HDL-Cholesterol Subfraction Dimensional Distribution Is Associated with Cardiovascular Disease Risk and Is Predicted by Visceral Adiposity and Dietary Lipid Intake in Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Dietary Assessment
2.3. Biochemical Analysis
2.4. Assessment of Anthropometric Indexes of Adiposity, Body Composition Using DXA, and Estimated CVD Risk
2.5. Characterization of Cholesterol Distribution in HDL Subfractions
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Cohort
3.2. HDL-C Subfraction Distribution in Relation CVD Risk Factors
3.3. Anthropometric Parameters as Predictors of HDL-Cholesterol Subfraction Dimensional Distribution
3.4. The Relationship between Diet and HDL-Cholesterol Subfraction Dimensional Distribution
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fawzy, A.M.; Lip, G.Y.H. Cardiovascular disease prevention: Risk factor modification at the heart of the matter. Lancet Reg. Health West. Pac. 2021, 17, 100291. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, M.J. Global Obesity Epidemic Worsening. JAMA 2017, 318, 603. [Google Scholar] [CrossRef]
- Tinajero, M.G.; Malik, V.S. An Update on the Epidemiology of Type 2 Diabetes: A Global Perspective. Endocrinol. Metab. Clin. N. Am. 2021, 50, 337–355. [Google Scholar] [CrossRef]
- Dayimu, A.; Wang, C.; Li, J.; Fan, B.; Ji, X.; Zhang, T.; Xue, F. Trajectories of Lipids Profile and Incident Cardiovascular Disease Risk: A Longitudinal Cohort Study. J. Am. Heart Assoc. 2019, 8, e013479. [Google Scholar] [CrossRef] [PubMed]
- Rader, D.J.; Hovingh, G.K. HDL and cardiovascular disease. Lancet 2014, 384, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Goldbourt, U.; Yaari, S.; Medalie, J.H. Isolated low HDL cholesterol as a risk factor for coronary heart disease mortality. A 21-year follow-up of 8000 men. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Madsen, C.M.; Varbo, A.; Nordestgaard, B.G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies. Eur. Heart J. 2017, 38, 2478–2486. [Google Scholar] [CrossRef]
- Bonizzi, A.; Piuri, G.; Corsi, F.; Cazzola, R.; Mazzucchelli, S. HDL Dysfunctionality: Clinical Relevance of Quality Rather Than Quantity. Biomedicines 2021, 9, 729. [Google Scholar] [CrossRef] [PubMed]
- Cervellati, C.; Vigna, G.B.; Trentini, A.; Sanz, J.M.; Zimetti, F.; Dalla Nora, E.; Morieri, M.L.; Zuliani, G.; Passaro, A. Paraoxonase-1 activities in individuals with different HDL circulating levels: Implication in reverse cholesterol transport and early vascular damage. Atherosclerosis 2019, 285, 64–70. [Google Scholar] [CrossRef]
- Jia, C.; Anderson, J.L.C.; Gruppen, E.G.; Lei, Y.; Bakker, S.J.L.; Dullaart, R.P.F.; Tietge, U.J.F. High-Density Lipoprotein Anti-Inflammatory Capacity and Incident Cardiovascular Events. Circulation 2021, 143, 1935–1945. [Google Scholar] [CrossRef]
- Schrutka, L.; Distelmaier, K.; Hohensinner, P.; Sulzgruber, P.; Lang, I.M.; Maurer, G.; Wojta, J.; Hulsmann, M.; Niessner, A.; Koller, L. Impaired High-Density Lipoprotein Anti-Oxidative Function Is Associated With Outcome in Patients With Chronic Heart Failure. J. Am. Heart Assoc. 2016, 5, e004169. [Google Scholar] [CrossRef] [PubMed]
- Ansell, B.J.; Navab, M.; Hama, S.; Kamranpour, N.; Fonarow, G.; Hough, G.; Rahmani, S.; Mottahedeh, R.; Dave, R.; Reddy, S.T.; et al. Inflammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 2003, 108, 2751–2756. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S.; Brewer, H.B., Jr.; Ansell, B.J.; Barter, P.; Chapman, M.J.; Heinecke, J.W.; Kontush, A.; Tall, A.R.; Webb, N.R. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat. Rev. Cardiol. 2016, 13, 48–60. [Google Scholar] [CrossRef]
- Khera, A.V.; Cuchel, M.; de la Llera-Moya, M.; Rodrigues, A.; Burke, M.F.; Jafri, K.; French, B.C.; Phillips, J.A.; Mucksavage, M.L.; Wilensky, R.L.; et al. Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis. N. Engl. J. Med. 2011, 364, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Sergi, D.; Zauli, E.; Tisato, V.; Secchiero, P.; Zauli, G.; Cervellati, C. Lipids at the Nexus between Cerebrovascular Disease and Vascular Dementia: The Impact of HDL-Cholesterol and Ceramides. Int. J. Mol. Sci. 2023, 24. [Google Scholar] [CrossRef]
- Woudberg, N.J.; Goedecke, J.H.; Blackhurst, D.; Frias, M.; James, R.; Opie, L.H.; Lecour, S. Association between ethnicity and obesity with high-density lipoprotein (HDL) function and subclass distribution. Lipids Health Dis. 2016, 15, 92. [Google Scholar] [CrossRef]
- Siri, P.W.; Krauss, R.M. Influence of dietary carbohydrate and fat on LDL and HDL particle distributions. Curr. Atheroscler. Rep. 2005, 7, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Piko, P.; Kosa, Z.; Sandor, J.; Seres, I.; Paragh, G.; Adany, R. The profile of HDL-C subfractions and their association with cardiovascular risk in the Hungarian general and Roma populations. Sci. Rep. 2022, 12, 10915. [Google Scholar] [CrossRef]
- Li, J.J.; Zhang, Y.; Li, S.; Cui, C.J.; Zhu, C.G.; Guo, Y.L.; Wu, N.Q.; Xu, R.X.; Liu, G.; Dong, Q.; et al. Large HDL Subfraction But Not HDL-C Is Closely Linked With Risk Factors, Coronary Severity and Outcomes in a Cohort of Nontreated Patients With Stable Coronary Artery Disease: A Prospective Observational Study. Medicine 2016, 95, e2600. [Google Scholar] [CrossRef]
- Goliasch, G.; Oravec, S.; Blessberger, H.; Dostal, E.; Hoke, M.; Wojta, J.; Schillinger, M.; Huber, K.; Maurer, G.; Wiesbauer, F. Relative importance of different lipid risk factors for the development of myocardial infarction at a very young age (</= 40 years of age). Eur. J. Clin. Investig. 2012, 42, 631–636. [Google Scholar] [CrossRef]
- Pascot, A.; Lemieux, I.; Prud’homme, D.; Tremblay, A.; Nadeau, A.; Couillard, C.; Bergeron, J.; Lamarche, B.; Despres, J.P. Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity. J. Lipid Res. 2001, 42, 2007–2014. [Google Scholar] [CrossRef] [PubMed]
- Piko, P.; Jenei, T.; Kosa, Z.; Sandor, J.; Kovacs, N.; Seres, I.; Paragh, G.; Adany, R. Association of HDL Subfraction Profile with the Progression of Insulin Resistance. Int. J. Mol. Sci. 2023, 24, 13563. [Google Scholar] [CrossRef] [PubMed]
- Femlak, M.; Gluba-Brzozka, A.; Franczyk, B.; Rysz, J. Diabetes-induced Alterations in HDL Subfractions Distribution. Curr. Pharm. Des. 2020, 26, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Valicente, V.M.; Peng, C.H.; Pacheco, K.N.; Lin, L.; Kielb, E.I.; Dawoodani, E.; Abdollahi, A.; Mattes, R.D. Ultraprocessed Foods and Obesity Risk: A Critical Review of Reported Mechanisms. Adv. Nutr. 2023, 14, 718–738. [Google Scholar] [CrossRef] [PubMed]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; da Costa Louzada, M.L.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed food consumption and obesity in the Australian adult population. Nutr. Diabetes 2020, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Despres, J.P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Huxley, R.; Mendis, S.; Zheleznyakov, E.; Reddy, S.; Chan, J. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk--a review of the literature. Eur. J. Clin. Nutr. 2010, 64, 16–22. [Google Scholar] [CrossRef]
- Despres, J.P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathieu, P.; Larose, E.; Rodes-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal obesity and the metabolic syndrome: Contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Vanegas, P.; Zazpe, I.; Santiago, S.; Fernandez-Lazaro, C.I.; de la, O.V.; Martinez-Gonzalez, M.A. Macronutrient quality index and cardiovascular disease risk in the Seguimiento Universidad de Navarra (SUN) cohort. Eur. J. Nutr. 2022, 61, 3517–3530. [Google Scholar] [CrossRef]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; de Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef]
- Sergi, D.; Luscombe-Marsh, N.; Heilbronn, L.K.; Birch-Machin, M.; Naumovski, N.; Lionetti, L.; Proud, C.G.; Abeywardena, M.Y.; O’Callaghan, N. The Inhibition of Metabolic Inflammation by EPA Is Associated with Enhanced Mitochondrial Fusion and Insulin Signaling in Human Primary Myotubes. J. Nutr. 2021, 151, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Luukkonen, P.K.; Sadevirta, S.; Zhou, Y.; Kayser, B.; Ali, A.; Ahonen, L.; Lallukka, S.; Pelloux, V.; Gaggini, M.; Jian, C.; et al. Saturated Fat Is More Metabolically Harmful for the Human Liver Than Unsaturated Fat or Simple Sugars. Diabetes Care 2018, 41, 1732–1739. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, A.; Martinez, K.; Chuang, C.C.; LaPoint, K.; McIntosh, M. Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: Mechanisms of action and implications. J. Nutr. 2009, 139, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Ruuth, M.; Lahelma, M.; Luukkonen, P.K.; Lorey, M.B.; Qadri, S.; Sadevirta, S.; Hyotylainen, T.; Kovanen, P.T.; Hodson, L.; Yki-Jarvinen, H.; et al. Overfeeding Saturated Fat Increases LDL (Low-Density Lipoprotein) Aggregation Susceptibility While Overfeeding Unsaturated Fat Decreases Proteoglycan-Binding of Lipoproteins. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2823–2836. [Google Scholar] [CrossRef] [PubMed]
- Stonehouse, W.; Sergi, D.; Benassi-Evans, B.; James-Martin, G.; Johnson, N.; Thompson, C.H.; Abeywardena, M. Eucaloric diets enriched in palm olein, cocoa butter, and soybean oil did not differentially affect liver fat concentration in healthy participants: A 16-week randomized controlled trial. Am. J. Clin. Nutr. 2021, 113, 324–337. [Google Scholar] [CrossRef]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; O’Keefe, J.H. Effects of dietary fats on blood lipids: A review of direct comparison trials. Open Heart 2018, 5, e000871. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, X.; Zhou, N.; Shen, Y.; Li, B.; Chen, B.E.; Li, X. Association Between Omega-3 Fatty Acid Intake and Dyslipidemia: A Continuous Dose-Response Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2023, 12, e029512. [Google Scholar] [CrossRef]
- Khalili, L.; Valdes-Ramos, R.; Harbige, L.S. Effect of n-3 (Omega-3) Polyunsaturated Fatty Acid Supplementation on Metabolic and Inflammatory Biomarkers and Body Weight in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of RCTs. Metabolites 2021, 11, 742. [Google Scholar] [CrossRef]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J.; Group, S.C. Executive summary of the Stages of Reproductive Aging Workshop + 10: Addressing the unfinished agenda of staging reproductive aging. Menopause 2012, 19, 387–395. [Google Scholar] [CrossRef]
- Sanz, J.M.; Sergi, D.; Colombari, S.; Capatti, E.; Situlin, R.; Biolo, G.; Di Girolamo, F.G.; Lazzer, S.; Simunic, B.; Pisot, R.; et al. Dietary Acid Load but Not Mediterranean Diet Adherence Score Is Associated With Metabolic and Cardiovascular Health State: A Population Observational Study From Northern Italy. Front. Nutr. 2022, 9, 828587. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorsi, G.; Trentini, A.; Greco, P.; Tisato, V.; Gemmati, D.; Bianchi, N.; Giganti, M.; Rossini, M.; Guglielmi, G.; Cervellati, C. Changes in Adipose Tissue Distribution and Association between Uric Acid and Bone Health during Menopause Transition. Int. J. Mol. Sci. 2019, 20, 6321. [Google Scholar] [CrossRef]
- SCORE2 Working Group and ESC Cardiovascular Risk Collaboration. SCORE2 risk prediction algorithms: New models to estimate 10-year risk of cardiovascular disease in Europe. Eur. Heart J. 2021, 42, 2439–2454. [Google Scholar] [CrossRef]
- Sanz, J.M.; D’Amuri, A.; Sergi, D.; Angelini, S.; Fortunato, V.; Favari, E.; Vigna, G.; Zuliani, G.; Dalla Nora, E.; Passaro, A. Cholesterol efflux capacity is increased in subjects with familial hypercholesterolemia in a retrospective case-control study. Sci. Rep. 2023, 13, 8415. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Martinez-Rodriguez, J.; Gonzalez-Lucan, M.; Fernandez-Fernandez, C.; Castro-Quintela, E. Insulin resistance is a cardiovascular risk factor in humans. Diabetes Metab. Syndr. 2019, 13, 1449–1455. [Google Scholar] [CrossRef] [PubMed]
- Carey, R.M.; Moran, A.E.; Whelton, P.K. Treatment of Hypertension: A Review. JAMA 2022, 328, 1849–1861. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Lucan, S.C.; O’Keefe, J.H. The Evidence for Saturated Fat and for Sugar Related to Coronary Heart Disease. Prog. Cardiovasc. Dis. 2016, 58, 464–472. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, J.; Zhang, H.; Zhu, Y.; Dong, Q.; Sun, J.; Guo, Y.; Dou, K.; Xu, R.; Li, J. The value of HDL subfractions in predicting cardiovascular outcomes in untreated, diabetic patients with stable coronary artery disease: An age- and gender-matched case-control study. Front. Endocrinol. 2022, 13, 1041555. [Google Scholar] [CrossRef]
- Woudberg, N.J.; Lecour, S.; Goedecke, J.H. HDL Subclass Distribution Shifts with Increasing Central Adiposity. J. Obes. 2019, 2019, 2107178. [Google Scholar] [CrossRef]
- Stadler, J.T.; Lackner, S.; Morkl, S.; Trakaki, A.; Scharnagl, H.; Borenich, A.; Wonisch, W.; Mangge, H.; Zelzer, S.; Meier-Allard, N.; et al. Obesity Affects HDL Metabolism, Composition and Subclass Distribution. Biomedicines 2021, 9, 242. [Google Scholar] [CrossRef]
- Guerin, M.; Le Goff, W.; Lassel, T.S.; Van Tol, A.; Steiner, G.; Chapman, M.J. Atherogenic role of elevated CE transfer from HDL to VLDL(1) and dense LDL in type 2 diabetes: Impact of the degree of triglyceridemia. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.M.; Azuma, K.; Kelley, C.; Pencek, R.; Radikova, Z.; Laymon, C.; Price, J.; Goodpaster, B.H.; Kelley, D.E. PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. Am. J. Physiol.-Endocrinol. Metab. 2012, 303, E1134–E1141. [Google Scholar] [CrossRef]
- Garg, A. Regional adiposity and insulin resistance. J. Clin. Endocrinol. Metab. 2004, 89, 4206–4210. [Google Scholar] [CrossRef] [PubMed]
- Bantle, A.E.; Bosch, T.A.; Dengel, D.R.; Wang, Q.; Mashek, D.G.; Chow, L.S. DXA-Determined Regional Adiposity Relates to Insulin Resistance in a Young Adult Population with Overweight andObesity. J. Clin. Densitom. 2019, 22, 287–292. [Google Scholar] [CrossRef]
- Klop, B.; Elte, J.W.; Cabezas, M.C. Dyslipidemia in obesity: Mechanisms and potential targets. Nutrients 2013, 5, 1218–1240. [Google Scholar] [CrossRef]
- Bahiru, E.; Hsiao, R.; Phillipson, D.; Watson, K.E. Mechanisms and Treatment of Dyslipidemia in Diabetes. Curr. Cardiol. Rep. 2021, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.J.; Volek, J.S.; Liu, Y.; Shachter, N.S.; Contois, J.H.; Fernandez, M.L. Carbohydrate restriction alters lipoprotein metabolism by modifying VLDL, LDL, and HDL subfraction distribution and size in overweight men. J. Nutr. 2006, 136, 384–389. [Google Scholar] [CrossRef]
- Maki, K.C.; Dicklin, M.R.; Kirkpatrick, C.F. Saturated fats and cardiovascular health: Current evidence and controversies. J. Clin. Lipidol. 2021, 15, 765–772. [Google Scholar] [CrossRef]
- Froyen, E. The effects of fat consumption on low-density lipoprotein particle size in healthy individuals: A narrative review. Lipids Health Dis. 2021, 20, 86. [Google Scholar] [CrossRef]
- Liu, X.; Garban, J.; Jones, P.J.; Vanden Heuvel, J.; Lamarche, B.; Jenkins, D.J.; Connelly, P.W.; Couture, P.; Pu, S.; Fleming, J.A.; et al. Diets Low in Saturated Fat with Different Unsaturated Fatty Acid Profiles Similarly Increase Serum-Mediated Cholesterol Efflux from THP-1 Macrophages in a Population with or at Risk for Metabolic Syndrome: The Canola Oil Multicenter Intervention Trial. J. Nutr. 2018, 148, 721–728. [Google Scholar] [CrossRef] [PubMed]
Median (IQR) | |
---|---|
Age (years) | 53 (47–57) |
BMI (Kg/m2) | 24.3 (22.6–27.6) |
DBP (mmHg) | 70 (65–77) |
SBP (mmHg) | 112 (102–125) |
Fat Mass (kg) | 26.0 (21.9–31.3) |
Free Fat Mass (kg) | 36.9 (33.7–41.1) |
VAT (kg) | 0.49 (0.29–0.67) |
Triglycerides (mg/dL) | 72.8 (61.0–100.9) |
Total-C (mg/dL) | 236.1 (215.1–262.3) |
HDL-C (mg/dL) | 69.9 (59.1–76.9) |
LDL-C (mg/dL) | 148.1 (132.3–174.4) |
APO A1 (mg/dL) | 178.5 (164.8–203.0) |
APO B100 (mg/dL) | 91.0 (81.0–103.5) |
Glycemia (mg/dL) | 95.6 (90.5–99.7) |
Insulinemia (U/L) | 4.9 (3.4–6.9) |
HOMA-IR | 1.1 (0.8–1.7) |
n (%) | |
Hypertension, n (%) | 9 (12.5) |
Obesity, n (%) | 9 (12.5) |
SCORE2 (low), n (%) | 16 (22.2) |
SCORE2 (moderate), n (%) | 53 (73.6) |
SCORE2 (high), n (%) | 3 (4.2) |
HDL-C (mg/dL) | l-HDL-C (mg/dL) | m-HDL-C (mg/dL) | s-HDL-C (mg/dL) | |||||
---|---|---|---|---|---|---|---|---|
Rho | p-Value | Rho | p-Value | Rho | p-Value | Rho | p-Value | |
Age (years) | 0.077 | 0.520 | −0.038 | 0.750 | 0.038 | 0.753 | 0.253 | 0.032 |
BMI (Kg/m2) | −0.385 | 0.001 | −0.541 | <0.001 | −0.244 | 0.039 | 0.288 | 0.014 |
SBP (mmHg) | −0.258 | 0.029 | −0.285 | 0.015 | −0.172 | 0.149 | 0.196 | 0.098 |
DBP (mmHg) | −0.175 | 0.143 | −0.228 | 0.054 | −0.069 | 0.563 | 0.158 | 0.184 |
VAT (kg) | −0.374 | 0.001 | −0.607 | <0.001 | −0.243 | 0.039 | 0.477 | <0.001 |
FM (kg) | −0.354 | 0.002 | −0.536 | <0.001 | −0.202 | 0.089 | 0.317 | 0.007 |
FFM (kg) | −0.227 | 0.056 | −0.161 | 0.178 | −0.158 | 0.184 | −0.066 | 0.583 |
Triglyceride (mg/dL) | −0.447 | <0.001 | −0.602 | <0.001 | −0.397 | 0.001 | 0.439 | <0.001 |
Total-C (mg/dL) | 0.174 | 0.143 | 0.016 | 0.897 | 0.110 | 0.357 | 0.411 | <0.001 |
HDL-C (mg/dL) | 0.816 | <0.001 | 0.922 | <0.001 | 0.019 | 0.875 | ||
LDL-C (mg/dL) | −0.081 | 0.497 | −0.164 | 0.169 | −0.133 | 0.266 | 0.350 | 0.003 |
APO A1 (mg/dL) | 0.832 | <0.001 | 0.559 | <0.001 | 0.818 | <0.001 | 0.211 | 0.077 |
APO B100 (mg/dL) | −0.218 | 0.070 | −0.297 | 0.012 | −0.244 | 0.042 | 0.389 | 0.001 |
Glycemia (mg/dL) | −0.051 | 0.672 | −0.149 | 0.211 | 0.063 | 0.600 | 0.099 | 0.410 |
Insulin (mU/L) | −0.323 | 0.006 | −0.481 | <0.001 | −0.138 | 0.247 | 0.308 | 0.008 |
HOMA-IR | −0.302 | 0.010 | −0.466 | <0.001 | −0.114 | 0.339 | 0.301 | 0.010 |
(A). l-HDL-C (mg/dL) | |||||
Model | R2 | p-value model | Predictor | Unstandardized B coefficient | p-value variable |
1 | 0.387 | <0.001 | log VAT | −20.916 | <0.001 |
Model 1 excluded variables: age (years); log BMI (Kg/m2); log Fat Mass (Kg); log HOMA-IR; SBP (mmHg). | |||||
(B). log s-HDL-C (mg/dL) | |||||
Model | R2 | p-value model | Predictor | Unstandardized B coefficient | p-value variable |
1 | 0.215 | <0.001 | log VAT | 0.222 | <0.001 |
2 | 0.262 | <0.001 | log VAT | 0.388 | <0.001 |
log Fat mass | −0.362 | 0.040 | |||
Model 1 excluded variables: age (years); log BMI (Kg/mq); log Fat mass; log HOMA-IR; SBP (mmHg). | |||||
Model 2 excluded variables: age (years); log BMI (Kg/m2); log HOMA-IR; SBP (mmHg). |
Daily Intake | |
---|---|
Median (IQR) | |
Calories (kcal) | 1998.9 (1807.7–2223.9) |
Protein (g) | 87.5 (73.8–97.9) |
Lipid (g) | 89.5 (79.8–101.3) |
Carbohydrates (g) | 216.1 (186.2–253.8) |
Total Fiber (g) | 20.5 (15.7–23.0) |
Cholesterol (mg) | 215.0 (174.1–271.9) |
SFA (g) | 22.7 (18.0–28.5) |
PUFA (g) | 11.2 (9.1–13.3) |
MUFA (g) | 47.0 (39.9–56.6) |
l-HDL-C (mg/dL) | m-HDL-C (mg/dL) | s-HDL-C (mg/dL) | ||||
---|---|---|---|---|---|---|
Rho | p-Value | Rho | p-Value | Rho | p-Value | |
Calories (kcal/day) | −0.229 | 0.053 | 0.042 | 0.726 | 0.197 | 0.096 |
Protein (g/day) | −0.140 | 0.240 | 0.051 | 0.673 | 0.035 | 0.773 |
Lipid (g/day) | −0.309 | 0.008 | 0.111 | 0.352 | 0.357 | 0.002 |
Carbohydrates (g/day) | −0.150 | 0.209 | −0.053 | 0.656 | 0.105 | 0.380 |
Total Fiber (g/day) | −0.015 | 0.902 | −0.043 | 0.721 | 0.009 | 0.940 |
Cholesterol (mg/day) | 0.060 | 0.616 | 0.207 | 0.081 | −0.033 | 0.786 |
SFA (g/day) | −0.194 | 0.103 | 0.218 | 0.066 | 0.259 | 0.028 |
PUFA (g/day) | −0.117 | 0.328 | 0.036 | 0.761 | 0.177 | 0.137 |
MUFA (g/day) | −0.221 | 0.063 | 0.059 | 0.625 | 0.235 | 0.046 |
(A). l-HDL-C (mg/dL) | |||||
Model | R2 | p-value model | Predictor | Unstandardized B coefficient | p-value variable |
1 | 0.081 | 0.015 | Calories (kcal/day) | −0.007 | 0.015 |
Model 1 excluded variables: lipid (g/day); SFA (g/day); MUFA (g/day) | |||||
(B). log s-HDL-C (mg/dL) | |||||
Model | R2 | p-value model | Predictor | Unstandardized B coefficient | p-value variable |
1 | 0.098 | 0.007 | Lipid (g/day) | 0.002 | 0.007 |
Model 1 excluded variables: calories (kcal/day); SFA (g/day); MUFA (g/day) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sergi, D.; Sanz, J.M.; Trentini, A.; Bonaccorsi, G.; Angelini, S.; Castaldo, F.; Morrone, S.; Spaggiari, R.; Cervellati, C.; Passaro, A.; et al. HDL-Cholesterol Subfraction Dimensional Distribution Is Associated with Cardiovascular Disease Risk and Is Predicted by Visceral Adiposity and Dietary Lipid Intake in Women. Nutrients 2024, 16, 1525. https://doi.org/10.3390/nu16101525
Sergi D, Sanz JM, Trentini A, Bonaccorsi G, Angelini S, Castaldo F, Morrone S, Spaggiari R, Cervellati C, Passaro A, et al. HDL-Cholesterol Subfraction Dimensional Distribution Is Associated with Cardiovascular Disease Risk and Is Predicted by Visceral Adiposity and Dietary Lipid Intake in Women. Nutrients. 2024; 16(10):1525. https://doi.org/10.3390/nu16101525
Chicago/Turabian StyleSergi, Domenico, Juana Maria Sanz, Alessandro Trentini, Gloria Bonaccorsi, Sharon Angelini, Fabiola Castaldo, Sara Morrone, Riccardo Spaggiari, Carlo Cervellati, Angelina Passaro, and et al. 2024. "HDL-Cholesterol Subfraction Dimensional Distribution Is Associated with Cardiovascular Disease Risk and Is Predicted by Visceral Adiposity and Dietary Lipid Intake in Women" Nutrients 16, no. 10: 1525. https://doi.org/10.3390/nu16101525
APA StyleSergi, D., Sanz, J. M., Trentini, A., Bonaccorsi, G., Angelini, S., Castaldo, F., Morrone, S., Spaggiari, R., Cervellati, C., Passaro, A., & MEDIA HDL Research Group. (2024). HDL-Cholesterol Subfraction Dimensional Distribution Is Associated with Cardiovascular Disease Risk and Is Predicted by Visceral Adiposity and Dietary Lipid Intake in Women. Nutrients, 16(10), 1525. https://doi.org/10.3390/nu16101525