A. The Effect of Diet Components on the Level of Cortisol. Eur. Food Res. Technol. 2016, 242, 2001–2009. [Google Scholar] [CrossRef]
- Tricò, D.; Moriconi, D.; Berta, R.; Baldi, S.; Quinones-Galvan, A.; Guiducci, L.; Taddei, S.; Mari, A.; Nannipieri, M. Effects of Low-Carbohydrate Versus Mediterranean Diets on Weight Loss, Glucose Metabolism, Insulin Kinetics and Β-Cell Function in Morbidly Obese Individuals. Nutrients 2021, 13, 1345. [Google Scholar] [CrossRef]
- Engin, A. Diet-Induced Obesity and the Mechanism of Leptin Resistance. Adv. Exp. Med. Biol. 2017, 960, 381–397. [Google Scholar]
- Dinu, M.; Colombini, B.; Pagliai, G.; Cesari, F.; Gori, A.; Giusti, B.; Marcucci, R.; Sofi, F. Effects of a Dietary Intervention with Mediterranean and Vegetarian Diets on Hormones that Influence Energy Balance: Results from the CARDIVEG Study. Int. J. Food Sci. Nutr. 2020, 71, 362–369. [Google Scholar] [CrossRef]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef]
- Longo, M.; Zatterale, F.; Naderi, J.; Parrillo, L.; Formisano, P.; Raciti, G.A.; Beguinot, F.; Miele, C. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int. J. Mol. Sci. 2019, 20, 2358. [Google Scholar] [CrossRef]
- Woo, C.Y.; Jang, J.E.; Lee, S.E.; Koh, E.H.; Lee, K.U. Mitochondrial Dysfunction in Adipocytes as a Primary Cause of Adipose Tissue Inflammation. Diabetes Metab. J. 2019, 43, 247–256. [Google Scholar] [CrossRef]
- Wilding, J.P.H. Endocrine Testing in Obesity. Eur. J. Endocrinol. 2020, 182, C13–C15. [Google Scholar] [CrossRef]
- Pasquali, R.; Vicennati, V.; Gambineri, A. Adrenal and Gonadal Function in Obesity. J. Endocrinol. Invest. 2002, 25, 893–898. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight. WHO Global InfoBase. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 10 April 2024).
- Istituto Superiore Di Sanità—Sorveglianza PASSI. Available online: https://www.epicentro.iss.it/passi/dati/sovrappeso#dati (accessed on 10 April 2024).
- Muscogiuri, G.; Verde, L.; Vetrani, C.; Barrea, L.; Savastano, S.; Colao, A. Obesity: A Gender-View. J. Endocrinol. Investig. 2023, 47, 299. [Google Scholar] [CrossRef]
- Best, D.; Bhattacharya, S. Obesity and Fertility. Horm. Mol. Biol. Clin. Investig. 2015, 24, 5–10. [Google Scholar] [CrossRef]
- Hammoud, A.; Carrell, D.T.; Meikle, A.W.; Xin, Y.; Hunt, S.C.; Adams, T.D.; Gibson, M. An Aromatase Polymorphism Modulates the Relationship between Weight and Estradiol Levels in Obese Men. Fertil. Steril. 2010, 94, 1734–1738. [Google Scholar] [CrossRef]
- Abe, T.; Brechue, W.F.; Fujita, S.; Brown, J.B. Gender Differences in FFM Accumulation and Architectural Characteristics of Muscle. Med. Sci. Sports Exerc. 1998, 30, 1066–1070. [Google Scholar] [CrossRef]
- Westerterp, K.R.; Goran, M.I. Relationship between Physical Activity Related Energy Expenditure and Body Composition: A Gender Difference. Int. J. Obes. Relat. Metab. Disord. 1997, 21, 184–188. [Google Scholar] [CrossRef]
- Shi, H.; Clegg, D.J. Sex Differences in the Regulation of Body Weight. Physiol. Behav. 2009, 97, 199–204. [Google Scholar] [CrossRef]
- Mateo-Gallego, R.; Bea, A.M.; Jarauta, E.; Perez-Ruiz, M.R.; Civeira, F. Age and Sex Influence the Relationship between Waist Circumference and Abdominal Fat Distribution Measured by Bioelectrical Impedance. Nutr. Res. 2012, 32, 466–469. [Google Scholar] [CrossRef]
- Kuk, J.L.; Lee, S.; Heymsfield, S.B.; Ross, R. Waist Circumference and Abdominal Adipose Tissue Distribution: Influence of Age and Sex. Am. J. Clin. Nutr. 2005, 81, 1330–1334. [Google Scholar] [CrossRef]
- Kim, H.I.; Kim, J.T.; Yu, S.H.; Kwak, S.H.; Jang, H.C.; Park, K.S.; Kim, S.Y.; Lee, H.K.; Cho, Y.M. Gender Differences in Diagnostic Values of Visceral Fat Area and Waist Circumference for Predicting Metabolic Syndrome in Koreans. J. Korean Med. Sci. 2011, 26, 906–913. [Google Scholar] [CrossRef]
- Taylor, R.W.; Grant, A.M.; Williams, S.M.; Goulding, A. Sex Differences in Regional Body Fat Distribution from Pre- to Postpuberty. Obesity 2010, 18, 1410–1416. [Google Scholar] [CrossRef]
- Shi, H.; Seeley, R.J.; Clegg, D.J. Sexual Differences in the Control of Energy Homeostasis. Front. Neuroendocrinol. 2009, 30, 396–404. [Google Scholar] [CrossRef]
- Guglielmi, V.; Sbraccia, P. Obesity Phenotypes: Depot-Differences in Adipose Tissue and their Clinical Implications. Eat. Weight Disord. 2018, 23, 3–14. [Google Scholar] [CrossRef]
- Serrano Fuentes, N.; Rogers, A.; Portillo, M.C. Social Network Influences and the Adoption of Obesity-Related Behaviours in Adults: A Critical Interpretative Synthesis Review. BMC Public Health 2019, 19, 1178. [Google Scholar] [CrossRef]
- Lee, A.; Cardel, M.; Donahoo, W.T. Social and Environmental Factors Influencing Obesity. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Ulijaszek, S. Obesity and Environments External to the Body. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2023, 378, 20220226. [Google Scholar] [CrossRef]
- Liu, B.; Liu, X.; Liang, Z.; Wang, J. Gut Microbiota in Obesity. World J. Gastroenterol. 2021, 27, 3837–3850. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and Inflammation: The Linking Mechanism and the Complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Leisegang, K.; Sengupta, P.; Agarwal, A.; Henkel, R. Obesity and Male Infertility: Mechanisms and Management. Andrologia 2021, 53, e13617. [Google Scholar] [CrossRef] [PubMed]
- Uddandrao, V.V.S.; Brahma Naidu, P.; Chandrasekaran, P.; Saravanan, G. Pathophysiology of Obesity-Related Infertility and its Prevention and Treatment by Potential Phytotherapeutics. Int. J. Obes. 2024, 48, 147–165. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Rodriguez, A.; Kauffman, A.S.; Cherrington, B.D.; Borges, C.S.; Roepke, T.A.; Laconi, M. Emerging Insights into Hypothalamic-Pituitary-Gonadal Axis Regulation and Interaction with Stress Signalling. J. Neuroendocrinol. 2018, 30, e12590. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, A.; Noce, A.; Moriconi, E.; Rampello, T.; Marrone, G.; Di Daniele, N.; Rovella, V. MOSH Syndrome (Male Obesity Secondary Hypogonadism): Clinical Assessment and Possible Therapeutic Approaches. Nutrients 2018, 10, 474. [Google Scholar] [CrossRef] [PubMed]
- Tremellen, K. Gut endotoxin leading to a decline in gonadal function (GELDING)—A novel theory for the development of late onset hypogonadism in obese men. Basic Clin. Androl. 2016, 26, 7. [Google Scholar] [CrossRef] [PubMed]
- Schulster, M.; Bernie, A.M.; Ramasamy, R. The role of estradiol in male reproductive function. Asian J. Androl. 2016, 18, 435–440. [Google Scholar] [PubMed]
- Caprio, M.; Isidori, A.M.; Carta, A.R.; Moretti, C.; Dufau, M.L.; Fabbri, A. Expression of functional leptin receptors in rodent leydig cells. Endocrinology 1999, 140, 4939–4947. [Google Scholar] [CrossRef]
- Aiceles, V.; da Fonte Ramos, C. A Link between Hypothyroidism, Obesity and Male Reproduction. Horm. Mol. Biol. Clin. Investig. 2016, 25, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, S.S.; Cabler, S.; McAlister, D.A.; Sabanegh, E.; Agarwal, A. The Effect of Obesity on Sperm Disorders and Male Infertility. Nat. Rev. Urol. 2010, 7, 153–161. [Google Scholar] [CrossRef]
- Dong, Y.; Mai, X.; Xu, X.; Li, Y. Effects of the Body Mass Index of Males on Hormone Levels, Sperm and Embryo Parameters, and Clinical Outcomes in Non-Obstructive Azoospermia: A Systematic Review and Meta-Analysis. Transl. Androl. Urol. 2023, 12, 392–405. [Google Scholar] [CrossRef]
- Katib, A. Mechanisms Linking Obesity to Male Infertility. Cent. Eur. J. Urol. 2015, 68, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.P.; Soldin, O.P.; Guo, T.; Soldin, S.J. Steroid Hormones: Relevance and Measurement in the Clinical Laboratory. Clin. Lab. Med. 2004, 24, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Kasman, A.M.; Li, S.; Luke, B.; Sutcliffe, A.G.; Pacey, A.A.; Eisenberg, M.L. Male Infertility and Future Cardiometabolic Health: Does the Association Vary by Sociodemographic Factors? Urology 2019, 133, 121–128. [Google Scholar] [CrossRef]
- Tsai, E.C.; Matsumoto, A.M.; Fujimoto, W.Y.; Boyko, E.J. Association of Bioavailable, Free, and Total Testosterone with Insulin Resistance: Influence of Sex Hormone-Binding Globulin and Body Fat. Diabetes Care 2004, 27, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Bieniek, J.M.; Kashanian, J.A.; Deibert, C.M.; Grober, E.D.; Lo, K.C.; Brannigan, R.E.; Sandlow, J.I.; Jarvi, K.A. Influence of Increasing Body Mass Index on Semen and Reproductive Hormonal Parameters in a Multi-Institutional Cohort of Subfertile Men. Fertil. Steril. 2016, 106, 1070–1075. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jackson, G.; Jones, T.H.; Matsumoto, A.M.; Nehra, A.; Perelman, M.A.; Swerdloff, R.S.; Traish, A.; Zitzmann, M.; Cunningham, G. Low Testosterone Associated with Obesity and the Metabolic Syndrome Contributes to Sexual Dysfunction and Cardiovascular Disease Risk in Men with Type 2 Diabetes. Diabetes Care 2011, 34, 1669–1675. [Google Scholar] [CrossRef] [PubMed]
- Calderon, B.; Gomez-Martin, J.M.; Vega-Pinero, B.; Martin-Hidalgo, A.; Galindo, J.; Luque-Ramirez, M.; Escobar-Morreale, H.F.; Botella-Carretero, J.I. Prevalence of Male Secondary Hypogonadism in Moderate to Severe Obesity and its Relationship with Insulin Resistance and Excess Body Weight. Andrology 2016, 4, 62–67. [Google Scholar] [CrossRef]
- Leisegang, K.; Bouic, P.J.D.; Menkveld, R.; Henkel, R.R. Obesity is Associated with Increased Seminal Insulin and Leptin Alongside Reduced Fertility Parameters in a Controlled Male Cohort. Reprod. Biol. Endocrinol. 2014, 12, 34. [Google Scholar] [CrossRef] [PubMed]
- van der Valk, E.S.; Savas, M.; van Rossum, E.F.C. Stress and Obesity: Are there More Susceptible Individuals? Curr. Obes. Rep. 2018, 7, 193–203. [Google Scholar] [CrossRef]
- Stalder, T.; Steudte-Schmiedgen, S.; Alexander, N.; Klucken, T.; Vater, A.; Wichmann, S.; Kirschbaum, C.; Miller, R. Stress-Related and Basic Determinants of Hair Cortisol in Humans: A Meta-Analysis. Psychoneuroendocrinology 2017, 77, 261–274. [Google Scholar] [CrossRef]
- Noppe, G.; Van Den Akker, E.; De Rijke, Y.B.; Koper, J.W.; Jaddoe, V.W.; Van Rossum, E. Long-Term Glucocorticoid Concentrations as a Risk Factor for Childhood Obesity and Adverse Body-Fat Distribution. Int. J. Obes. 2016, 40, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Rosmond, R.; Dallman, M.F.; Björntorp, P. Stress-Related Cortisol Secretion in Men: Relationships with Abdominal Obesity and Endocrine, Metabolic and Hemodynamic Abnormalities1. J. Clin. Endocrinol. Metab. 1998, 83, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Ghamari-Langroudi, M.; Vella, K.R.; Srisai, D.; Sugrue, M.L.; Hollenberg, A.N.; Cone, R.D. Regulation of Thyrotropin-Releasing Hormone-Expressing Neurons in Paraventricular Nucleus of the Hypothalamus by Signals of Adiposity. Mol. Endocrinol. 2010, 24, 2366–2381. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, S.; Beck-Peccoz, P. Physiology of the Hypothalamic-Pituitary-Thyroid Axis. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol. 2021, 12, 585887. [Google Scholar] [CrossRef] [PubMed]
- Mele, C.; Mai, S.; Cena, T.; Pagano, L.; Scacchi, M.; Biondi, B.; Aimaretti, G.; Marzullo, P. The Pattern of TSH and fT4 Levels Across Different BMI Ranges in a Large Cohort of Euthyroid Patients with Obesity. Front. Endocrinol. 2022, 13, 1029376. [Google Scholar] [CrossRef] [PubMed]
- Longhi, S.; Radetti, G. Thyroid Function and Obesity. J. Clin. Res. Pediatr. Endocrinol. 2013, 5 (Suppl. S1), 40–44. [Google Scholar] [PubMed]
- Gupta, V.; Srivastava, R. 2.45 GHz Microwave Radiation Induced Oxidative Stress: Role of Inflammatory Cytokines in Regulating Male Fertility through Estrogen Receptor Alpha in Gallus Gallus Domesticus. Biochem. Biophys. Res. Commun. 2022, 629, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Indias, I.; Cardona, F.; Tinahones, F.J.; Queipo-Ortuño, M.I. Impact of the Gut Microbiota on the Development of Obesity and Type 2 Diabetes Mellitus. Front. Microbiol. 2014, 5, 190. [Google Scholar] [CrossRef] [PubMed]
- Haro, C.; Rangel-Zúñiga, O.A.; Alcalá-Díaz, J.F.; Gómez-Delgado, F.; Pérez-Martínez, P.; Delgado-Lista, J.; Quintana-Navarro, G.M.; Landa, B.B.; Navas-Cortés, J.A.; Tena-Sempere, M.; et al. Intestinal Microbiota is Influenced by Gender and Body Mass Index. PLoS ONE 2016, 11, e0154090. [Google Scholar] [CrossRef]
- Cox, A.J.; West, N.P.; Cripps, A.W. Obesity, Inflammation, and the Gut Microbiota. Lancet Diabetes Endocrinol. 2015, 3, 207–215. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.; Chen, X.; Wang, J.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal. Transduct Target Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Cao, X.; Qin, D.; Liu, Y.; Liu, Y.; Hua, J.; Peng, S. Gut Microbiota Supports Male Reproduction Via Nutrition, Immunity, and Signaling. Front. Microbiol. 2022, 13, 977574. [Google Scholar] [CrossRef] [PubMed]
- Segall-Gutierrez, P.; Du, J.; Niu, C.; Ge, M.; Tilley, I.; Mizraji, K.; Stanczyk, F.Z. Effect of Subcutaneous Depot-Medroxyprogesterone Acetate (DMPA-SC) on Serum Androgen Markers in Normal-Weight, Obese, and Extremely Obese Women. Contraception 2012, 86, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Ding, E.L.; Song, Y.; Malik, V.S.; Liu, S. Sex Differences of Endogenous Sex Hormones and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. JAMA 2006, 295, 1288–1299. [Google Scholar] [CrossRef]
- Costello, M.F.; Misso, M.L.; Balen, A.; Boyle, J.; Devoto, L.; Garad, R.M.; Hart, R.; Johnson, L.; Jordan, C.; Legro, R.S.; et al. A brief update on the evidence supporting the treatment of infertility in polycystic ovary syndrome. Aust. N. Z. J. Obstet. Gynaecol 2019, 59, 867–873. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, M.O.; Dumesic, D.A.; Chazenbalk, G.; Azziz, R. Polycystic Ovary Syndrome: Etiology, Pathogenesis and Diagnosis. Nat. Rev. Endocrinol. 2011, 7, 219–231. [Google Scholar] [CrossRef] [PubMed]
- DeUgarte, C.M.; Bartolucci, A.A.; Azziz, R. Prevalence of Insulin Resistance in the Polycystic Ovary Syndrome using the Homeostasis Model Assessment. Fertil. Steril. 2005, 83, 1454–1460. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Alvero, R. Racial and ethnic differences in physiology and clinical symptoms of polycystic ovary syndrome. Semin. Reprod. Med. 2013, 31, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Melo, A.S.; Ferriani, R.A.; Navarro, P.A. Treatment of infertility in women with polycystic ovary syndrome: Approach to clinical practice. Clinics 2015, 70, 765–769. [Google Scholar] [CrossRef]
- Faghfoori, Z.; Fazelian, S.; Shadnoush, M.; Goodarzi, R. Nutritional management in women with polycystic ovary syndrome: A review study. Diabetes Metab. Syndr. 2017, 11, S429–S432. [Google Scholar] [CrossRef]
- Lim, S.S.; Hutchison, S.K.; Van Ryswyk, E.; Norman, R.J.; Teede, H.J.; Moran, L.J. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst. Rev. 2019, 3, CD007506. [Google Scholar] [CrossRef] [PubMed]
- Varlamov, O.; Chu, M.P.; McGee, W.K.; Cameron, J.L.; O’Rourke, R.W.; Meyer, K.A.; Bishop, C.V.; Stouffer, R.L.; Roberts, C.T.J. Ovarian Cycle-Specific Regulation of Adipose Tissue Lipid Storage by Testosterone in Female Nonhuman Primates. Endocrinology 2013, 154, 4126–4135. [Google Scholar] [CrossRef] [PubMed]
- Elbers, J.M.; Asscheman, H.; Seidell, J.C.; Megens, J.A.; Gooren, L.J. Long-Term Testosterone Administration Increases Visceral Fat in Female to Male Transsexuals. J. Clin. Endocrinol. Metab. 1997, 82, 2044–2047. [Google Scholar] [CrossRef]
- Talmor, A.; Dunphy, B. Female Obesity and Infertility. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Sadia, S.; Waqar, F.; Akhtar, T.; Sultana, S. Characteristics of Infertile Patients with Ovulatory Dysfunction and their Relation to Body Mass Index. J. Ayub Med. Coll. Abbottabad 2009, 21, 12–16. [Google Scholar] [PubMed]
- Brewer, C.J.; Balen, A.H. The Adverse Effects of Obesity on Conception and Implantation. Reproduction 2010, 140, 347–364. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.H.; Moley, K.H. The Impact of Obesity on Egg Quality. J. Assist. Reprod. Genet. 2011, 28, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Linné, Y. Effects of Obesity on Women’s Reproduction and Complications during Pregnancy. Obes. Rev. 2004, 5, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Silvestris, E.; de Pergola, G.; Rosania, R.; Loverro, G. Obesity as Disruptor of the Female Fertility. Reprod. Biol. Endocrinol. 2018, 16, 22. [Google Scholar] [CrossRef]
- Eng, P.C.; Phylactou, M.; Qayum, A.; Woods, C.; Lee, H.; Aziz, S.; Moore, B.; Miras, A.D.; Comninos, A.N.; Tan, T.; et al. Obesity-Related Hypogonadism in Women. Endocr. Rev. 2024, 45, 171–189. [Google Scholar] [CrossRef]
- Jain, A.; Polotsky, A.J.; Rochester, D.; Berga, S.L.; Loucks, T.; Zeitlian, G.; Gibbs, K.; Polotsky, H.N.; Feng, S.; Isaac, B.; et al. Pulsatile luteinizing hormone amplitude and progesterone metabolite excretion are reduced in obese women. J. Clin. Endocrinol. Metab. 2007, 92, 2468–2473. [Google Scholar] [CrossRef] [PubMed]
- Salem, A.M. Variation of Leptin during Menstrual Cycle and its Relation to the Hypothalamic-Pituitary-Gonadal (HPG) Axis: A Systematic Review. Int. J. Womens Health 2021, 13, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B. Subclinical Hypothyroidism in Patients with Obesity and Metabolic Syndrome: A Narrative Review. Nutrients 2023, 16, 87. [Google Scholar] [CrossRef] [PubMed]
- Mullur, R.; Liu, Y.; Brent, G.A. Thyroid Hormone Regulation of Metabolism. Physiol. Rev. 2014, 94, 355–382. [Google Scholar] [CrossRef] [PubMed]
- Goossens, G.H.; Jocken, J.W.E.; Blaak, E.E. Sexual Dimorphism in Cardiometabolic Health: The Role of Adipose Tissue, Muscle and Liver. Nat. Rev. Endocrinol. 2021, 17, 47–66. [Google Scholar] [CrossRef] [PubMed]
- Dupuis, L.; Schuermann, Y.; Cohen, T.; Siddappa, D.; Kalaiselvanraja, A.; Pansera, M.; Bordignon, V.; Duggavathi, R. Role of Leptin Receptors in Granulosa Cells during Ovulation. Reproduction 2013, 147, 221–229. [Google Scholar] [CrossRef]
- Wolodko, K.; Castillo-Fernandez, J.; Kelsey, G.; Galvao, A. Revisiting the Impact of Local Leptin Signaling in Folliculogenesis and Oocyte Maturation in Obese Mothers. Int. J. Mol. Sci. 2021, 22, 4270. [Google Scholar] [CrossRef]
- Richards, J.S.; Ren, Y.A.; Candelaria, N.; Adams, J.E.; Rajkovic, A. Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr. Rev. 2018, 39, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.; Chávez, M.; Olivar, L.; Rojas, M.; Morillo, J.; Mejías, J.; Calvo, M.; Bermúdez, V. Polycystic Ovary Syndrome, Insulin Resistance, and Obesity: Navigating the Pathophysiologic Labyrinth. Int. J. Reprod. Med. 2014, 2014, 719050. [Google Scholar] [CrossRef]
- Qamar, U.; Atkin, S.L.; Sathyapalan, T. Chapter 6—Obesity and Polycystic Ovary Syndrome. In Practical Guide to Obesity Medicine; Weaver, J.U., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 59–70. [Google Scholar]
- Abraham, S.B.; Rubino, D.; Sinaii, N.; Ramsey, S.; Nieman, L.K. Cortisol, Obesity, and the Metabolic Syndrome: A Cross-Sectional Study of Obese Subjects and Review of the Literature. Obesity 2013, 21, 105. [Google Scholar] [CrossRef]
- Mårin, P.; Darin, N.; Amemiya, T.; Andersson, B.; Jern, S.; Björntorp, P. Cortisol Secretion in Relation to Body Fat Distribution in Obese Premenopausal Women. Metab. Clin. Exp. 1992, 41, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A Novel and Compact Review on the Role of Oxidative Stress in Female Reproduction. Reprod. Biol. Endocrinol. 2018, 16, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Flehmig, G.; Scholz, M.; Kloting, N.; Fasshauer, M.; Tonjes, A.; Stumvoll, M.; Youn, B.; Bluher, M. Identification of Adipokine Clusters Related to Parameters of Fat Mass, Insulin Sensitivity and Inflammation. PLoS ONE 2014, 9, e99785. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, X.; Zhou, B.; Ge, B.; Tian, J.; Chen, J. Effects of Female Obesity on Conception, Pregnancy and the Health of Offspring. Front. Endocrinol. 2022, 13, 949228. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.J.; Siakowska, M.; Banaszewska, B.; Pawelczyk, L.; Duleba, A.J.; Kelley, S.T.; Thackray, V.G. Gut Microbial Diversity in Women with Polycystic Ovary Syndrome Correlates with Hyperandrogenism. J. Clin. Endocrinol. Metab. 2018, 103, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.G.; Ferrari, F.; Ciebiera, M.; Zgliczynska, M.; Rapisarda, A.M.C.; Vecchio, G.M.; Pino, A.; Angelico, G.; Knafel, A.; Riemma, G.; et al. The Role of Genital Tract Microbiome in Fertility: A Systematic Review. Int. J. Mol. Sci. 2021, 23, 180. [Google Scholar] [CrossRef] [PubMed]
- Dube, R.; Kar, S.S. Genital Microbiota and Outcome of Assisted Reproductive Treatment-A Systematic Review. Life 2022, 12, 1867. [Google Scholar] [CrossRef]
- Davis, J.S. Connecting Female Infertility to Obesity, Inflammation, and Maternal Gut Dysbiosis. Endocrinology 2016, 157, 1725–1727. [Google Scholar] [CrossRef] [PubMed]
- Pang, G.; Xie, J.; Chen, Q.; Hu, Z. Energy Intake, Metabolic Homeostasis, and Human Health. Food Sci. Hum. Wellness 2014, 3, 89–103. [Google Scholar] [CrossRef]
- Tapsell, L.C.; Neale, E.P.; Satija, A.; Hu, F.B. Foods, Nutrients, and Dietary Patterns: Interconnections and Implications for Dietary Guidelines. Adv. Nutr. 2016, 7, 445–454. [Google Scholar] [CrossRef]
- Akgün, N.; Cimşit Kemahlı, M.N.; Pradas, J.B. The effect of dietary habits on oocyte/sperm quality. J. Turk. Ger. Gynecol. Assoc. 2023, 24, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Redman, L.M.; Ravussin, E. Caloric Restriction in Humans: Impact on Physiological, Psychological, and Behavioral Outcomes. Antioxid. Redox Signal. 2011, 14, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Amato, A.A.; Wheeler, H.B.; Blumberg, B. Obesity and Endocrine-Disrupting Chemicals. Endocr Connect. 2021, 10, R87–R105. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Parekh, N.; Panner Selvam, M.K.; Henkel, R.; Shah, R.; Homa, S.T.; Ramasamy, R.; Ko, E.; Tremellen, K.; Esteves, S.; et al. Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility. World J. Mens. Health. 2019, 37, 296–312. [Google Scholar] [CrossRef] [PubMed]
- Walford, R.L.; Mock, D.; Verdery, R.; MacCallum, T. Calorie Restriction in Biosphere 2: Alterations in Physiologic, Hematologic, Hormonal, and Biochemical Parameters in Humans Restricted for a 2-Year Period. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, 211. [Google Scholar] [CrossRef] [PubMed]
- Saris, W.H. Very-Low-Calorie Diets and Sustained Weight Loss. Obes. Res. 2001, 9 (Suppl. S4), 295S–301S. [Google Scholar] [CrossRef] [PubMed]
- Suchacki, K.J.; Thomas, B.J.; Ikushima, Y.M.; Chen, K.; Fyfe, C.; Tavares, A.A.S.; Sulston, R.J.; Lovdel, A.; Woodward, H.J.; Han, X.; et al. The Effects of Caloric Restriction on Adipose Tissue and Metabolic Health are Sex- and Age-Dependent. eLife 2023, 12, 88080. [Google Scholar] [CrossRef] [PubMed]
- Turcato, E.; Zamboni, M.; De Pergola, G.; Armellini, F.; Zivelonghi, A.; Bergamo-Andreis, I.A.; Giorgino, R.; Bosello, O. Interrelationships between Weight Loss, Body Fat Distribution and Sex Hormones in Pre- and Postmenopausal Obese Women. J. Intern. Med. 1997, 241, 363–372. [Google Scholar] [CrossRef]
- Nakamura, Y.; Walker, B.R.; Ikuta, T. Systematic Review and Meta-Analysis Reveals Acutely Elevated Plasma Cortisol Following Fasting but Not Less Severe Calorie Restriction. Stress 2016, 19, 151–157. [Google Scholar] [CrossRef]
- Smith, S.J.; Teo, S.Y.M.; Lopresti, A.L.; Heritage, B.; Fairchild, T.J. Examining the Effects of Calorie Restriction on Testosterone Concentrations in Men: A Systematic Review and Meta-Analysis. Nutr. Rev. 2022, 80, 1222–1236. [Google Scholar] [CrossRef]
- Furini, C.; Spaggiari, G.; Simoni, M.; Greco, C.; Santi, D. Ketogenic State Improves Testosterone Serum Levels—Results from a Systematic Review and Meta-Analysis. Endocrine 2023, 79, 273–282. [Google Scholar] [CrossRef]
- Kyung, N.H.; Barkan, A.; Klibanski, A.; Badger, T.M.; McArthur, J.W.; Axelrod, L.; Beitins, I.Z. Effect of Carbohydrate Supplementation on Reproductive Hormones during Fasting in Men. J. Clin. Endocrinol. Metab. 1985, 60, 827–835. [Google Scholar] [CrossRef]
- Lado-Abeal, J.; Prieto, D.; Lorenzo, M.; Lojo, S.; Febrero, M.; Camarero, E.; Cabezas-Cerrato, J. Differences between Men and Women as Regards the Effects of Protein-Energy Malnutrition on the Hypothalamic-Pituitary-Gonadal Axis. Nutrition 1999, 15, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.L.; Distelmaier, K.; Lanza, I.R.; Irving, B.A.; Robinson, M.M.; Konopka, A.R.; Shulman, G.I.; Nair, K.S. Mechanism by Which Caloric Restriction Improves Insulin Sensitivity in Sedentary Obese Adults. Diabetes 2016, 65, 74–84. [Google Scholar] [CrossRef]
- Dong, H.; Sun, Y.; Nie, L.; Cui, A.; Zhao, P.; Leung, W.K.; Wang, Q. Metabolic memory: Mechanisms and diseases. Sig. Transduct. Target Ther. 2024, 9, 38. [Google Scholar] [CrossRef]
- Carrageta, D.F.; Pereira, S.C.; Ferreira, R.; Monteiro, M.P.; Oliveira, P.F.; Alves, M.G. Signatures of metabolic diseases on spermatogenesis and testicular metabolism. Nature reviews. Urology 2024. [Google Scholar] [CrossRef]
- Zafar, M.I.; Chen, X. Effects of Calorie Restriction on Preserving Male Fertility Particularly in a State of Obesity. Curr Obes Rep. 2024. [Google Scholar] [CrossRef]
- Maugeri, A. The Effects of Dietary Interventions on DNA Methylation: Implications for Obesity Management. Int. J. Mol. Sci. 2020, 21, 8670. [Google Scholar] [CrossRef]
- Milagro, F.I.; Campión, J.; Cordero, P.; Goyenechea, E.; GGómez-Uriz, A.M.; Abete, I.; Zulet, M.A.; Martínez, J.A. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J. 2011, 25, 1378–1389. [Google Scholar] [CrossRef] [PubMed]
- Kiddy, D.S.; Hamilton-Fairley, D.; Bush, A.; Short, F.; Anyaoku, V.; Reed, M.J.; Franks, S. Improvement in Endocrine and Ovarian Function during Dietary Treatment of Obese Women with Polycystic Ovary Syndrome. Clin. Endocrinol. 1992, 36, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Ylli, D.; Sidhu, S.; Parikh, T.; Burman, K.D. Endocrine Changes in Obesity. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef] [PubMed]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and Evolution of the Western Diet: Health Implications for the 21st Century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef] [PubMed]
- López-Taboada, I.; González-Pardo, H.; Conejo, N.M. Western Diet: Implications for Brain Function and Behavior. Front. Psychol. 2020, 11, 564413. [Google Scholar] [CrossRef]
- Ricci, E.; Bravi, F.; Noli, S.; Ferrari, S.; De Cosmi, V.; La Vecchia, I.; Cavadini, M.; La Vecchia, C.; Parazzini, F. Mediterranean Diet and the Risk of Poor Semen Quality: Cross-Sectional Analysis of Men Referring to an Italian Fertility Clinic. Andrology 2019, 7, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Ballal, K.; Wilson, C.R.; Harmancey, R.; Taegtmeyer, H. Obesogenic High Fat Western Diet Induces Oxidative Stress and Apoptosis in Rat Heart. Mol. Cell. Biochem. 2010, 344, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Blaner, W.S.; Shmarakov, I.O.; Traber, M.G. Vitamin A and Vitamin E: Will the Real Antioxidant Please Stand Up? Annu. Rev. Nutr. 2021, 41, 105–131. [Google Scholar] [CrossRef]
- Manzel, A.; Muller, D.N.; Hafler, D.A.; Erdman, S.E.; Linker, R.A.; Kleinewietfeld, M. Role of “Western Diet” in Inflammatory Autoimmune Diseases. Curr. Allergy Asthma Rep. 2014, 14, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10, 3164. [Google Scholar] [CrossRef] [PubMed]
- Hill, P.; Wynder, E.; Garbaczewski, L.; Garnes, H.; Walker, A.R.; Helman, P. Plasma Hormones and Lipids in Men at Different Risk for Coronary Heart Disease. Am. J. Clin. Nutr. 1980, 33, 1010–1018. [Google Scholar] [CrossRef]
- Hu, T.; Chen, Y.C.; Lin, P.; Shih, C.; Bai, C.; Yuan, K.; Lee, S.; Chang, J. Testosterone-Associated Dietary Pattern Predicts Low Testosterone Levels and Hypogonadism. Nutrients 2018, 10, 1786. [Google Scholar] [CrossRef]
- Whittaker, J. High-Protein Diets and Testosterone. Nutr. Health 2023, 29, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.D.; Patil, A.N.; Gudi, A.; Homburg, R.; Conway, G.S. Changes in Diet Composition with Urbanization and its Effect on the Polycystic Ovarian Syndrome Phenotype in a Western Indian Population. Fertil. Steril. 2019, 112, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Kopp, W. How Western Diet and Lifestyle Drive the Pandemic of Obesity and Civilization Diseases. Diabetes Metab. Syndr. Obes. 2019, 12, 2221–2236. [Google Scholar] [CrossRef]
- Lin, A.W.; Lujan, M.E. Comparison of Dietary Intake and Physical Activity between Women with and without Polycystic Ovary Syndrome: A Review. Adv. Nutr. 2014, 5, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Günther, P.; Lauterbach, M.A.R.; Duewell, P.; Biswas, D.; Pelka, K.; Scholz, C.J.; Oosting, M.; Haendler, K.; Baßler, K.; et al. Western Diet Triggers NLRP3-Dependent Innate Immune Reprogramming. Cell 2018, 172, 162–175.e14. [Google Scholar] [CrossRef] [PubMed]
- Martinez, K.B.; Leone, V.; Chang, E.B. Western Diets, Gut Dysbiosis, and Metabolic Diseases: Are they Linked? Gut Microbes 2017, 8, 130–142. [Google Scholar] [CrossRef] [PubMed]
- Qiao, J.; Wu, Y.; Ren, Y. The Impact of a High Fat Diet on Bones: Potential Mechanisms. Food Funct. 2021, 12, 963–975. [Google Scholar] [CrossRef] [PubMed]
- Hohos, N.M.; Skaznik-Wikiel, M.E. High-Fat Diet and Female Fertility. Endocrinology 2017, 158, 2407–2419. [Google Scholar] [CrossRef] [PubMed]
- Monniaux, D. Factors Influencing Establishment of the Ovarian Reserve and their Effects on Fertility. Anim. Reprod. 2018, 15, 635–647. [Google Scholar] [CrossRef]
- Di Berardino, C.; Peserico, A.; Capacchietti, G.; Zappacosta, A.; Bernabò, N.; Russo, V.; Mauro, A.; El Khatib, M.; Gonnella, F.; Konstantinidou, F.; et al. High-Fat Diet and Female Fertility Across Lifespan: A Comparative Lesson from Mammal Models. Nutrients 2022, 14, 4341. [Google Scholar] [CrossRef]
- MInguez-Alarcon, L.; Chavarro, J.E.; Mendiola, J.; Roca, M.; Tanrikut, C.; Vioque, J.; Jorgensen, N.; Torres-Cantero, A.M. Fatty Acid Intake in Relation to Reproductive Hormones and Testicular Volume among Young Healthy Men. Asian J. Androl. 2017, 19, 184–190. [Google Scholar] [CrossRef]
- Volek, J.S.; Gómez, A.L.; Love, D.M.; Avery, N.G.; Sharman, M.J.; Kraemer, W.J. Effects of a High-Fat Diet on Postabsorptive and Postprandial Testosterone Responses to a Fat-Rich Meal. Metabolism 2001, 50, 1351–1355. [Google Scholar] [CrossRef] [PubMed]
- de La Serre, C.B.; Ellis, C.L.; Lee, J.; Hartman, A.L.; Rutledge, J.C.; Raybould, H.E. Propensity to High-Fat Diet-Induced Obesity in Rats is Associated with Changes in the Gut Microbiota and Gut Inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, 440. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Boulangé, C.L.; Neves, A.L.; Chilloux, J.; Nicholson, J.K.; Dumas, M. Impact of the Gut Microbiota on Inflammation, Obesity, and Metabolic Disease. Genome Med. 2016, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M.; Food and Nutrition Board of the Institute of Medicine, The National Academies. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Gupta, L.; Khandelwal, D.; Kalra, S.; Gupta, P.; Dutta, D.; Aggarwal, S. Ketogenic Diet in Endocrine Disorders: Current Perspectives. J. Postgrad. Med. 2017, 63, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Fedorovich, S.V.; Voronina, P.P.; Waseem, T.V. Ketogenic Diet Versus Ketoacidosis: What Determines the Influence of Ketone Bodies on Neurons? Neural Regen. Res. 2018, 13, 2060–2063. [Google Scholar] [CrossRef]
- Halkes, C.J.M.; van Dijk, H.; Verseyden, C.; de Jaegere, P.P.T.; Plokker, H.W.M.; Meijssen, S.; Erkelens, D.W.; Cabezas, M.C. Gender Differences in Postprandial Ketone Bodies in Normolipidemic Subjects and in Untreated Patients with Familial Combined Hyperlipidemia. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1875–1880. [Google Scholar] [CrossRef]
- Brehm, B.J.; Seeley, R.J.; Daniels, S.R.; D’Alessio, D.A. A Randomized Trial Comparing a very Low Carbohydrate Diet and a Calorie-Restricted Low Fat Diet on Body Weight and Cardiovascular Risk Factors in Healthy Women. J. Clin. Endocrinol. Metab. 2003, 88, 1617–1623. [Google Scholar] [CrossRef]
- Gibson, A.A.; Seimon, R.V.; Lee, C.M.Y.; Ayre, J.; Franklin, J.; Markovic, T.P.; Caterson, I.D.; Sainsbury, A. Do Ketogenic Diets really Suppress Appetite? A Systematic Review and Meta-Analysis. Obes. Rev. 2015, 16, 64–76. [Google Scholar] [CrossRef]
- Mikulski, T.; Ziemba, A.; Nazar, K. Metabolic and Hormonal Responses to Body Carbohydrate Store Depletion Followed by High Or Low Carbohydrate Meal in Sedentary and Physically Active Subjects. J. Physiol. Pharmacol. 2010, 61, 193–200. [Google Scholar]
- Whittaker, J.; Harris, M. Low-Carbohydrate Diets and Men’s Cortisol and Testosterone: Systematic Review and Meta-Analysis. Nutr. Health 2022, 28, 543–554. [Google Scholar] [CrossRef]
- Hession, M.; Rolland, C.; Kulkarni, U.; Wise, A.; Broom, J. Systematic Review of Randomized Controlled Trials of Low-Carbohydrate Vs. Low-Fat/Low-Calorie Diets in the Management of Obesity and its Comorbidities. Obes. Rev. 2009, 10, 36–50. [Google Scholar] [CrossRef]
- Balen, A.H.; Morley, L.C.; Misso, M.; Franks, S.; Legro, R.S.; Wijeyaratne, C.N.; Stener-Victorin, E.; Fauser, B.C.J.M.; Norman, R.J.; Teede, H. The Management of Anovulatory Infertility in Women with Polycystic Ovary Syndrome: An Analysis of the Evidence to Support the Development of Global WHO Guidance. Hum. Reprod. Update 2016, 22, 687–708. [Google Scholar] [CrossRef]
- Moran, L.J.; Ko, H.; Misso, M.; Marsh, K.; Noakes, M.; Talbot, M.; Frearson, M.; Thondan, M.; Stepto, N.; Teede, H.J. Dietary Composition in the Treatment of Polycystic Ovary Syndrome: A Systematic Review to Inform Evidence-Based Guidelines. J. Acad. Nutr. Diet. 2013, 113, 520–545. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Palomba, S.; Laganà, A.S.; Orio, F. Current Insights into Inositol Isoforms, Mediterranean and Ketogenic Diets for Polycystic Ovary Syndrome: From Bench to Bedside. Curr. Pharm. Des. 2016, 22, 5554–5557. [Google Scholar] [CrossRef]
- Smolensky, I.; Zajac-Bakri, K.; Odermatt, T.S.; Brégère, C.; Cryan, J.F.; Guzman, R.; Timper, K.; Inta, D. Sex-Specific Differences in Metabolic Hormone and Adipose Tissue Dynamics Induced by Moderate Low-Carbohydrate and Ketogenic Diet. Sci. Rep. 2023, 13, 16465. [Google Scholar] [CrossRef]
- Chapela, S.P.; Simancas-Racines, A.; Ceriani, F.; Martinuzzi, A.L.N.; Russo, M.P.; Zambrano, A.K.; Simancas-Racines, D.; Verde, L.; Muscogiuri, G.; Katsanos, C.S.; et al. Obesity and Obesity-Related Thyroid Dysfunction: Any Potential Role for the very Low-Calorie Ketogenic Diet (VLCKD)? Curr. Nutr. Rep. 2024. [Google Scholar] [CrossRef]
- Iacovides, S.; Maloney, S.K.; Bhana, S.; Angamia, Z.; Meiring, R.M. Could the Ketogenic Diet Induce a Shift in Thyroid Function and Support a Metabolic Advantage in Healthy Participants? A Pilot Randomized-Controlled-Crossover Trial. PLoS ONE 2022, 17, e0269440. [Google Scholar] [CrossRef]
- Barrea, L.; Verde, L.; Camajani, E.; Šojat, A.S.; Marina, L.; Savastano, S.; Colao, A.; Caprio, M.; Muscogiuri, G. Effects of very Low-Calorie Ketogenic Diet on Hypothalamic–pituitary–adrenal Axis and Renin–angiotensin–aldosterone System. J. Endocrinol. Investig. 2023, 46, 1509–1520. [Google Scholar] [CrossRef]
- Ellenbroek, J.H.; van Dijck, L.; Töns, H.A.; Rabelink, T.J.; Carlotti, F.; Ballieux, B.E.P.B.; de Koning, E.J.P. Long-Term Ketogenic Diet Causes Glucose Intolerance and Reduced Β- and A-Cell Mass but no Weight Loss in Mice. Am. J. Physiol. Endocrinol. Metab. 2014, 306, 552. [Google Scholar] [CrossRef]
- Gibbs, J.; Cappuccio, F.P. Plant-Based Dietary Patterns for Human and Planetary Health. Nutrients 2022, 14, 1614. [Google Scholar] [CrossRef]
- Brown, L.; Rose, K.; Campbell, A. Healthy Plant-Based Diets and their Short-Term Effects on Weight Loss, Nutrient Intake and Serum Cholesterol Levels. Nutr. Bull. 2022, 47, 199–207. [Google Scholar] [CrossRef]
- Park, J.; Lee, B.; Kim, Y.; Hong, K.; Park, Y.C.; Shin, D.H.; Kim, Y.; Han, K.; Kim, K.; Shin, J.; et al. Calcium Supplementation, Risk of Cardiovascular Diseases, and Mortality: A Real-World Study of the Korean National Health Insurance Service Data. Nutrients 2022, 14, 2538. [Google Scholar] [CrossRef]
- Ivanova, S.; Delattre, C.; Karcheva-Bahchevanska, D.; Benbasat, N.; Nalbantova, V.; Ivanov, K. Plant-Based Diet as a Strategy for Weight Control. Foods 2021, 10, 3052. [Google Scholar] [CrossRef]
- Tonstad, S.; Nathan, E.; Oda, K.; Fraser, G. Vegan Diets and Hypothyroidism. Nutrients 2013, 5, 4642–4652. [Google Scholar] [CrossRef]
- Kim, K.; Yisahak, S.F.; Nobles, C.J.; Andriessen, V.C.; DeVilbiss, E.A.; Sjaarda, L.A.; Alohali, A.; Perkins, N.J.; Mumford, S.L. Low Intake of Vegetable Protein is Associated with Altered Ovulatory Function among Healthy Women of Reproductive Age. J. Clin. Endocrinol. Metab. 2021, 106, e2600–e2612. [Google Scholar] [CrossRef]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. Protein Intake and Ovulatory Infertility. Am. J. Obstet. Gynecol. 2008, 198, 210.e1–210.e7. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Chavarro, J.E. Diet and Fertility: A Review. Am. J. Obstet. Gynecol. 2018, 218, 379–389. [Google Scholar] [CrossRef]
- Zhao, T.; Jin, F.; Li, J.; Xu, Y.; Dong, H.; Liu, Q.; Xing, P.; Zhu, G.; Xu, H.; Miao, Z. Dietary Isoflavones Or Isoflavone-Rich Food Intake and Breast Cancer Risk: A Meta-Analysis of Prospective Cohort Studies. Clin. Nutr. 2019, 38, 136–145. [Google Scholar] [CrossRef]
- Reed, K.E.; Camargo, J.; Hamilton-Reeves, J.; Kurzer, M.; Messina, M. Neither Soy nor Isoflavone Intake Affects Male Reproductive Hormones: An Expanded and Updated Meta-Analysis of Clinical Studies. Reprod. Toxicol. 2021, 100, 60–67. [Google Scholar] [CrossRef]
- McCarty, M.F. Vegan Proteins may Reduce Risk of Cancer, Obesity, and Cardiovascular Disease by Promoting Increased Glucagon Activity. Med. Hypotheses 1999, 53, 459–485. [Google Scholar] [CrossRef]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet in Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef]
- D’Alessandro, A.; De Pergola, G.; Silvestris, F. Mediterranean Diet and Cancer Risk: An Open Issue. Int. J. Food Sci. Nutr. 2016, 67, 593–605. [Google Scholar] [CrossRef]
- Franquesa, M.; Pujol-Busquets, G.; García-Fernández, E.; Rico, L.; Shamirian-Pulido, L.; Aguilar-Martínez, A.; Medina, F.X.; Serra-Majem, L.; Bach-Faig, A. Mediterranean Diet and Cardiodiabesity: A Systematic Review through Evidence-Based Answers to Key Clinical Questions. Nutrients 2019, 11, 655. [Google Scholar] [CrossRef]
- Gantenbein, K.V.; Kanaka-Gantenbein, C. Mediterranean Diet as an Antioxidant: The Impact on Metabolic Health and overall Wellbeing. Nutrients 2021, 13, 1951. [Google Scholar] [CrossRef]
- Waldeyer, C.; Brunner, F.J.; Braetz, J.; Ruebsamen, N.; Zyriax, B.; Blaum, C.; Kroeger, F.; Kohsiack, R.; Schrage, B.; Sinning, C. Adherence to Mediterranean Diet, High-Sensitive C-Reactive Protein, and Severity of Coronary Artery Disease: Contemporary Data from the INTERCATH Cohort. Atherosclerosis 2018, 275, 256–261. [Google Scholar] [CrossRef]
- Cutillas-Tolín, A.; Mínguez-Alarcón, L.; Mendiola, J.; López-Espín, J.J.; Jørgensen, N.; Navarrete-Muñoz, E.M.; Torres-Cantero, A.M.; Chavarro, J.E. Mediterranean and Western Dietary Patterns are Related to Markers of Testicular Function among Healthy Men. Hum. Reprod. 2015, 30, 2945–2955. [Google Scholar] [CrossRef]
- Di Giacomo, M.; Zara, V.; Bergamo, P.; Ferramosca, A. Crosstalk between Mitochondrial Metabolism and Oxidoreductive Homeostasis: A New Perspective for Understanding the Effects of Bioactive Dietary Compounds. Nutr. Res. Rev. 2020, 33, 90–101. [Google Scholar] [CrossRef]
- Barrea, L.; Arnone, A.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Salzano, C.; Pugliese, G.; Colao, A.; Savastano, S. Adherence to the Mediterranean Diet, Dietary Patterns and Body Composition in Women with Polycystic Ovary Syndrome (PCOS). Nutrients 2019, 11, 2278. [Google Scholar] [CrossRef] [PubMed]
- Alufer, L.; Tsaban, G.; Rinott, E.; Kaplan, A.; Meir, A.Y.; Zelicha, H.; Ceglarek, U.; Isermann, B.; Blüher, M.; Stumvoll, M.; et al. Long-Term Green-Mediterranean Diet may Favor Fasting Morning Cortisol Stress Hormone; the DIRECT-PLUS Clinical Trial. Front. Endocrinol. 2023, 14, 1243910. [Google Scholar] [CrossRef] [PubMed]
- Hoek, A.; Wang, Z.; van Oers, A.M.; Groen, H.; Cantineau, A.E. Effects of Preconception Weight Loss After Lifestyle Intervention on Fertility Outcomes and Pregnancy Complications. Fertil. Steril. 2022, 118, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Corsetti, V.; Notari, T.; Montano, L. Effects of the Low-Carb Organic Mediterranean Diet on Testosterone Levels and Sperm DNA Fragmentation. Curr. Res. Food Sci. 2023, 7, 100636. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Said, T.M. Oxidative Stress, DNA Damage and Apoptosis in Male Infertility: A Clinical Approach. BJU Int. 2005, 95, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Verde, L.; Suárez, R.; Frias-Toral, E.; Vásquez, C.A.; Colao, A.; Savastano, S.; Muscogiuri, G. Sex-Differences in Mediterranean Diet: A Key Piece to Explain Sex-Related Cardiovascular Risk in Obesity? A Cross-Sectional Study. J. Transl. Med. 2024, 22, 44. [Google Scholar] [CrossRef]
- Shai, I.; Schwarzfuchs, D.; Henkin, Y.; Shahar, D.R.; Witkow, S.; Greenberg, I.; Golan, R.; Fraser, D.; Bolotin, A.; Vardi, H.; et al. Weight Loss with a Low-Carbohydrate, Mediterranean, Or Low-Fat Diet. N. Engl. J. Med. 2008, 359, 229–241. [Google Scholar] [CrossRef]
In Females | In Males | |
---|---|---|
Body composition and fat distribution | Body fat percentage of 15%, with the total adipose tissue volume being 12% of the total body weight [17] Gluteofemoral fat and then, after menopause, abdominal fat [27] Essential fat of 5–9%, encompassing sex-specific fat [22] | Body fat percentage of 12%, with the total adipose tissue volume being 4% of the total body weight [17] Abdominal fat [22] Greater visceral adiposity → increased postprandial insulin, free fatty acids, and triglycerides [28] |
Hormonal Imbalances | In Females | In Males |
Obesity | Obesity → irregular menstrual cycles, miscarriage rates, anovulation, and adverse neonatal and maternal outcomes [68]; hirsutism [69]; compromission of oocyte quality and development [78]; prolonged gestational periods and gestational diabetes [79]; and higher androgen levels [64] Higher total and free testosterone levels but lower levels of androstenedione and SHBG [64] → visceral white adipose tissue hypertrophy and/or hyperplasia → risk of IR and metabolic syndrome in hyperandrogenic women Adipose tissue and imbalance of adipokine levels → PCOS | Adipocyte hypertrophy and hyperplasia through adipokine secretion [34] → impact on HPG axis [36] Relationship between thyroid hormones, leptin, and reproductive function → male infertility [41] Erectile dysfunction and elevated scrotal temperature → male infertility [42] Testosterone conversion to estradiol → secondary hypogonadism [50] |
Hyperinsulinemia, leptin, and insulin resistance (IR) | Reproductive age: greater insulin sensitivity, increased stimulated insulin secretion, and lower fasting glucose and HbA1c levels [86] During menopause: increased blood pressure and LDL cholesterol and HbA1c levels → body fat distribution → impaired glucose tolerance (IGT) [86] Increased insulin stimulates theca cells to produce androgens → extradiol synthesis [80] PCOS: increased insulin → androgen production, contributing to follicular arrest and anovulation and inhibition of SHBG production → increased testosterone [89] PCOS: increased insulin → enhancing LH pulse amplitude, increasing sensitivity to gonadotropin-releasing hormone [90] → P450c17α enzyme → increasing adrenal androgen production → hyperandrogenism [91] Increased leptin → imbalance of plasma female sex hormone levels [87] and disruption of oocyte development [88] Obesity-related hyperinsulinemia and IR → menstrual irregularities, hyperandrogenism, and alterations in steroidogenesis (also in non-obese) [92] | Elevated insulin → Decreased SHBG [44] and impact on fertility indicators [51] Increased leptin secretion → inhibition testosterone production [35] Fat mass → promotion of testosterone conversion to estradiol [44] → secondary hypogonadism [50] Low testosterone levels → bone density, fat distribution, muscle mass, red blood cell production [45,46], IR, and obesity [44] |
Cortisol | ↑ Cortisol in obesity → visceral fat accumulation, IR, and an increased risk of metabolic syndrome [95] Premenopausal women with obesity with elevated WHR and tendency to visceral fat accumulation → increased urinary cortisol and normal dexamethasone inhibition of cortisol secretion [96] Responses to physical or mental stressors → increasing serum cortisol levels, with no influence on prolactin or GH [96] Androgynous obesity in women → increased sensitivity along HPA axis → increased cortisol secretion → contribution to abnormal fat depot distribution and metabolic abnormalities | ↑ Cortisol → visceral fat accumulation, insulin resistance, and an elevated risk of metabolic syndrome [55] Stress input and elevated cortisol in obesity → hypothalamic–pituitary–adrenal (HPA) axis dysregulation and impact on reductions in IGF-I and testosterone levels [55] |
Thyroid hormones | Fluctuation in TSH levels correlated to leptin concentrations [53,55,83] → thyroid dysfunction → IR, dyslipidemia, and cardiovascular complications [70] Altered thyroid function → impact on energy expenditure, fat metabolism, and weight management [71] | Increased TSH levels and triiodothyronine (T3), unchanged T4 levels [52,55] → thyroid hormone resistance → increased TSH and fT3 secretion Altered leptin production → impact on TSH regulation through leptin resistance [54] Positive correlation between BMI and TSH levels [55] |
Dyslipidemia | Oxidative stress → quality of male germ cells and infertility Modification in structures and functions of testes and epididymis, energy metabolism, and spermatogenesis [18,46] Acrosomal response and capacitation → hormonal imbalances and erectile disfunction [18,46] | |
Oxidative stress and inflammation | Imbalance between the production of ROS and antioxidant defenses → compromission of follicle development, oocyte maturation, and embryo and placental growth [93] Disruptions in leptin during pregnancy → impediment of oocyte development [79] Menstrual irregularities, infertility, intrauterine growth restriction, preeclampsia, recurrent miscarriages, and premature births [95] | Elevated ROS levels in sperm Contribution to IR and leptin dysregulation [42,58] |
Gut microbiota composition | PCOS → reduces alpha and beta diversity [96] Dysbiosis and Lactobacillus deficiency → interference with assisted reproduction treatments [98] Gram-negative bacteria, Chlamydia trachomatis, and Gardnerella vaginalis in cervical flora → infertility problems [97] | Increased lipopolysaccharides → promotion of obesity and IR [59], mediated by TNF-α, IL-6, and leptin from adipose tissue Dysbiosis → impact on blood–testis barrier development and intratesticular testosterone levels → Sertoli cell development and maturation [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazza, E.; Troiano, E.; Ferro, Y.; Lisso, F.; Tosi, M.; Turco, E.; Pujia, R.; Montalcini, T. Obesity, Dietary Patterns, and Hormonal Balance Modulation: Gender-Specific Impacts. Nutrients 2024, 16, 1629. https://doi.org/10.3390/nu16111629
Mazza E, Troiano E, Ferro Y, Lisso F, Tosi M, Turco E, Pujia R, Montalcini T. Obesity, Dietary Patterns, and Hormonal Balance Modulation: Gender-Specific Impacts. Nutrients. 2024; 16(11):1629. https://doi.org/10.3390/nu16111629
Chicago/Turabian StyleMazza, Elisa, Ersilia Troiano, Yvelise Ferro, Fabrizia Lisso, Martina Tosi, Ettore Turco, Roberta Pujia, and Tiziana Montalcini. 2024. "Obesity, Dietary Patterns, and Hormonal Balance Modulation: Gender-Specific Impacts" Nutrients 16, no. 11: 1629. https://doi.org/10.3390/nu16111629
APA StyleMazza, E., Troiano, E., Ferro, Y., Lisso, F., Tosi, M., Turco, E., Pujia, R., & Montalcini, T. (2024). Obesity, Dietary Patterns, and Hormonal Balance Modulation: Gender-Specific Impacts. Nutrients, 16(11), 1629. https://doi.org/10.3390/nu16111629