The Effectiveness of Transcranial Direct Current Stimulation (tDCS) in Binge Eating Disorder (BED)—Review and Insight into the Mechanisms of Action
Abstract
:1. Introduction
2. Neurobiology of BED
3. Transcranial Direct Current Stimulation (tDCS)
4. Methods
4.1. Data Sources and Search Strategy
4.2. Study Selection Criteria
4.3. Screening Process
4.3.1. Title and Abstract Screening
4.3.2. Full-Text Assessment
5. Results
5.1. Summary of Included Studies
5.2. Effects on Binge Eating Episodes and Frequency
5.3. Effects on Inhibitory Control (Response Inhibition)
5.4. Effects on Food Intake
5.5. Effects on Food Craving, Hunger and Desire to Binge Eat
5.6. Effects on Eating Disorder Psychopathology
6. Discussion
6.1. Impact of tDCS on Binge Eating Episodes and Frequency
6.2. Impact of tDCS on Inhibitory Control (Response Inhibition)
6.3. Impact of tDCS on Food Intake
6.4. Impact of tDCS on Food Craving, Hunger, and Desire to Binge Eat
6.5. Impact of tDCS on Eating Disorder Psychopathology
7. Mechanisms of Action of tDCS in Binge Eating Disorder
8. Limitations and Prospects for Further Research
8.1. Heterogeneity in Methodologies
8.2. Lack of Consistency in Outcome Measures
8.3. Limited Sample Sizes and Diversity
8.4. Lack of Long-Term Follow-Up
8.5. Potential Sex-Specific Effects
8.6. Influence of Expectations
8.7. Influence of Genetics
8.8. Considering Comorbidities as Confounding Factors
8.9. Incorporation of Neurophysiological and Neuroimaging Measurements
8.10. Methodological Limitations of This Review
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nagata, J.M.; Smith-Russack, Z.; Paul, A.; Saldana, G.A.; Shao, I.Y.; Al-Shoaibi, A.A.A.; Chaphekar, A.V.; Downey, A.E.; He, J.; Murray, S.B.; et al. The social epidemiology of binge-eating disorder and behaviors in early adolescents. J. Eat. Disord. 2023, 11, 182. [Google Scholar] [CrossRef]
- Hilbert, A. Binge-Eating Disorder. Psychiatr. Clin. N. Am. 2019, 42, 33–43. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5), 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar]
- Brownley, K.A.; Berkman, N.D.; Peat, C.M.; Lohr, K.N.; Cullen, K.E.; Bann, C.M.; Bulik, C.M. Binge-Eating Disorder in Adults: A Systematic Review and Meta-analysis. Ann. Intern. Med. 2016, 165, 409–420. [Google Scholar] [CrossRef]
- Mathes, W.F.; Brownley, K.A.; Mo, X.; Bulik, C.M. The biology of binge eating. Appetite 2009, 52, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Guerdjikova, A.I.; Mori, N.; Casuto, L.S.; McElroy, S.L. Update on Binge Eating Disorder. Med. Clin. N. Am. 2019, 103, 669–680. [Google Scholar] [CrossRef]
- Marzilli, E.; Cerniglia, L.; Cimino, S. A narrative review of binge eating disorder in adolescence: Prevalence, impact, and psychological treatment strategies. Adolesc. Health Med. Ther. 2018, 9, 17–30. [Google Scholar] [CrossRef]
- Araujo, D.M.; Santos, G.F.; Nardi, A.E. Binge eating disorder and depression: A systematic review. World J. Biol. Psychiatry 2010, 11 Pt 2, 199–207. [Google Scholar] [CrossRef]
- Hay, P.; Girosi, F.; Mond, J. Prevalence and sociodemographic correlates of DSM-5 eating disorders in the Australian population. J. Eat. Disord. 2015, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Cossrow, N.; Pawaskar, M.; Witt, E.A.; Ming, E.E.; Victor, T.W.; Herman, B.K.; Wadden, T.A.; Erder, M.H. Estimating the prevalence of binge eating disorder in a community sample from the United States: Comparing DSM-IV-TR and DSM-5 criteria. J. Clin. Psychiatry 2016, 77, e968–e974. [Google Scholar] [CrossRef]
- Qian, J.; Hu, Q.; Wan, Y.; Li, T.; Wu, M.; Ren, Z.; Yu, D. Prevalence of eating disorders in the general population: A systematic review. Shanghai Arch. Psychiatry 2013, 25, 212–223. [Google Scholar]
- Spitzer, R.L.; Yanovski, S.; Wadden, T.; Wing, R.; Marcus, M.D.; Stunkard, A.; Devlin, M.; Mitchell, J.; Hasin, D.; Horne, R.L. Binge eating disorder: Its further validation in a multisite study. Int. J. Eat. Disord. 1993, 13, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Fairburn, C.G.; Cooper, Z.; Doll, H.A.; Norman, P.; O’Connor, M. The natural course of bulimia nervosa and binge eating disorder in young women. Arch. Gen. Psychiatry 2000, 57, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, A.B.; Le Grange, D.; Powers, P.; Crow, S.J.; Hill, L.L.; Peterson, C.B.; Crosby, R.D.; Mitchell, J.E. Eating disorder symptomatology in normal-weight vs. obese individuals with binge eating disorder. Obesity 2011, 19, 1515–1518. [Google Scholar] [CrossRef] [PubMed]
- Didie, E.R.; Fitzgibbon, M. Binge eating and psychological distress: Is the degree of obesity a factor? Eat. Behav. 2005, 6, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Lynch, W.C.; Heil, D.P.; Wagner, E.; Havens, M.D. Body dissatisfaction mediates the association between body mass index and risky weight control behaviors among White and Native American adolescent girls. Appetite 2008, 51, 210–213. [Google Scholar] [CrossRef]
- Grilo, C.M. Why no cognitive body image feature such as overvaluation of shape/weight in the binge eating disorder diagnosis? Int. J. Eat. Disord. 2013, 46, 208–211. [Google Scholar] [CrossRef]
- Rosenbaum, D.L.; White, K.S. The Role of Anxiety in Binge Eating Behavior: A Critical Examination of Theory and Empirical Literature. Health Psychol. Res. 2013, 1, e19. [Google Scholar] [CrossRef]
- Blanco-Gandia, M.C.; Montagud-Romero, S.; Rodríguez-Arias, M. Binge eating and psychostimulant addiction. World J. Psychiatry 2021, 11, 517–529. [Google Scholar] [CrossRef]
- Javaras, K.N.; Pope, H.G.; Lalonde, J.K.; Roberts, J.L.; Nillni, Y.I.; Laird, N.M.; Bulik, C.M.; Crow, S.J.; McElroy, S.L.; Walsh, B.T.; et al. Co-occurrence of binge eating disorder with psychiatric and medical disorders. J. Clin. Psychiatry 2008, 69, 266–273. [Google Scholar] [CrossRef]
- Friborg, O.; Martinussen, M.; Kaiser, S.; Øvergård, K.T.; Martinsen, E.W.; Schmierer, P.; Rosenvinge, J.H. Personality disorders in eating disorder not otherwise specified and binge eating disorder: A meta-analysis of comorbidity studies. J. Nerv. Ment. Dis. 2014, 202, 119–125. [Google Scholar] [CrossRef]
- Kessler, R.C.; Berglund, P.A.; Chiu, W.T.; Deitz, A.C.; Hudson, J.I.; Shahly, V.; Aguilar-Gaxiola, S.; Alonso, J.; Angermeyer, M.C.; Benjet, C.; et al. The prevalence and correlates of binge eating disorder in the World Health Organization World Mental Health Surveys. Biol. Psychiatry 2013, 73, 904–914. [Google Scholar] [CrossRef] [PubMed]
- Citrome, L. Binge-Eating Disorder and Comorbid Conditions: Differential Diagnosis and Implications for Treatment. J. Clin. Psychiatry 2017, 78 (Suppl. S1), 9–13. [Google Scholar] [CrossRef] [PubMed]
- Bulik, C.M.; Reichborn-Kjennerud, T. Medical morbidity in binge eating disorder. Int. J. Eat. Disord. 2003, 34 (Suppl. S1), S39–S46. [Google Scholar] [CrossRef]
- Hudson, J.I.; Lalonde, J.K.; Coit, C.E.; Tsuang, M.T.; McElroy, S.L.; Crow, S.J.; Bulik, C.M.; Hudson, M.S.; Yanovski, J.A.; Rosenthal, N.R.; et al. Longitudinal study of the diagnosis of components of the metabolic syndrome in individuals with binge-eating disorder. Am. J. Clin. Nutr. 2010, 91, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.E. Medical comorbidity and medical complications associated with binge-eating disorder. Int. J. Eat. Disord. 2016, 49, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.E.; King, W.C.; Courcoulas, A.; Dakin, G.; Elder, K.; Engel, S.; Flum, D.; Kalarchian, M.; Khandelwal, S.; Pender, J.; et al. Eating behavior and eating disorders in adults before bariatric surgery. Int. J. Eat. Disord. 2015, 48, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Vocks, S.; Tuschen-Caffier, B.; Pietrowsky, R.; Rustenbach, S.J.; Kersting, A.; Herpertz, S. Meta-analysis of the effectiveness of psychological and pharmacological treatments for binge eating disorder. Int. J. Eat. Disord. 2010, 43, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Reas, D.L.; Grilo, C.M. Review and meta-analysis of pharmacotherapy for binge-eating disorder. Obesity 2008, 16, 2024–2038. [Google Scholar] [CrossRef]
- Adam, T.C.; Epel, E.S. Stress, eating and the reward system. Physiol. Behav. 2007, 91, 449–458. [Google Scholar] [CrossRef]
- Johnson, R.D. Opioid involvement in feeding behaviour and the pathogenesis of certain eating disorders. Med. Hypotheses 1995, 45, 491–497. [Google Scholar] [CrossRef]
- Kelley, A.E.; Schiltz, C.A.; Landry, C.F. Neural systems recruited by drug- and food-related cues: Studies of gene activation in corticolimbic regions. Physiol. Behav. 2005, 86, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Heal, D.J.; Smith, S.L. Prospects for new drugs to treat binge-eating disorder: Insights from psychopathology and neuropharmacology. J. Psychopharmacol. 2022, 36, 680–703. [Google Scholar] [CrossRef]
- Kessler, R.M.; Hutson, P.H.; Herman, B.K.; Potenza, M.N. The neurobiological basis of binge-eating disorder. Neurosci. Biobehav. Rev. 2016, 63, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.A.; Levitan, R.D.; Reid, C.; Carter, J.C.; Kaplan, A.S.; Patte, K.A.; King, N.; Curtis, C.; Kennedy, J.L. Dopamine for “wanting” and opioids for “liking”: A comparison of obese adults with and without binge eating. Obesity 2009, 17, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
- Kelley, A.E.; Bakshi, V.P.; Haber, S.N.; Steininger, T.L.; Will, M.J.; Zhang, M. Opioid modulation of taste hedonics within the ventral striatum. Physiol. Behav. 2002, 76, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Bencherif, B.; Guarda, A.S.; Colantuoni, C.; Ravert, H.T.; Dannals, R.F.; Frost, J.J. Regional mu-opioid receptor binding in insular cortex is decreased in bulimia nervosa and correlates inversely with fasting behavior. J. Nucl. Med. 2005, 46, 1349–1351. [Google Scholar] [PubMed]
- Colantuoni, C.; Schwenker, J.; McCarthy, J.; Rada, P.; Ladenheim, B.; Cadet, J.L.; Schwartz, G.J.; Moran, T.H.; Hoebel, B.G. Excessive sugar intake alters binding to dopamine and mu- opioid receptors in the brain. Neuroreport 2001, 12, 3549–3552. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.M.; Kenny, P.J. Dopamine D2 receptors in addiction- like reward dysfunction and compulsive eating in obese rats. Nat. Neurosci. 2010, 13, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Pothos, E.N.; Creese, I.; Hoebel, B.G. Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake. J. Neurosci. 1995, 15, 6640–6650. [Google Scholar] [CrossRef]
- Koob, G.F.; Le Moal, M. Addiction and the brain antireward system. Annu. Rev. Psychol. 2008, 59, 29–53. [Google Scholar] [CrossRef]
- Avena, N.M.; Rada, P.; Hoebel, B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 2008, 32, 20–39. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, M.A.; Cohen, L.G.; Wassermann, E.M.; Priori, A.; Lang, N.; Antal, A.; Paulus, W.; Hummel, F.; Boggio, P.S.; Fregni, F.; et al. Transcranial direct current stimulation: State of the art 2008. Brain Stimul. 2008, 1, 206–223. [Google Scholar] [CrossRef] [PubMed]
- Brunoni, A.R.; Nitsche, M.A.; Bolognini, N.; Bikson, M.; Wagner, T.; Merabet, L.; Edwards, D.J.; Valero-Cabre, A.; Rotenberg, A.; Pascual-Leone, A.; et al. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012, 5, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Priori, A. Brain polarization in humans: A reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin. Neurophysiol. 2003, 114, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Duriez, P.; Bou Khalil, R.; Chamoun, Y.; Maatoug, R.; Strumila, R.; Seneque, M.; Gorwood, P.; Courtet, P.; Guillaume, S. Brain Stimulation in Eating Disorders: State of the Art and Future Perspectives. J. Clin. Med. 2020, 9, 2358. [Google Scholar] [CrossRef]
- Beaumont, J.D.; Smith, N.C.; Starr, D.; Davis, D.; Dalton, M.; Nowicky, A.; Russell, M.; Barwood, M.J. Modulating eating behavior with transcranial direct current stimulation (tDCS): A systematic literature review on the impact of eating behavior traits. Obes. Rev. 2022, 23, e13364. [Google Scholar] [CrossRef]
- Gallop, L.; Flynn, M.; Campbell, I.C.; Schmidt, U. Neuromodulation and Eating Disorders. Curr. Psychiatry Rep. 2022, 24, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Dalton, B.; Bartholdy, S.; Campbell, I.C.; Schmidt, U. Neurostimulation in Clinical and Sub-clinical Eating Disorders: A Systematic Update of the Literature. Curr. Neuropharmacol. 2018, 16, 1174–1192. [Google Scholar] [CrossRef]
- Hall, P.A.; Vincent, C.M.; Burhan, A.M. Non-invasive brain stimulation for food cravings, consumption, and disorders of eating: A review of methods, findings and controversies. Appetite 2018, 124, 78–88. [Google Scholar] [CrossRef]
- Kang, N.; Kim, R.K.; Kim, H.J. Effects of transcranial direct current stimulation on symptoms of nicotine dependence: A systematic review and meta-analysis. Addict. Behav. 2019, 96, 133–139. [Google Scholar] [CrossRef]
- Kim, H.J.; Kang, N. Bilateral transcranial direct current stimulation attenuated symptoms of alcohol use disorder: A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 108, 110160. [Google Scholar] [CrossRef] [PubMed]
- Max, S.M.; Plewnia, C.; Zipfel, S.; Giel, K.E.; Schag, K. Combined antisaccade task and transcranial direct current stimulation to increase response inhibition in binge eating disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 17–28. [Google Scholar] [CrossRef]
- Burgess, E.E.; Sylvester, M.D.; Morse, K.E.; Amthor, F.R.; Mrug, S.; Lokken, K.L.; Osborn, M.K.; Soleymani, T.; Boggiano, M.M. Effects of transcranial direct current stimulation (tDCS) on binge eating disorder. Int. J. Eat. Disord. 2016, 49, 930–936. [Google Scholar] [CrossRef]
- Gordon, G.; Williamson, G.; Gkofa, V.; Schmidt, U.; Brockmeyer, T.; Campbell, I. Participants’ experience of approach bias modification training with transcranial Direct Current Stimulation as a combination treatment for binge eating disorder. Eur. Eat. Disord. Rev. 2021, 29, 969–984. [Google Scholar] [CrossRef]
- Giel, K.E.; Schag, K.; Max, S.M.; Martus, P.; Zipfel, S.; Fallgatter, A.J.; Plewnia, C. Inhibitory Control Training Enhanced by Transcranial Direct Current Stimulation to Reduce Binge Eating Episodes: Findings from the Randomized Phase II ACCElect Trial. Psychother. Psychosom. 2023, 92, 101–112. [Google Scholar] [CrossRef]
- Beaumont, J.D.; Dalton, M.; Davis, D.; Finlayson, G.; Nowicky, A.; Russell, M.; Barwood, M.J. No effect of prefrontal transcranial direct current stimulation (tDCS) on food craving, food reward and subjective appetite in females displaying mild-to-moderate binge-type behaviour. Appetite 2023, 189, 106997. [Google Scholar] [CrossRef] [PubMed]
- Max, S.M.; Schag, K.; Giel, K.E.; Plewnia, C. Behavioural biases in the interaction with food objects in virtual reality and its clinical implication for binge eating disorder. Eat. Weight. Disord. 2023, 28, 46. [Google Scholar] [CrossRef]
- Song, S.; Zilverstand, A.; Gui, W.; Li, H.J.; Zhou, X. Effects of single-session versus multi-session non-invasive brain stimulation on craving and consumption in individuals with drug addiction, eating disorders or obesity: A meta-analysis. Brain Stimul. 2019, 12, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Greeno, C.G.; Wing, R.R.; Shiffman, S. Binge antecedents in obese women with and without binge eating disorder. J. Consult. Clin. Psychol. 2000, 68, 95–102. [Google Scholar] [CrossRef]
- Waters, A.; Hill, A.; Waller, G. Bulimics’ responses to food cravings: Is binge-eating a product of hunger or emotional state? Behav. Res. Ther. 2001, 39, 877–886. [Google Scholar] [CrossRef]
- White, M.A.; Grilo, C.M. Psychometric properties of the Food Craving Inventory among obese patients with binge eating disorder. Eat. Behav. 2005, 6, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.K.; Sylvester, M.D.; Osborn, L.; Helms, J.; Turan, B.; Burgess, E.E.; Boggiano, M.M. The critical role of cognitive-based trait differences in transcranial direct current stimulation (tDCS) suppression of food craving and eating in frank obesity. Appetite 2017, 116, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.K.; Sylvester, M.D.; Helton, A.; Pittman, B.R.; Wagstaff, L.E.; McRae, T.R.; Turan, B.; Fontaine, K.R.; Amthor, F.R.; Boggiano, M.M. The effect of expectation on transcranial direct current stimulation (tDCS) to suppress food craving and eating in individuals with overweight and obesity. Appetite 2019, 136, 1–7. [Google Scholar] [CrossRef]
- Blechert, J.; Klackl, J.; Miedl, S.F.; Wilhelm, F.H. To eat or not to eat: Effects of food availability on reward system activity during food picture viewing. Appetite 2016, 99, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Talakoub, O.; Paiva, R.R.; Milosevic, M.; Hoexter, M.Q.; Franco, R.; Alho, E.; Navarro, J.; Pereira, J.F., Jr.; Popovic, M.R.; Savage, C.; et al. Lateral hypothalamic activity indicates hunger and satiety states in humans. Ann. Clin. Transl. Neurol. 2017, 4, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Rodríguez, O.; Martín-Pérez, C.; Vilar-López, R.; Verdejo-Garcia, A. Ventral and Dorsal Striatum Networks in Obesity: Link to Food Craving and Weight Gain. Biol. Psychiatry 2017, 81, 789–796. [Google Scholar] [CrossRef]
- Meye, F.J.; Adan, R.A. Feelings about food: The ventral tegmental area in food reward and emotional eating. Trends Pharmacol. Sci. 2014, 35, 31–40. [Google Scholar] [CrossRef]
- Yu, Y.; Miller, R.; Groth, S.W. A literature review of dopamine in binge eating. J. Eat. Disord. 2022, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Graff-Radford, J. Executive Dysfunction and the Prefrontal Cortex. Continuum 2021, 27, 1586–1601. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Baler, R.D. Reward, dopamine and the control of food intake: Implications for obesity. Trends Cogn. Sci. 2011, 15, 37–46. [Google Scholar] [CrossRef]
- Jenni, N.L.; Larkin, J.D.; Floresco, S.B. Prefrontal Dopamine D1 and D2 Receptors Regulate Dissociable Aspects of Decision Making via Distinct Ventral Striatal and Amygdalar Circuits. J. Neurosci. 2017, 37, 6200–6213. [Google Scholar] [CrossRef] [PubMed]
- Logue, S.F.; Gould, T.J. The neural and genetic basis of executive function: Attention, cognitive flexibility, and response inhibition. Pharmacol. Biochem. Behav. 2014, 123, 45–54. [Google Scholar] [CrossRef] [PubMed]
- London, E.D. Human Brain Imaging Links Dopaminergic Systems to Impulsivity. Curr. Top. Behav. Neurosci. 2020, 47, 53–71. [Google Scholar]
- Settell, M.L.; Testini, P.; Cho, S.; Lee, J.H.; Blaha, C.D.; Jo, H.J.; Lee, K.H.; Min, H.K. Functional Circuitry Effect of Ventral Tegmental Area Deep Brain Stimulation: Imaging and Neurochemical Evidence of Mesocortical and Mesolimbic Pathway Modulation. Front. Neurosci. 2017, 11, 104. [Google Scholar] [CrossRef]
- Alcaro, A.; Huber, R.; Panksepp, J. Behavioral functions of the mesolimbic dopaminergic system: An affective neuroethological perspective. Brain Res. Rev. 2007, 56, 283–321. [Google Scholar] [CrossRef]
- Simon, J.J.; Skunde, M.; Hamze Sinno, M.; Brockmeyer, T.; Herpertz, S.C.; Bendszus, M.; Herzog, W.; Friederich, H.C. Impaired Cross-Talk between Mesolimbic Food Reward Processing and Metabolic Signaling Predicts Body Mass Index. Front. Behav. Neurosci. 2014, 8, 359. [Google Scholar]
- Hebebrand, J.; Albayrak, Ö.; Adan, R.; Antel, J.; Dieguez, C.; de Jong, J.; Leng, G.; Menzies, J.; Mercer, J.G.; Murphy, M.; et al. “Eating addiction”, rather than “food addiction”, better captures addictive-like eating behavior. Neurosci. Biobehav. Rev. 2014, 47, 295–306. [Google Scholar] [CrossRef]
- Berridge, K.C.; Robinson, T.E. Liking, wanting, and the incentive-sensitization theory of addiction. Am. Psychol. 2016, 71, 670–679. [Google Scholar] [CrossRef]
- Stice, E.; Burger, K. Neural vulnerability factors for obesity. Clin. Psychol. Rev. 2019, 68, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Fukai, M.; Bunai, T.; Hirosawa, T.; Kikuchi, M.; Ito, S.; Minabe, Y.; Ouchi, Y. Endogenous dopamine release under transcranial direct-current stimulation governs enhanced attention: A study with positron emission tomography. Transl. Psychiatry 2019, 9, 115. [Google Scholar] [CrossRef]
- Bunai, T.; Hirosawa, T.; Kikuchi, M.; Fukai, M.; Yokokura, M.; Ito, S.; Takata, Y.; Terada, T.; Ouchi, Y. tDCS-induced modulation of GABA concentration and dopamine release in the human brain: A combination study of magnetic resonance spectroscopy and positron emission tomography. Brain Stimul. 2021, 14, 154–160. [Google Scholar] [CrossRef]
- Schreiber, L.R.; Odlaug, B.L.; Grant, J.E. The overlap between binge eating disorder and substance use disorders: Diagnosis and neurobiology. J. Behav. Addict. 2013, 2, 191–198. [Google Scholar] [CrossRef]
- Anderson, M.C.; Bunce, J.G.; Barbas, H. Prefrontal-hippocampal pathways underlying inhibitory control over memory. Neurobiol. Learn. Mem. 2016, 134 Pt A, 145–161. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.J.; Telang, F.; Fowler, J.S.; Thanos, P.K.; Logan, J.; Alexoff, D.; Ding, Y.-S.; Wong, C.; Ma, Y.; et al. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: Possible contributing factors. Neuroimage 2008, 42, 1537–1543. [Google Scholar] [CrossRef]
- Batterink, L.; Yokum, S.; Stice, E. Body mass correlates inversely with inhibitory control in response to food among adolescent girls: An fMRI study. Neuroimage 2010, 52, 1696–1703. [Google Scholar] [CrossRef]
- Dimitropoulos, A.; Tkach, J.; Ho, A.; Kennedy, J. Greater corticolimbic activation to high-calorie food cues after eating in obese vs. normal-weight adults. Appetite 2012, 58, 303–312. [Google Scholar] [CrossRef]
- Moore, C.F.; Sabino, V.; Koob, G.F.; Cottone, P. Neuroscience of Compulsive Eating Behavior. Front. Neurosci. 2017, 11, 469. [Google Scholar] [CrossRef] [PubMed]
- Fassini, P.G.; Das, S.K.; Suen, V.M.M.; Magerowski, G.; Marchini, J.S.; da Silva, W.A., Jr.; Changyu, S.; Alonso-Alonso, M. Appetite effects of prefrontal stimulation depend on COMT Val158Met polymorphism: A randomized clinical trial. Appetite 2019, 140, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, L.; Accoto, A.; Couyoumdjian, A.; Conversi, D. A Systematic Review of Genetic Polymorphisms Associated with Binge Eating Disorder. Nutrients 2021, 13, 848. [Google Scholar] [CrossRef] [PubMed]
Author, Citation | Population | Used Test | Interventions | Stimulation Site | Current Intensity | Duration (min) | Main Findings in Treatment Group |
---|---|---|---|---|---|---|---|
Max et al. [53] | 31 participants: 1 mA condition (n = 16), 2 mA condition (n = 15) | Self-reported frequency of binge eating episodes, antisaccades task | 1 session of real or sham tDCS | Anode on right DLPFC (F4), cathode on the left deltoid muscle | 1 mA or 2 mA | 20 |
|
Burgess et al. [54] | 30 participants | Binge Eating Scale (BES), Dutch Eating Behavior Questionnaire-Restraint Subscale (DEBQ-R), Palatable Eating Motives Scale (PEMS) | 1 session of real or sham tDCS | Anode on the right DLPFC (F4), cathode on the left DLPFC (F3) | 2 mA | 20 min |
|
Gordon et al. [55] | 15 participants: real tDCS (n = 6), sham tDCS (n = 9) | Not reported, frequency of binge eating | 6 sessions | Anode on the right DLPFC (F4), cathode on the left DLPFC (F3) | 2 mA | Not reported |
|
Giel et al. [56] | 41 participants | Eating Disorder Examination (EDE), used to assess inhibitory control capacity, measured the course of the error rate (%) of the food-related eye-tracking task from the beginning of the training (T1) over each training session until immediately after the training (T7) compared to baseline (T0) values and the results of the Three-Factor Eating Questionnaire (TFEQ). | 6 sessions | Anode on the right DLPFC (F4), no reference electrode data | 2 mA | 20 min |
|
Beaumont et al. [57] | 17 participants | Appetite visual analogue scale (VAS), the Food Craving Questionnaire-State (FCQ-S), the Leeds Food Preference Questionnaire (LFPQ), Control of Eating Questionnaire (CoEQ) | 2 sessions, real or sham tDCS | Anode on the right DLPFC (F4), cathode on the occipital zero point (Oz) | 2 mA | 20 min |
|
Max et al. [58] | 31 participants: real tDCS (n = 15), sham tDCS (n = 16) | Food Craving Questionnaire-State (FCQ-S), Eating Disorder Examination (EDE) | 6 sessions | Anode on the right DLPFC (F4), cathode was positioned extracephalic on the left deltoid muscle | 2 mA | 20 |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmiel, J.; Kurpas, D.; Rybakowski, F.; Leszek, J. The Effectiveness of Transcranial Direct Current Stimulation (tDCS) in Binge Eating Disorder (BED)—Review and Insight into the Mechanisms of Action. Nutrients 2024, 16, 1521. https://doi.org/10.3390/nu16101521
Chmiel J, Kurpas D, Rybakowski F, Leszek J. The Effectiveness of Transcranial Direct Current Stimulation (tDCS) in Binge Eating Disorder (BED)—Review and Insight into the Mechanisms of Action. Nutrients. 2024; 16(10):1521. https://doi.org/10.3390/nu16101521
Chicago/Turabian StyleChmiel, James, Donata Kurpas, Filip Rybakowski, and Jerzy Leszek. 2024. "The Effectiveness of Transcranial Direct Current Stimulation (tDCS) in Binge Eating Disorder (BED)—Review and Insight into the Mechanisms of Action" Nutrients 16, no. 10: 1521. https://doi.org/10.3390/nu16101521
APA StyleChmiel, J., Kurpas, D., Rybakowski, F., & Leszek, J. (2024). The Effectiveness of Transcranial Direct Current Stimulation (tDCS) in Binge Eating Disorder (BED)—Review and Insight into the Mechanisms of Action. Nutrients, 16(10), 1521. https://doi.org/10.3390/nu16101521