Comparative Evaluation of a Low-Carbohydrate Diet and a Mediterranean Diet in Overweight/Obese Patients with Type 2 Diabetes Mellitus: A 16-Week Intervention Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Dietary Intervention
2.4. Body Composition Assessment
2.5. Urine and Blood Samples
2.6. Statistical Analysis
3. Results
3.1. Baseline Parameters
3.2. Anthropometric and Body Composition Parameters
3.3. Metabolic Parameters and Cardiovascular Risk Factors
3.4. Compliance with Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000, 321, 405–412. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee 8. Obesity and Weight Management for the Prevention and Treatment of Type 2 Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S113–S124. [Google Scholar] [CrossRef] [PubMed]
- Cavero-Redondo, I.; Peleteiro, B.; Álvarez-Bueno, C.; Rodriguez-Artalejo, F.; Martínez-Vizcaíno, V. Glycated haemoglobin A1c as a risk factor of cardiovascular outcomes and all-cause mortality in diabetic and non-diabetic populations: A systematic review and meta-analysis. BMJ Open 2017, 7, e015949. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.-M.; Knüppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Garber, A.J.; Abrahamson, M.J.; Barzilay, J.I.; Blonde, L.; Bloomgarden, Z.T.; Bush, M.A.; Dagogo-Jack, S.; DeFronzo, R.A.; Einhorn, D.; Fonseca, V.A.; et al. Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the comprehensive type 2 diabetes management algorithm—2019 executive summary. Endocr. Pract. 2019, 25, 69–100. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R. Type 2 diabetes: Etiology and reversibility. Diabetes Care 2013, 36, 1047–1055. [Google Scholar] [CrossRef]
- Lim, E.L.; Hollingsworth, K.G.; Aribisala, B.S.; Chen, M.J.; Mathers, J.C.; Taylor, R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia 2011, 54, 2506–2514. [Google Scholar] [CrossRef]
- Gastaldelli, A.; Cusi, K.; Pettiti, M.; Hardies, J.; Miyazaki, Y.; Berria, R.; Buzzigoli, E.; Sironi, A.M.; Cersosimo, E.; Ferrannini, E.; et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 2007, 133, 496–506. [Google Scholar] [CrossRef]
- Inchiostro, S.; Bertoli, G.; Zanette, G.; Donadon, V. Evidence of higher insulin resistance in NIDDM patients with ischaemic heart disease. Diabetologia 1994, 37, 597–603. [Google Scholar] [CrossRef]
- Bonora, E.; Formentini, G.; Calcaterra, F.; Lombardi, S.; Marini, F.; Zenari, L.; Saggiani, F.; Poli, M.; Perbellini, S.; Raffaelli, A.; et al. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects: Prospective data from the Verona Diabetes Complications Study. Diabetes Care 2002, 25, 1135–1141. [Google Scholar] [CrossRef] [PubMed]
- Saely, C.H.; Aczel, S.; Marte, T.; Langer, P.; Hoefle, G.; Drexel, H. The metabolic syndrome, insulin resistance, and cardiovascular risk in diabetic and nondiabetic patients. J. Clin. Endocrinol. Metab. 2005, 90, 5698–5703. [Google Scholar] [CrossRef] [PubMed]
- Robins, S.J.; Rubins, H.B.; Faas, F.H.; Schaefer, E.J.; Elam, M.B.; Anderson, J.W.; Collins, D.; Veterans Affairs HDL Intervention Trial (VA-HIT). Insulin resistance and cardiovascular events with low HDL cholesterol: The Veterans Affairs HDL Intervention Trial (VA-HIT). Diabetes Care 2003, 26, 1513–1517. [Google Scholar] [CrossRef] [PubMed]
- Sotos-Prieto, M.; Del Rio, D.; Drescher, G.; Estruch, R.; Hanson, C.; Harlan, T.; Hu, F.B.; Loi, M.; McClung, J.P.; Mojica, A.; et al. Mediterranean diet—promotion and dissemination of healthy eating: Proceedings of an exploratory seminar at the Radcliffe institute for advanced study. Int. J. Food Sci. Nutr. 2022, 73, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Sheard, N.F.; Clark, N.G.; Brand-Miller, J.C.; Franz, M.J.; Pi-Sunyer, F.X.; Mayer-Davis, E.; Kulkarni, K.; Geil, P. Dietary carbohydrate (amount and type) in the prevention and management of diabetes: A statement by the american diabetes association. Diabetes Care 2004, 27, 2266–2271. [Google Scholar] [CrossRef]
- Wheeler, M.L.; Dunbar, S.A.; Jaacks, L.M.; Karmally, W.; Mayer-Davis, E.J.; Wylie-Rosett, J.; Yancy, W.S. Macronutrients, food groups, and eating patterns in the management of diabetes: A systematic review of the literature, 2010. Diabetes Care 2012, 35, 434–445. [Google Scholar] [CrossRef]
- Evert, A.B.; Boucher, J.L.; Cypress, M.; Dunbar, S.A.; Franz, M.J.; Mayer-Davis, E.J.; Neumiller, J.J.; Nwankwo, R.; Verdi, C.L.; Urbanski, P.; et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2013, 36, 3821–3842. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef]
- Turton, J.; Brinkworth, G.D.; Field, R.; Parker, H.; Rooney, K. An evidence-based approach to developing low-carbohydrate diets for type 2 diabetes management: A systematic review of interventions and methods. Diabetes Obes. Metab. 2019, 21, 2513–2525. [Google Scholar] [CrossRef]
- Kirkpatrick, C.F.; Bolick, J.P.; Kris-Etherton, P.M.; Sikand, G.; Aspry, K.E.; Soffer, D.E.; Willard, K.-E.; Maki, K.C. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: A scientific statement from the National Lipid Association Nutrition and Lifestyle Task Force. J. Clin. Lipidol. 2019, 13, 689–711.e1. [Google Scholar] [CrossRef] [PubMed]
- Snorgaard, O.; Poulsen, G.M.; Andersen, H.K.; Astrup, A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res. Care 2017, 5, e000354. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.; Luscombe-Marsh, N.D.; Thompson, C.H.; Noakes, M.; Buckley, J.D.; Wittert, G.A.; Yancy, W.S.; Brinkworth, G.D. Comparison of low- and high-carbohydrate diets for type 2 diabetes management: A randomized trial. Am. J. Clin. Nutr. 2015, 102, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Szczerba, E.; Barbaresko, J.; Schiemann, T.; Stahl-Pehe, A.; Schwingshackl, L.; Schlesinger, S. Diet in the management of type 2 diabetes: Umbrella review of systematic reviews with meta-analyses of randomised controlled trials. BMJ Med. 2023, 2, e000664. [Google Scholar] [CrossRef] [PubMed]
- Firman, C.H.; Mellor, D.D.; Unwin, D.; Brown, A. Does a ketogenic diet have a place within diabetes clinical practice? review of current evidence and controversies. Diabetes Ther. 2023. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Xia, X.; Gu, Y.; Hu, L.; Li, C.; Ma, X.; Yin, J. Opposite effects of low-carbohydrate high-fat diet on metabolism in humans and mice. Lipids Health Dis. 2023, 22, 191. [Google Scholar] [CrossRef] [PubMed]
- Bloise, A.M.N.d.L.G.; Simões-Alves, A.C.; Debora Santos, A.; Morio, B.; Costa-Silva, J.H. Cardiometabolic impacts of saturated fatty acids: Are they all comparable? Int. J. Food Sci. Nutr. 2022, 73, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, S.; Corleo, D.; Buscemi, C.; Randazzo, C.; Borzì, A.M.; Barile, A.M.; Rosafio, G.; Ciaccio, M.; Caldarella, R.; Meli, F.; et al. Influence of Habitual Dairy Food Intake on LDL Cholesterol in a Population-Based Cohort. Nutrients 2021, 13, 593. [Google Scholar] [CrossRef]
- Santamarina, A.B.; Mennitti, L.V.; de Souza, E.A.; de Souza Mesquita, L.M.; Noronha, I.H.; Vasconcelos, J.R.C.; Prado, C.M.; Pisani, L.P. A low-carbohydrate diet with different fatty acids’ sources in the treatment of obesity: Impact on insulin resistance and adipogenesis. Clin. Nutr. 2023, 42, 2381–2394. [Google Scholar] [CrossRef]
- Rad, Z.A.; Mousavi, S.N.; Chiti, H. A low-carb diet increases fecal short-chain fatty acids in feces of obese women following a weight-loss program: Randomized feeding trial. Sci. Rep. 2023, 13, 18146. [Google Scholar] [CrossRef]
- Currenti, W.; Godos, J.; Alanazi, A.M.; Grosso, G.; Cincione, R.I.; La Vignera, S.; Buscemi, S.; Galvano, F. Dietary Fats and Cardio-Metabolic Outcomes in a Cohort of Italian Adults. Nutrients 2022, 14, 4294. [Google Scholar] [CrossRef] [PubMed]
- Currenti, W.; Godos, J.; Alanazi, A.M.; Lanza, G.; Ferri, R.; Caraci, F.; Grosso, G.; Galvano, F.; Castellano, S. Dietary Fats and Cognitive Status in Italian Middle-Old Adults. Nutrients 2023, 15, 1429. [Google Scholar] [CrossRef] [PubMed]
- Currenti, W.; Godos, J.; Alanazi, A.M.; Lanza, G.; Ferri, R.; Caraci, F.; Galvano, F.; Castellano, S.; Grosso, G. Dietary fats and depressive symptoms in italian adults. Nutrients 2023, 15, 675. [Google Scholar] [CrossRef] [PubMed]
- Frankenfield, D.; Roth-Yousey, L.; Compher, C. Comparison of predictive equations for resting metabolic rate in healthy nonobese and obese adults: A systematic review. J. Am. Diet. Assoc. 2005, 105, 775–789. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Kanaya, A.M.; Grady, D.; Barrett-Connor, E. Explaining the sex difference in coronary heart disease mortality among patients with type 2 diabetes mellitus: A meta-analysis. Arch. Intern. Med. 2002, 162, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.J.; Kothari, V.; Adler, A.I.; Stratton, I.M.; United Kingdom Prospective Diabetes Study (UKPDS) Group. The UKPDS risk engine: A model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clin. Sci. 2001, 101, 671–679. [Google Scholar] [CrossRef]
- King, P.; Peacock, I.; Donnelly, R. The UK prospective diabetes study (UKPDS): Clinical and therapeutic implications for type 2 diabetes. Br. J. Clin. Pharmacol. 1999, 48, 643–648. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Esposito, K.; Maiorino, M.I.; Di Palo, C.; Giugliano, D.; Campanian Postprandial Hyperglycemia Study Group. Adherence to a Mediterranean diet and glycaemic control in Type 2 diabetes mellitus. Diabet. Med. 2009, 26, 900–907. [Google Scholar] [CrossRef]
- Esposito, K.; Marfella, R.; Ciotola, M.; Di Palo, C.; Giugliano, F.; Giugliano, G.; D’Armiento, M.; D’Andrea, F.; Giugliano, D. Effect of a mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: A randomized trial. JAMA 2004, 292, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Mistretta, A.; Frigiola, A.; Gruttadauria, S.; Biondi, A.; Basile, F.; Vitaglione, P.; D’Orazio, N.; Galvano, F. Mediterranean diet and cardiovascular risk factors: A systematic review. Crit. Rev. Food Sci. Nutr. 2014, 54, 593–610. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Fito, M.; Castaner, O. Mediterranean diet effects on type 2 diabetes prevention, disease progression, and related mechanisms. A review. Nutrients 2020, 12, 2236. [Google Scholar] [CrossRef] [PubMed]
- Farias-Pereira, R.; Zuk, J.B.; Khavaran, H. Plant bioactive compounds from Mediterranean diet improve risk factors for metabolic syndrome. Int. J. Food Sci. Nutr. 2023, 74, 403–423. [Google Scholar] [CrossRef] [PubMed]
- Sukkar, S.G.; Muscaritoli, M. A clinical perspective of low carbohydrate ketogenic diets: A narrative review. Front. Nutr. 2021, 8, 642628. [Google Scholar] [CrossRef] [PubMed]
- Foster, G.D.; Wyatt, H.R.; Hill, J.O.; McGuckin, B.G.; Brill, C.; Mohammed, B.S.; Szapary, P.O.; Rader, D.J.; Edman, J.S.; Klein, S. A randomized trial of a low-carbohydrate diet for obesity. N. Engl. J. Med. 2003, 348, 2082–2090. [Google Scholar] [CrossRef]
- Samaha, F.F.; Iqbal, N.; Seshadri, P.; Chicano, K.L.; Daily, D.A.; McGrory, J.; Williams, T.; Williams, M.; Gracely, E.J.; Stern, L. A low-carbohydrate as compared with a low-fat diet in severe obesity. N. Engl. J. Med. 2003, 348, 2074–2081. [Google Scholar] [CrossRef]
- Magkos, F.; Ataran, A.; Javaheri, A.; Mittendorfer, B. Effect of dietary carbohydrate restriction on cardiometabolic function in type 2 diabetes: Weight loss and beyond. Curr. Opin. Clin. Nutr. Metab. Care 2023, 26, 330–333. [Google Scholar] [CrossRef]
- Veldhorst, M.A.B.; Westerterp, K.R.; van Vught, A.J.A.H.; Westerterp-Plantenga, M.S. Presence or absence of carbohydrates and the proportion of fat in a high-protein diet affect appetite suppression but not energy expenditure in normal-weight human subjects fed in energy balance. Br. J. Nutr. 2010, 104, 1395–1405. [Google Scholar] [CrossRef]
- Browning, J.D.; Baker, J.A.; Rogers, T.; Davis, J.; Satapati, S.; Burgess, S.C. Short-term weight loss and hepatic triglyceride reduction: Evidence of a metabolic advantage with dietary carbohydrate restriction. Am. J. Clin. Nutr. 2011, 93, 1048–1052. [Google Scholar] [CrossRef]
- Hu, C.; Huang, R.; Li, R.; Ning, N.; He, Y.; Zhang, J.; Wang, Y.; Ma, Y.; Jin, L. Low-Carbohydrate and Low-Fat Diet with Metabolic-Dysfunction-Associated Fatty Liver Disease. Nutrients 2023, 15, 4763. [Google Scholar] [CrossRef] [PubMed]
- Yen, F.-S.; Lee, P.-C.; Hwu, C.-M. Is a low-carbohydrate, high-fat diet feasible for people with type 2 diabetes and nonalcoholic fatty liver disease? J. Diabetes Investig. 2023, 14, 930–932. [Google Scholar] [CrossRef] [PubMed]
- Saslow, L.R.; Kim, S.; Daubenmier, J.J.; Moskowitz, J.T.; Phinney, S.D.; Goldman, V.; Murphy, E.J.; Cox, R.M.; Moran, P.; Hecht, F.M. A randomized pilot trial of a moderate carbohydrate diet compared to a very low carbohydrate diet in overweight or obese individuals with type 2 diabetes mellitus or prediabetes. PLoS ONE 2014, 9, e91027. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.J. Effect of low carbohydrate diets on insulin resistance and the metabolic syndrome. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Saslow, L.R.; Daubenmier, J.J.; Moskowitz, J.T.; Kim, S.; Murphy, E.J.; Phinney, S.D.; Ploutz-Snyder, R.; Goldman, V.; Cox, R.M.; Mason, A.E.; et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr. Diabetes 2017, 7, 304. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Bai, H.; Wang, S.; Li, Z.; Wang, Q.; Chen, L. Efficacy of low carbohydrate diet for type 2 diabetes mellitus management: A systematic review and meta-analysis of randomized controlled trials. Diabetes Res. Clin. Pract. 2017, 131, 124–131. [Google Scholar] [CrossRef]
- Unwin, D.; Delon, C.; Unwin, J.; Tobin, S.; Taylor, R. What predicts drug-free type 2 diabetes remission? Insights from an 8-year general practice service evaluation of a lower carbohydrate diet with weight loss. BMJ Nutr. Prev. Health 2023, 6, 46–55. [Google Scholar] [CrossRef]
- Jing, T.; Zhang, S.; Bai, M.; Chen, Z.; Gao, S.; Li, S.; Zhang, J. Effect of Dietary Approaches on Glycemic Control in Patients with Type 2 Diabetes: A Systematic Review with Network Meta-Analysis of Randomized Trials. Nutrients 2023, 15, 3156. [Google Scholar] [CrossRef]
- Ajala, O.; English, P.; Pinkney, J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am. J. Clin. Nutr. 2013, 97, 505–516. [Google Scholar] [CrossRef]
- Astrup, A.; Raben, A.; Geiker, N. The role of higher protein diets in weight control and obesity-related comorbidities. Int. J. Obes. 2015, 39, 721–726. [Google Scholar] [CrossRef]
- Arner, P. Insulin resistance in type 2 diabetes—Role of the adipokines. Curr. Mol. Med. 2005, 5, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Barouti, A.A.; Björklund, A.; Catrina, S.B.; Brismar, K.; Rajamand Ekberg, N. Effect of Isocaloric Meals on Postprandial Glycemic and Metabolic Markers in Type 1 Diabetes-A Randomized Crossover Trial. Nutrients 2023, 15, 3092. [Google Scholar] [CrossRef] [PubMed]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I.; et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, C.E.; Phinney, S.D.; Feinman, R.D.; Volk, B.M.; Freidenreich, D.; Quann, E.; Ballard, K.; Puglisi, M.J.; Maresh, C.M.; Kraemer, W.J.; et al. Limited effect of dietary saturated fat on plasma saturated fat in the context of a low carbohydrate diet. Lipids 2010, 45, 947–962. [Google Scholar] [CrossRef] [PubMed]
- Volek, J.; Sharman, M.; Gómez, A.; Judelson, D.A.; Rubin, M.; Watson, G.; Sokmen, B.; Silvestre, R.; French, D.; Kraemer, W. Comparison of energy-restricted very low-carbohydrate and low-fat diets on weight loss and body composition in overweight men and women. Nutr. Metab. 2004, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Sharman, M.J.; Kraemer, W.J.; Love, D.M.; Avery, N.G.; Gómez, A.L.; Scheett, T.P.; Volek, J.S. A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J. Nutr. 2002, 132, 1879–1885. [Google Scholar] [CrossRef] [PubMed]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fat, carbohydrate, and cardiovascular disease. Am. J. Clin. Nutr. 2010, 91, 502–509. [Google Scholar] [CrossRef]
- Sacks, F.M.; Andraski, A.B. Dietary fat and carbohydrate affect the metabolism of protein-based high-density lipoprotein subspecies. Curr. Opin. Lipidol. 2022, 33, 1–15. [Google Scholar] [CrossRef]
- Qin, P.; Suo, X.; Chen, S.; Huang, C.; Wen, W.; Lin, X.; Hu, D.; Bo, Y. Low-carbohydrate diet and risk of cardiovascular disease, cardiovascular and all-cause mortality: A systematic review and meta-analysis of cohort studies. Food Funct. 2023, 14, 8678–8691. [Google Scholar] [CrossRef]
- Surma, S.; Sahebkar, A.; Banach, M.; endorsed by the International Lipid Expert Panel (ILEP). Low carbohydrate/ketogenic diet in the optimization of lipoprotein (a) levels: Do we have sufficient evidence for any recommendation? Eur. Heart J. 2023, 44, 4904–4906. [Google Scholar] [CrossRef]
- Santos, F.L.; Esteves, S.S.; da Costa Pereira, A.; Yancy, W.S.; Nunes, J.P.L. Systematic review and meta-analysis of clinical trials of the effects of low carbohydrate diets on cardiovascular risk factors. Obes. Rev. 2012, 13, 1048–1066. [Google Scholar] [CrossRef] [PubMed]
- Gram-Kampmann, E.M.; Olesen, T.B.; Hansen, C.D.; Hugger, M.B.; Jensen, J.M.; Handberg, A.; Beck-Nielsen, H.; Krag, A.; Olsen, M.H.; Højlund, K. A six-month low-carbohydrate diet high in fat does not adversely affect endothelial function or markers of low-grade inflammation in patients with type 2 diabetes: An open-label randomized controlled trial. Cardiovasc. Diabetol. 2023, 22, 212. [Google Scholar] [CrossRef] [PubMed]
- Falkenhain, K.; Roach, L.A.; McCreary, S.; McArthur, E.; Weiss, E.J.; Francois, M.E.; Little, J.P. Effect of carbohydrate-restricted dietary interventions on LDL particle size and number in adults in the context of weight loss or weight maintenance: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2021, 114, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, M.; Berneis, K. Low-density lipoprotein size and cardiovascular risk assessment. QJM 2006, 99, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Soleimani, M. Insulin resistance and hypertension: New insights. Kidney Int. 2015, 87, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Shimamoto, K.; Hirata, A.; Fukuoka, M.; Higashiura, K.; Miyazaki, Y.; Shiiki, M.; Masuda, A.; Nakagawa, M.; Iimura, O. Insulin sensitivity and the effects of insulin on renal sodium handling and pressor systems in essential hypertensive patients. Hypertension 1994, 23, I29–I33. [Google Scholar] [CrossRef] [PubMed]
- Lopes, R.D.; Macedo, A.V.S.; de Barros E Silva, P.G.M.; Moll-Bernardes, R.J.; Dos Santos, T.M.; Mazza, L.; Feldman, A.; D’Andréa Saba Arruda, G.; de Albuquerque, D.C.; Camiletti, A.S.; et al. Effect of Discontinuing vs Continuing Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers on Days Alive and Out of the Hospital in Patients Admitted With COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 254–264. [Google Scholar] [CrossRef]
- Ziyadeh, F.N. Mediators of diabetic renal disease: The case for tgf-Beta as the major mediator. J. Am. Soc. Nephrol. 2004, 15 (Suppl. 1), S55–S57. [Google Scholar] [CrossRef]
- Pina, A.F.; Borges, D.O.; Meneses, M.J.; Branco, P.; Birne, R.; Vilasi, A.; Macedo, M.P. Insulin: Trigger and target of renal functions. Front. Cell Dev. Biol. 2020, 8, 519. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. Facilitating Positive Health Behaviors and Well-being to Improve Health Outcomes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46, S68–S96. [Google Scholar] [CrossRef]
- Singh, M.; Hung, E.S.; Cullum, A.; Allen, R.E.; Aggett, P.J.; Dyson, P.; Forouhi, N.G.; Greenwood, D.C.; Pryke, R.; Taylor, R.; et al. Lower carbohydrate diets for adults with type 2 diabetes. Br. J. Nutr. 2022, 127, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Riddle, M.C.; Cefalu, W.T.; Evans, P.H.; Gerstein, H.C.; Nauck, M.A.; Oh, W.K.; Rothberg, A.E.; le Roux, C.W.; Rubino, F.; Schauer, P.; et al. Consensus report: Definition and interpretation of remission in type 2 diabetes. Diabetes Care 2021, 44, 2438–2444. [Google Scholar] [CrossRef] [PubMed]
All Patients | Low-Carbohydrate | Mediterranean | ||
---|---|---|---|---|
No. (100) | No. (50) | No. (50) | p Value | |
Sex, n (%) | ||||
Men | 53% | 24 | 22 | |
Women | 47% | 26 | 28 | |
Age, (SD) | 63.2 (6.8) | 63.4 (6.9) | 63 (6.8) | 0.770 |
Weight, kg (SD) | 94.6 (19.7) | 91.3 (19.8) | 97.9 (19.3) | 0.094 |
Height, m (SD) | 1.65 (0.1) | 1.63 (0.1) | 1.68 (0.1) | 0.012 |
BMI, kg/m2 (SD) | 34.4 (5.8) | 34 (6.2) | 34.7 (5.4) | 0.575 |
Systolic blood pressure, mmHg (SD) | 126.7 (9.5) | 125.7 (9.9) | 127.7 (9) | 0.294 |
Diastolic blood pressure, mmHg (SD) | 85.5 (8.6) | 84.8 (8.9) | 86.3 (8.3) | 0.387 |
Waist circumference, cm (SD) | 111 (16.3) | 113.6 (15.3) | 108.4 (16.9) | 0.110 |
Hip circumference, cm (SD) | 120.7 (13.4) | 118.5 (13.8) | 122.9 (12.8) | 0.105 |
Waist–hip ratio, cm (SD) | 0.92 (0.1) | 0.96 (0.01) | 0.88 (0.1) | <0.001 * |
Fat mass (FM), kg (SD) | 39 (13.8) | 36.4 (14.1) | 41.7 (13.2) | 0.058 |
Fat-free mass (FFM), kg (SD) | 55.9 (9) | 55.2 (9.3) | 56.6 (8.9) | 0.429 |
Total body water, kg (SD) | 40.7 (8.4) | 39.8 (8) | 41.6 (8.7) | 0.297 |
Blood glucose, mg/dL (SD) | 174.7 (47.8) | 178 (57.7) | 171.3 (35.4) | 0.482 |
Hemoglobin A1c (HbA1c), % (SD) | 8.6 (0.7) | 8.6 (0.7) | 8.6 (0.6) | 0.954 |
Blood cholesterol, mg/dL (SD) | 208.6 (21.8) | 205.4 (18.9) | 211.8 (24.1) | 0.144 |
HDL cholesterol, mg/dL (SD) | 45.4 (8.4) | 44.5 (8.8) | 46.2 (8.1) | 0.339 |
Cardiovascular Index, (SD) | 4.75 (0.98) | 4.78 (1) | 4.72 (0.96) | 0.783 |
% CV risk, (SD) | 15.28 (11.9) | 14.53 (9.2) | 16 (14.1) | 0.531 |
Triglycerides, mg/dL (SD) | 173.3 (58) | 171.9 (58.3) | 174.6 (58.4) | 0.815 |
LDL cholesterol, mg/dL (SD) | 128.6 (20.5) | 126.5 (17.6) | 130.7 (23) | 0.306 |
Albuminuria, mg/dL (SD) | 52.1(49.4) | 51.1 (50) | 53.1 (49.3) | 0.840 |
Serum creatinine level, mg/dL (SD) | 0.98 (0.2) | 0.99 (0.3) | 0.98 (0.2) | 0.770 |
e-Gfr, mL/min (SD) | 74 (18.2) | 72.4 (18.6) | 75.5 (17.8) | 0.396 |
Parameters Mean ± SD | LC Diet | LC Diet p Value Baseline to 16 Week | MD Diet | MD p Value Baseline to 16 Week | Δ% MD Diet Baseline to 16 Week | Δ% LC Diet Baseline to 16 Week | p Value Δ% between Diet Groups |
---|---|---|---|---|---|---|---|
Weight, kg (SD) Baseline 16 wk | 91.3 (±19.8) | p < 0.001 | 97.9 (±19.3) | p < 0.001 | −8.20 (±5.7) | −10.1 (±4.3) | 0.062 |
82.2 (±18.6) | 90.3 (±20.8) | ||||||
BMI, kg/m2 (SD) Baseline 16 wk | 34 (±6.2) | p < 0.001 | 34.7 (±5.4) | p < 0.001 | −8.20 (±5.7) | −10.11 (±4.3) | 0.062 |
30.6 (±5.8) | 32 (±6.1) | ||||||
Waist circumference, cm (SD) Baseline 16 wk | 113.6 (±15.3) | p < 0.001 | 108.4 (±16.9) | p < 0.001 | −6.2 (±4.7) | −8 (±3.7) | 0.010 |
103.8 (±13.5) | 101.9 (±19) | ||||||
Hip circumference, cm (SD) Baseline 16 wk | 118.5 (±13.8) | p < 0.001 | 122.9 (±12.8) | p < 0.001 | −5.3 (±4.3) | −4.1 (±2.9) | 0.101 |
113.6 (±12.3) | 116.4 (±13.6) | ||||||
Waist–hip ratio, cm (SD) Baseline 16 wk | 0.96 (±0.01) | p < 0.001 | 0.88 (±0.1) | p < 0.001 | −1 (±3) | −4.6 (±3) | <0.001 * |
0.92 (±0.01) | 0.87 (±0.1) | ||||||
Fat mass (FM), kg (SD) Baseline 16 wk | 36.4 (±14.1) | p < 0.001 | 41.7 (±13.2) | p < 0.001 | −16.5 (±12.4) | −25.4 (±12.8) | <0.001 * |
27.8 (±12.8) | 35.6 (±14.6) | ||||||
Fat-free mass (FFM), kg (SD) Baseline 16 wk | 55.2 (±9.3) | p < 0.001 | 56.6 (8.9) | p < 0.001 | −2.47 (±2) | −1.81 (±3.7) | 0.269 |
54.2 (±9.3) | 55.2 (8.9) | ||||||
Total body water, kg (SD) Baseline 16 wk | 39.8 (±8) | p < 0.001 | 41.6 (±8.7) | p < 0.001 | −3.4 (±2.6) | −2 (±3.4) | 0.022 |
39 (±7.9) | 40.2 (±8.7) |
Parameters Mean ± SD | LC Diet | LC Diet p Value Baseline to 16 Week | MD Diet | MD Diet p Value Baseline to 16 Week | Δ% MD Diet Baseline to 16 Week | Δ% LC Diet Baseline to 16 Week | p Value Δ% between Diet Groups |
---|---|---|---|---|---|---|---|
Blood glucose, mg/dL (SD) Baseline 16 wk | 178 (±57.7) | p < 0.001 | 171.3 (35.4) | p < 0.001 | −21 (±7.9) | −37.6 (±13.9) | <0.001 * |
104.7 (±17.9) | 134.7 (±28.4) | ||||||
Hemoglobin A1c (HbA1c), % (SD) Baseline 16 wk | 8.6 (±0.7) | p < 0.001 | 8.6 (±0.6) | p < 0.001 | −13.5 (±3.2) | −23.2 (±5) | <0.001 * |
6.6 (±0.7) | 7.4 (±0.6) | ||||||
Blood cholesterol, mg/dL (SD) Baseline 16 wk | 205.4 (±18.9) | p < 0.001 | 211.8 (±24.1) | p < 0.001 | −13 (±8.6) | −18 (±6.6) | 0.002 |
168.1 (±18) | 182.9 (±17.4) | ||||||
HDL cholesterol, mg/dL (SD) Baseline 16 wk | 44.5 (±8.8) | p < 0.001 | 46.2 (±8.1) | p < 0.001 | 7.1 (±7) | 12.8 (±13.4) | 0.009 |
50 (±10.2) | 49.2 (±7.9) | ||||||
Triglycerides, mg/dL (SD) Baseline 16 wk | 171.9 (±58.3) | p < 0.001 | 174.6 (±58.4) | p < 0.001 | −36.9 (±18.9) | −41 (±17.7) | 0.268 |
96.7 (±30.1) | 106.5 (±43.5) | ||||||
LDL cholesterol, mg/dL (SD) Baseline 16 wk | 126.5 (±17.6) | p < 0.001 | 130.7 (±23) | p < 0.001 | −12.6 (±14.2) | −21.6 (±12.5) | 0.001 |
98.7 (±19.1) | 112.4 (±19) | ||||||
Albuminuria, mg/dL (SD) Baseline 16 wk | 51.1 (±50) | p < 0.001 | 53.1 (±49.3) | p < 0.001 | −21.7 (±16.1) | −48.4 (±25.6) | <0.001 * |
26.3 (±27.9) | 41.6 (±40.6) | ||||||
Serum creatinine level, mg/dL (SD) Baseline 16 wk | 0.99 (±0.25) | p < 0.001 | 0.98 (±0.23) | p < 0.001 | −5.7 (±4.9) | −22.3 (±8.8) | <0.001 * |
0.76 (±0.15) | 0.92 (±0.20) | ||||||
e-Gfr, mL/min (SD) Baseline 16 wk | 72.4 (±18.6) | p < 0.001 | 75.5 (±17.8) | p < 0.001 | 6.5 (±6.1) | 29.7 (±22.7) | <0.001 * |
90.4 (±12.4) | 79.8 (±16.9) | ||||||
Cardiovascular Index, (SD) Baseline 16 wk | 4.78 (±1) | p < 0.001 | 4.72 (±0.96) | p < 0.001 | −18.3 (±10.8) | −26.4 (±10) | <0.001 * |
3.5 (±0.8) | 3.83 (±0.88) | ||||||
% CV risk, (SD) Baseline 16 wk | 14.53 (±9.2) | p < 0.001 | 16 (±14.1) | p < 0.001 | −20.2 (±8.9) | −32.6 (±14.7) | <0.001 * |
9.5 (±6.5) | 12.9 (±11.7) | ||||||
Systolic blood pressure, mmHg (SD) Baseline 16 wk | 125.7 (±9.9) | p < 0.001 | 127.7 (±9) | p < 0.001 | −4.2 (±3) | −7 (±4.2) | <0.001 * |
116.6 (±6) | 122.1 (±6) | ||||||
Diastolic blood pressure, mmHg (SD) Baseline 16 wk | 84.8 (±8.9) | p < 0.001 | 86.3 (±8.3) | p < 0.001 | −4.62 (±3.7) | −9.15 (±5) | <0.001 * |
76.7 (±5.5) | 82.1 (±6.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Currenti, W.; Losavio, F.; Quiete, S.; Alanazi, A.M.; Messina, G.; Polito, R.; Ciolli, F.; Zappalà, R.S.; Galvano, F.; Cincione, R.I. Comparative Evaluation of a Low-Carbohydrate Diet and a Mediterranean Diet in Overweight/Obese Patients with Type 2 Diabetes Mellitus: A 16-Week Intervention Study. Nutrients 2024, 16, 95. https://doi.org/10.3390/nu16010095
Currenti W, Losavio F, Quiete S, Alanazi AM, Messina G, Polito R, Ciolli F, Zappalà RS, Galvano F, Cincione RI. Comparative Evaluation of a Low-Carbohydrate Diet and a Mediterranean Diet in Overweight/Obese Patients with Type 2 Diabetes Mellitus: A 16-Week Intervention Study. Nutrients. 2024; 16(1):95. https://doi.org/10.3390/nu16010095
Chicago/Turabian StyleCurrenti, Walter, Francesca Losavio, Stefano Quiete, Amer M. Alanazi, Giovanni Messina, Rita Polito, Fabiana Ciolli, Raffaela Simona Zappalà, Fabio Galvano, and Raffaele Ivan Cincione. 2024. "Comparative Evaluation of a Low-Carbohydrate Diet and a Mediterranean Diet in Overweight/Obese Patients with Type 2 Diabetes Mellitus: A 16-Week Intervention Study" Nutrients 16, no. 1: 95. https://doi.org/10.3390/nu16010095
APA StyleCurrenti, W., Losavio, F., Quiete, S., Alanazi, A. M., Messina, G., Polito, R., Ciolli, F., Zappalà, R. S., Galvano, F., & Cincione, R. I. (2024). Comparative Evaluation of a Low-Carbohydrate Diet and a Mediterranean Diet in Overweight/Obese Patients with Type 2 Diabetes Mellitus: A 16-Week Intervention Study. Nutrients, 16(1), 95. https://doi.org/10.3390/nu16010095