Effects of Energy Delivery Guided by Indirect Calorimetry in Critically Ill Patients: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Data Extraction
2.3. Inclusion and Exclusion Criteria
2.4. Outcomes
2.5. Quality Assessment
2.6. Statistical Analysis
3. Results
3.1. Search Results
3.2. Characteristics of Included Studies
3.3. Clinical Outcomes
3.4. Subgroup Analyses
3.5. Post Hoc Analysis (Sensitivity Analysis)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biolo, G.; Grimble, G.; Preiser, J.C.; Leverve, X.; Jolliet, P.; Planas, M.; Roth, E.; Wernerman, J.; Pichard, C.; European Society of Intensive Care Medicine Working Group on Nutrition and Metabolism. Position paper of the ESICM Working Group on Nutrition and Metabolism. Metabolic basis of nutrition in intensive care unit patients: Ten critical questions. Intensive Care Med. 2002, 28, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Elamin, E.M.; Camporesi, E. Evidence-based nutritional support in the intensive care unit. Int. Anesthesiol. Clin. 2009, 47, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.N.; Heuberger, R.A. Predictive equations for energy needs for the critically ill. Respir. Care 2009, 54, 509–521. [Google Scholar] [PubMed]
- Saffle, J.R.; Larson, C.M.; Sullivan, J. A randomized trial of indirect calorimetry-based feedings in thermal injury. J. Trauma Acute Care Surg. 1990, 30, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; De Waele, E.; Sanchez, C.; Ruiz Santana, S.; Montejo, J.C.; Laterre, P.F.; Soroksky, A.; Moscovici, E.; Kagan, I. TICACOS international: A multi-center, randomized, prospective controlled study comparing tight calorie control versus Liberal calorie administration study. Clin. Nutr. 2020, 40, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Tatucu-Babet, O.A.; Ridley, E.J.; Tierney, A.C. Prevalence of Underprescription or Overprescription of Energy Needs in Critically Ill Mechanically Ventilated Adults as Determined by Indirect Calorimetry: A Systematic Literature Review. JPEN J. Parenter. Enteral Nutr. 2016, 40, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Zusman, O.; Kagan, I.; Bendavid, I.; Theilla, M.; Cohen, J.; Singer, P. Predictive equations predictive equations versus measured energy expenditure by indirect calorimetry: A retrospective validation. Clin. Nutr. 2019, 38, 1206–1210. [Google Scholar] [CrossRef]
- Tatucu-Babet, O.A.; Fetterplace, K.; Lambell, K.; Miller, E.; Deane, A.M.; Ridley, E.J. Is Energy Delivery Guided by Indirect Calorimetry Associated with Improved Clinical Outcomes in Critically Ill Patients? A Systematic Review and Meta-analysis. Nutr. Metab. Insights. 2020, 13, 1178638820903295. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.Y.; Zheng, W.H.; Zhou, H.; Xu, Y.; Huang, H.B. Energy delivery guided by indirect calorimetry in critically ill patients: A systematic review and meta-analysis. Crit. Care. 2021, 25, 88. [Google Scholar] [CrossRef]
- Warren, M.; McCarthy, M.S.; Roberts, P.R. Practical Application of the Revised Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: A Case Study Approach. Nutr. Clin. Pract. 2016, 31, 334–341. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [PubMed]
- The Committee on Japanese Guidelines for Nutrition Support Therapy in the Adult and Pediatric Critically Ill Patients, Japanese Society of Intensive Care Medicine. Japanese Guidelines for Nutrition Support Therapy in the Adult and Pediatric Critically Ill Patients: Disease-Specific Nutrition Support Therapy. J. Jpn. Soc. Intensive Care Med. 2017, 24, 569–591. [Google Scholar] [CrossRef]
- Oshima, T.; Berger, M.M.; De Waele, E.; Guttormsen, A.B.; Heidegger, C.P.; Hiesmayr, M.; Singer, P.; Wernerman, J.; Pichard, C. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin. Nutr. 2017, 36, 651–662. [Google Scholar] [CrossRef]
- De Waele, E.; van Zanten, A.R.H. Routine use of indirect calorimetry in critically ill patients: Pros and cons. Crit. Care. 2022, 26, 123. [Google Scholar] [CrossRef]
- Farah, H.A.; Saw, K.C.; Nadia, M.N.; Rufinah, T.; Wan, R.W. A Comparison between Continuous Indirect Calorimetry and Single Weight-Based Formula in Estimating Resting Energy Expenditure in Nutritional Therapy: A Prospective Randomized Controlled Study in Critically Ill Patients. Med. Health 2021, 16, 207–215. [Google Scholar]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Collin, C.; Wade, D.T.; Davies, S. The Barthel ADL Index: A reliability study. Int. Disabil. Stud. 1988, 10, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Kidd, D.; Stewart, G.; Baldry, J.; Johnson, J.; Rossiter, D.; Petruckevitch, A.; Thompson, A.J. The Functional Independence Measure: A comparative validity and reliability study. Disabil. Rehabil. 1995, 17, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Hough, C.L.; Lieu, B.K.; Caldwell, E.S. Manual muscle strength testing of critically ill patients: Feasibility and interobserver agreement. Crit. Care. 2011, 15, R43. [Google Scholar] [CrossRef] [PubMed]
- Treacy, D.; Hassett, L. The Short Physical Performance Battery. J. Physiother. 2018, 64, 61. [Google Scholar] [CrossRef] [PubMed]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Ware, J., Jr.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R. EuroQol: The current state of play. Health Policy 1996, 37, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Xi, L.; Chi, T.; Song, J.; Wang, Z. Application value of resting energy monitoring in nutritional support therapy for mechanical ventilation patients. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2019, 31, 98–101. [Google Scholar]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J.; GRADE Working Group. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef] [PubMed]
- Singer, P.; Anbar, R.; Cohen, J.; Shapiro, H.; Shalita-Chesner, M.; Lev, S.; Grozovski, E.; Theilla, M.; Frishman, S.; Madar, Z. The tight calorie control study (TICACOS): A prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011, 37, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Anbar, R.; Beloosesky, Y.; Cohen, J.; Madar, Z.; Weiss, A.; Theilla, M.; Koren Hakim, T.; Frishman, S.; Singer, P. Tight calorie control in geriatric patients following hip fracture decreases complications: A randomized, controlled study. Clin. Nutr. 2014, 33, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Landes, S.; McClave, S.A.; Frazier, T.H.; Lowen, C.C.; Hurt, R.T. Indirect Calorimetry: Is it Required to Maximize Patient Outcome from Nutrition Therapy? Curr. Nutr. Rep. 2016, 5, 233–239. [Google Scholar] [CrossRef]
- Allingstrup, M.J.; Kondrup, J.; Wiis, J.; Claudius, C.; Pedersen, U.G.; Hein-Rasmussen, R.; Bjerregaard, M.R.; Steensen, M.; Jensen, T.H.; Lange, T.; et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: The single-centre, randomized, outcome assessor-blinded EAT-ICU trial. Intensive Care Med. 2017, 43, 1637–1647. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Granda, A.; Schollenberger, A.; Haap, M.; Riessen, R.; Bischoff, S.C. Optimization of Nutrition Therapy with the Use of Calorimetry to Determine and Control Energy Needs in Mechanically Ventilated Critically Ill Patients: The ONCA Study, a Randomized, Prospective Pilot Study. JPEN J. Parenter. Enteral Nutr. 2019, 43, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, J.R.A.; Lima, H.C.M.; Montenegro, W.S.; Souza, S.C.C.; Nogueira, I.R.O.M.; Silva, M.M.; Muniz, N.A. Optimized calorie and high protein intake versus recommended caloric-protein intake in critically ill patients: A prospective, randomized, controlled phase II clinical trial. Rev. Bras. Ter. Intensiva 2019, 31, 171–179. [Google Scholar] [CrossRef]
- Zusman, O.; Theilla, M.; Cohen, J.; Kagan, I.; Bendavid, I.; Singer, P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care 2016, 20, 367. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.M.; Burgos, R.; Casaer, M.P.; De Robertis, E.; Delgado, J.C.L.; Fraipont, V.; Gonçalves-Pereira, J.; Pichard, C.; Stoppe, C. Clinical nutrition issues in 2022: What is missing to trust supplemental parenteral nutrition (SPN) in ICU patients? Crit. Care 2022, 26, 271. [Google Scholar] [CrossRef]
- Oshima, T.; Delsoglio, M.; Dupertuis, Y.M.; Singer, P.; De Waele, E.; Veraar, C.; Heidegger, C.P.; Wernermann, J.; Wischmeyer, P.E.; Berger, M.M.; et al. The clinical evaluation of the new indirect calorimeter developed by the ICALIC project. Clin. Nutr. 2020, 39, 3105–3111. [Google Scholar] [CrossRef]
Author, Year, Country | Study Type | No. of Participants | Time to First Day of IC | Frequency | How to Administer Nutrition | Target Calories | REE (kcal) | Delivered Calories (Sufficiency Rate) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
I | C | I | C | I | C | ||||||
Jeffrey et al., 1990, USA [4] | Single-center RCT | 26 | 23 | Within 2 days | 3 times/w | EN + PN | 120% | 2963 | 3781 | 3530 (120%) | 3490 (94%) |
Singer et al., 2011, Germany [32] | Single-center RCT | 65 | 65 | Within 2 days | Once every 2 days | EN + PN | 100% | 1976 | 1835 | 2086 (95%) | 1480 (81%) |
Anbar et al., 2014, Israel [33] | Single-center RCT | 22 | 28 | Within from 1 to 2 days | 2 times | Oral intake + oral nutritional support | N/A | 1274 | 1262 | 1121 (88%) | 777 (61%) |
Landes et al., 2016, USA [34] | Single-center RCT | 15 | 12 | Within 7 days | 1 time/w | EN | 110% | 1976 | 2067 | 1709 (87%) | 1592 (77%) |
Allingstrup et al., 2017, Denmark [35] | Single-center RCT | 100 | 99 | As soon as possible | Once every 2 days | EN + PN | 100% | 2069 | 1875 | 1877 (91%) | 1061 (57%) |
Gonzalez-Granda et al., 2019, Germany [36] | Single-center RCT | 20 | 20 | Within from 1 to 3 days | 3 times/w | EN + PN | Day 1: 25%, day 2: 50%, day 3: 75%, day 4: 100% | 21.1/kg | 25.0/kg | 20.4/kg (98%) | 20.0/kg (79%) |
Azevedo et al., 2019, Brazil [37] | Single-center RCT | 57 | 63 | As soon as possible | Every day | EN + PN | N/A | 1554 | 1450 | 1139 (73%) | 1140 (79%) |
Singer et al., 2020, Germany [5] | Multi-center RCT | 209 | 208 | Within from 1 to 2 days | Every day | EN + PN | 80~100% | 1953 | 1942 | 1746 (89%) | 1301 (67%) |
Farah et al., 2021, Malaysia [15] | Single-center RCT | 73 | 73 | Within from 1 day | Every day | EN + PN | 70~100% | 1512 | 1668 | 1507 (100%) | 1519 (91%) |
Outcomes | № of Participants (Studies) Follow-Up | Certainty of Evidence (GRADE) | Anticipated Absolute Effects * (95% CI) | Relative Effect (95% CI) | Anticipated Absolute Effects | ||
---|---|---|---|---|---|---|---|
Risk Usual Care | Risk IC | Risk with Equation | Risk Difference with IC | ||||
Short-term mortality | 988 (7 RCTs) | ⨁⨁⨁◯ Moderate a | 25.7% | 22.1% (18 to 27.2) | RR 0.86 (0.70 to 1.06) | 257 per 1000 | 36 fewer per 1000 (77 fewer to 15 more) |
Length of ICU stay | 1090 (7 RCTs) | ⨁⨁◯◯ Low b,c | - | - | - | MD 0.86 higher (0.98 lower to 2.7 higher) | |
Duration of mechanical ventilation | 1068 (7 RCTs) | ⨁⨁⨁◯ Moderate c | - | - | - | MD 0.66 higher (0.39 lower to 1.72 higher) | |
All infections | 785 (4 RCTs) | ⨁◯◯◯ Very low a,d | 22.1% | 23.4% (18.1 to 30.2) | RR 0.99 (0.51 to 1.93) | 221 per 1000 | 13 more per 1000 (40 fewer to 82 more) |
Ventilator-associated pneumonia | 785 (4 RCTs) | ⨁⨁◯◯ Low a,b | 31.1% | 11.5% (7.8 to 17.0) | RR 1.06 (0.49 to 2.28) | 113 per 1000 | 2 more per 1000 (35 fewer to 58 more) |
Physical functions (physical component summary) | 309 (2 RCTs) | ⨁⨁⨁◯ Moderate | - | - | - | MD 0.06 lower (6.28 lower to 6.15 higher) | |
Adverse events (kidney) | 421 (2 RCTs) | ⨁⨁⨁◯ Moderate a | 31.1% | 32.0% (24.3 to 42.3) | RR 1.01 (0.77 to 1.34) | 311 per 1000 | 9 more per 1000 (68 fewer to 112 more) |
Adverse events (liver) | 482 (2 RCTs) | ⨁⨁⨁◯ Moderate a | 13.7% | 13.7% (8.8 to 21.5) | RR 1.00 (0.64 to 1.57) | 137 per 1000 | 0 fewer per 1000 (49 fewer to 78 more) |
Subgroup | IC Group n/Total (%) | Control Group n/Total (%) | RR (95% CI) |
---|---|---|---|
Short-term mortality (frequency of IC measurements) | |||
Every day | 48/257 (18.6) | 58/263 (22.1) | 0.90 (0.66, 1.23) |
Non-every day | 59/233 (25.3) | 70/235 (29.8) | 0.86 (0.70, 1.06) |
Short-term mortality (delivery calories) | |||
%REE < 90 | 48/279 (17.2) | 60/291 (20.6) | 0.89 (0.65, 1.21) |
%REE ≥ 90 | 59/211 (28.0) | 68/207 (32.9) | 0.86 (0.70, 1.06) |
Short-term mortality (mechanically ventilated patients) | |||
mechanically ventilated patients | 104/442 (23.5) | 124/447 (27.7) | 0.78 (0.65, 1.21) |
Non-mechanically ventilated patients | 107/490 (21.8) | 128/499 (25.7) | 0.86 (0.70, 1.06) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watanabe, S.; Izumino, H.; Takatani, Y.; Tsutsumi, R.; Suzuki, T.; Tatsumi, H.; Yamamoto, R.; Sato, T.; Miyagi, T.; Miyajima, I.; et al. Effects of Energy Delivery Guided by Indirect Calorimetry in Critically Ill Patients: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1452. https://doi.org/10.3390/nu16101452
Watanabe S, Izumino H, Takatani Y, Tsutsumi R, Suzuki T, Tatsumi H, Yamamoto R, Sato T, Miyagi T, Miyajima I, et al. Effects of Energy Delivery Guided by Indirect Calorimetry in Critically Ill Patients: A Systematic Review and Meta-Analysis. Nutrients. 2024; 16(10):1452. https://doi.org/10.3390/nu16101452
Chicago/Turabian StyleWatanabe, Shinichi, Hiroo Izumino, Yudai Takatani, Rie Tsutsumi, Takahiro Suzuki, Hiroomi Tatsumi, Ryo Yamamoto, Takeaki Sato, Tomoka Miyagi, Isao Miyajima, and et al. 2024. "Effects of Energy Delivery Guided by Indirect Calorimetry in Critically Ill Patients: A Systematic Review and Meta-Analysis" Nutrients 16, no. 10: 1452. https://doi.org/10.3390/nu16101452
APA StyleWatanabe, S., Izumino, H., Takatani, Y., Tsutsumi, R., Suzuki, T., Tatsumi, H., Yamamoto, R., Sato, T., Miyagi, T., Miyajima, I., Nakamura, K., Higashibeppu, N., & Kotani, J. (2024). Effects of Energy Delivery Guided by Indirect Calorimetry in Critically Ill Patients: A Systematic Review and Meta-Analysis. Nutrients, 16(10), 1452. https://doi.org/10.3390/nu16101452