BMP8B Activates Both SMAD2/3 and NF-κB Signals to Inhibit the Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antibodies
2.2. Cell Culture and Differentiation
2.3. qRT-PCR
2.4. Lentiviral
2.5. Luciferase Activity Assay
2.6. RNA Sequencing
2.7. Western Blot
2.8. Plasmid Construction
2.9. Oil Red O Staining
2.10. Chemical Inhibition
2.11. Statistics and Analysis
3. Results
3.1. BMP8B Suppresses Adipocyte Differentiation
3.2. BMP8B Activates SMAD2/3 Signaling to Represses Adipogenesis
3.3. BMP8B Triggers SMAD2/3 Signaling to Suppress Adipocyte Differentiation via ALK4
3.4. BMP8B Activates SMAD2/3 Signaling to Suppress the Expression of PPARγ
3.5. BMP8B Triggers NF-κB Signaling to Suppress 3T3-L1 Adipocyte Differentiation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khalilpourfarshbafi, M.; Gholami, K.; Murugan, D.D.; Abdul Sattar, M.Z.; Abdullah, N.A. Differential effects of dietary flavonoids on adipogenesis. Eur. J. Nutr. 2019, 58, 5–25. [Google Scholar] [CrossRef]
- Lazar, M.A. Reversing the curse on PPARγ. J. Clin. Investig. 2018, 128, 2202–2204. [Google Scholar] [CrossRef]
- Lefterova, M.I.; Lazar, M.A. New developments in adipogenesis. Trends Endocrinol. Metab. TEM 2009, 20, 107–114. [Google Scholar] [CrossRef]
- Ahmad, B.; Serpell, C.J.; Fong, I.L.; Wong, E.H. Molecular Mechanisms of Adipogenesis: The Anti-adipogenic Role of AMP-Activated Protein Kinase. Front. Mol. Biosci. 2020, 7, 76. [Google Scholar] [CrossRef]
- Cohen, P.; Spiegelman, B.M. Cell biology of fat storage. Mol. Biol. Cell 2016, 27, 2523–2527. [Google Scholar] [CrossRef]
- Kajimura, S.; Saito, M. A new era in brown adipose tissue biology: Molecular control of brown fat development and energy homeostasis. Annu. Rev. Physiol. 2014, 76, 225–249. [Google Scholar] [CrossRef]
- Kiefer, F.W. The significance of beige and brown fat in humans. Endocr. Connect. 2017, 6, R70–R79. [Google Scholar] [CrossRef]
- Tang, Q.Q.; Lane, M.D. Adipogenesis: From stem cell to adipocyte. Annu. Rev. Biochem. 2012, 81, 715–736. [Google Scholar] [CrossRef]
- Carreira, A.C.; Alves, G.G.; Zambuzzi, W.F.; Sogayar, M.C.; Granjeiro, J.M. Bone Morphogenetic Proteins: Structure, biological function and therapeutic applications. Arch. Biochem. Biophys. 2014, 561, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.N.; Green, J.; Wang, Z.; Deng, Y.; Qiao, M.; Peabody, M.; Zhang, Q.; Ye, J.; Yan, Z.; Denduluri, S.; et al. Bone Morphogenetic Protein (BMP) signaling in development and human diseases. Genes Dis. 2014, 1, 87–105. [Google Scholar] [CrossRef] [PubMed]
- Reddi, A.H. Bone morphogenetic proteins (BMPs): From morphogens to metabologens. Cytokine Growth Factor Rev. 2009, 20, 341–342. [Google Scholar] [CrossRef]
- Hegarty, S.V.; O’Keeffe, G.W.; Sullivan, A.M. BMP-Smad 1/5/8 signalling in the development of the nervous system. Prog. Neurobiol. 2013, 109, 28–41. [Google Scholar] [CrossRef]
- Moreno-Miralles, I.; Schisler, J.C.; Patterson, C. New insights into bone morphogenetic protein signaling: Focus on angiogenesis. Curr. Opin. Hematol. 2009, 16, 195–201. [Google Scholar] [CrossRef]
- Morrell, N.W.; Bloch, D.B.; Ten Dijke, P.; Goumans, M.-J.T.H.; Hata, A.; Smith, J.; Yu, P.B.; Bloch, K.D. Targeting BMP signalling in cardiovascular disease and anaemia. Nat. Rev. Cardiol. 2016, 13, 106–120. [Google Scholar] [CrossRef]
- Nishinakamura, R.; Sakaguchi, M. BMP signaling and its modifiers in kidney development. Pediatr. Nephrol. 2014, 29, 681–686. [Google Scholar] [CrossRef]
- Salazar, V.S.; Gamer, L.W.; Rosen, V. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 2016, 12, 203–221. [Google Scholar] [CrossRef]
- Tseng, Y.H.; He, T.C. Bone morphogenetic proteins and adipocyte differentiation. Cell Sci. Rev. 2007, 3, 342–360. [Google Scholar]
- Bowers, R.R.; Kim, J.W.; Otto, T.C.; Lane, M.D. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: Role of the BMP-4 gene. Proc. Natl. Acad. Sci. USA 2006, 103, 13022–13027. [Google Scholar] [CrossRef] [PubMed]
- Guiu-Jurado, E.; Unthan, M.; Böhler, N.; Kern, M.; Landgraf, K.; Dietrich, A.; Schleinitz, D.; Ruschke, K.; Klöting, N.; Faßhauer, M.; et al. Bone morphogenetic protein 2 (BMP2) may contribute to partition of energy storage into visceral and subcutaneous fat depots. Obesity 2016, 24, 2092–2100. [Google Scholar] [CrossRef]
- Modica, S.; Straub, L.G.; Balaz, M.; Sun, W.; Varga, L.; Stefanicka, P.; Profant, M.; Simon, E.; Neubauer, H.; Ukropcova, B.; et al. Bmp4 Promotes a Brown to White-like Adipocyte Shift. Cell Rep. 2016, 16, 2243–2258. [Google Scholar] [CrossRef] [PubMed]
- Skillington, J.; Choy, L.; Derynck, R. Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J. Cell Biol. 2002, 159, 135–146. [Google Scholar] [CrossRef]
- Smith, U.; Kahn, B.B. Adipose tissue regulates insulin sensitivity: Role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 2016, 280, 465–475. [Google Scholar] [CrossRef]
- Townsend, K.L.; Suzuki, R.; Huang, T.L.; Jing, E.; Schulz, T.J.; Lee, K.; Taniguchi, C.M.; Espinoza, D.O.; McDougall, L.E.; Zhang, H.; et al. Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB J. 2012, 26, 2187–2196. [Google Scholar] [CrossRef]
- Tseng, Y.-H.; Kokkotou, E.; Schulz, T.J.; Huang, T.L.; Winnay, J.N.; Taniguchi, C.M.; Tran, T.T.; Suzuki, R.; Espinoza, D.O.; Yamamoto, Y.; et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 2008, 454, 1000–1004. [Google Scholar] [CrossRef]
- Yang, Z.; Li, P.; Shang, Q.; Wang, Y.; He, J.; Ge, S.; Jia, R.; Fan, X. CRISPR-mediated BMP9 ablation promotes liver steatosis via the down-regulation of PPARα expression. Sci. Adv. 2020, 6, eabc5022. [Google Scholar] [CrossRef]
- Hino, J.; Miyazawa, T.; Miyazato, M.; Kangawa, K. Bone morphogenetic protein-3b (BMP-3b) is expressed in adipocytes and inhibits adipogenesis as a unique complex. Int. J. Obes. 2012, 36, 725–734. [Google Scholar] [CrossRef]
- Hino, J.; Nakatani, M.; Arai, Y.; Tsuchida, K.; Shirai, M.; Miyazato, M.; Kangawa, K. Overexpression of bone morphogenetic protein-3b (BMP-3b) in adipose tissues protects against high-fat diet-induced obesity. Int. J. Obes. 2017, 41, 483–488. [Google Scholar] [CrossRef]
- Zhao, G.-Q.; Liaw, L.; Hogan, B.L.M. Bone morphogenetic protein 8A plays a role in the maintenance of spermatogenesis and the integrity of the epididymis. Development 1998, 125, 1103–1112. [Google Scholar] [CrossRef]
- Zhong, S.; Wang, Y.; Li, J.; Wang, M.; Meng, L.; Ma, Z.; Zhang, S.; Liu, Z. Spatial and temporal expression of bmp8a and its role in regulation of lipid metabolism in zebrafish Danio rerio. Gene Rep. 2017, 10, 33–41. [Google Scholar] [CrossRef]
- Zhong, S.; Chen, L.; Li, X.; Wang, X.; Ji, G.; Sun, C.; Liu, Z. Bmp8a deletion leads to obesity through regulation of lipid metabolism and adipocyte differentiation. Commun. Biol. 2023, 6, 824. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.; Seoane-Collazo, P.; Contreras, C.; González-García, I.; Martínez-Sánchez, N.; González, F.; Zalvide, J.; Gallego, R.; Diéguez, C.; Nogueiras, R.; et al. A Functional Link between AMPK and Orexin Mediates the Effect of BMP8B on Energy Balance. Cell Rep. 2016, 16, 2231–2242. [Google Scholar] [CrossRef]
- Pradhan, S.; Mahajan, D.; Kaur, P.; Pandey, N.; Sharma, C.; Srivastava, T. Scriptaid overcomes hypoxia-induced cisplatin resistance in both wild-type and mutant p53 lung cancer cells. Oncotarget 2016, 7, 71841–71855. [Google Scholar] [CrossRef]
- Whittle, A.J.; Carobbio, S.; Martins, L.; Slawik, M.; Hondares, E.; Vázquez, M.J.; Morgan, D.; Csikasz, R.I.; Gallego, R.; Rodriguez-Cuenca, S.; et al. BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 2012, 149, 871–885. [Google Scholar] [CrossRef]
- Derynck, R.; Akhurst, R.J.; Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet. 2001, 29, 117–129. [Google Scholar] [CrossRef]
- Drummond, A.E. TGFbeta signalling in the development of ovarian function. Cell Tissue Res. 2005, 322, 107–115. [Google Scholar] [CrossRef]
- Oh, S.P.; Yeo, C.-Y.; Lee, Y.; Schrewe, H.; Whitman, M.; Li, E. Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning. Minerva Anestesiol. 2002, 16, 2749–2754. [Google Scholar] [CrossRef]
- Heldin, C.H.; Miyazono, K.; Ten Dijke, P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997, 390, 465–471. [Google Scholar] [CrossRef]
- Shi, Y.; Massagué, J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.J.; Lin, T.Y.; Sung, L.Y.; Chang, W.F.; Wu, P.C.; Luo, C.W. BMP8A sustains spermatogenesis by activating both SMAD1/5/8 and SMAD2/3 in spermatogonia. Sci. Signal. 2017, 10, eaal1910. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.C.; Pryce, D.S.; Lee, J.S.; Zhao, Y.; Mintah, I.J.; Min, S.; Halasz, G.; Mastaitis, J.; Atwal, G.S.; Aykul, S.; et al. Activin E–ACVR1C cross talk controls energy storage via suppression of adipose lipolysis in mice. Proc. Natl. Acad. Sci. USA 2023, 120, e2309967120. [Google Scholar] [CrossRef] [PubMed]
- Lowe, C.E.; O’Rahilly, S.; Rochford, J.J. Adipogenesis at a glance. J. Cell Sci. 2011, 124, 2681–2686. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. What we talk about when we talk about fat. Cell 2014, 156, 20–44. [Google Scholar] [CrossRef]
- Mahli, A.; Seitz, T.; Beckröge, T.; Freese, K.; Thasler, W.E.; Benkert, M.; Dietrich, P.; Weiskirchen, R.; Bosserhoff, A.; Hellerbrand, C. Bone Morphogenetic Protein-8B Expression is Induced in Steatotic Hepatocytes and Promotes Hepatic Steatosis and Inflammation In Vitro. Cells 2019, 8, 457. [Google Scholar] [CrossRef]
- Aykul, S.; Maust, J.; Thamilselvan, V.; Floer, M.; Martinez-Hackert, E. Smad2/3 Activation Regulates Smad1/5/8 Signaling via a Negative Feedback Loop to Inhibit 3T3-L1 Adipogenesis. Int. J. Mol. Sci. 2021, 22, 8472. [Google Scholar] [CrossRef]
- Yu, L.; Yan, K.; Liu, P.; Li, N.; Liu, Z.; Zhu, W.; Chen, Y.; Han, D. Pattern recognition receptor-initiated innate antiviral response in mouse adipose cells. Immunol. Cell Biol. 2014, 92, 105–115. [Google Scholar] [CrossRef]
- Hertzog, P. Viruses’ chew the fat’!? Immunol. Cell Biol. 2014, 92, 100–102. [Google Scholar] [CrossRef]
Primer | Sequences |
---|---|
Gapdh-F | GGCTGCCCAGAACATCAT |
Gapdh-R | CGGACACATTGGGGGTAG |
Pparγ-F | CATCCAAGACAACCTGCTGCA |
Pparγ-R | TGACGATCTGCCTGAGGTCTGT |
C/ebpα-F | CAAGAACAGCAACGAGTACCG |
C/ebpα-R | GTCACTCGTCAACTCCAGCAC |
Fasn-F | TGTGCCCGTCGTCTATACCACT |
Fasn-R | CAATGGAAATGGCCGCTTG |
Bmp8b-F | ATGCCAACAGTTTCCCTGATCC |
Bmp8b-R | TTCTCCTCACCCTGCCATACC |
Vector | Primer | Sequences | Applications |
---|---|---|---|
pCMV-C-Flag | Alk2-F | CGCTCTAGCCCGGGCGGATCCGCCACCATGGTCGATGGAG | Eukaryotic expression |
Alk2-R | TTCCTGCAGAAGCTTGGATCCACAGTCAGTTTTTAATTTGTCTAGGGAA | ||
Alk3-F | CGCTCTAGCCCGGGCGGATCCGCCACCATGACTCAGCTATACACT | ||
Alk3-R | TTCCTGCAGAAGCTTGGATCCAATCTTTACATCCTGGGATTCAACC | ||
Alk4-F | CGCTCTAGCCCGGGCGGATCCGCCACCATGGCGGAGTCG | ||
Alk4-R | TTCCTGCAGAAGCTTGGATCCAATCTTCACATCTTCCTGCACGC | ||
Alk5-F | CGCTCTAGCCCGGGCGGATCCGCCACCATGGAGGCGGCG | ||
Alk5-R | TTCCTGCAGAAGCTTGGATCCCATTTTGATGCCTTCCTGTTGG | ||
Alk7-F | CGCTCTAGCCCGGGCGGATCCGCCACCATGACCCCAGCG | ||
Alk7-R | TTCCTGCAGAAGCTTGGATCCAGCTTTACAGTCTTCCTTGACACACA | ||
Tgfβr2-F | CGCTCTAGCCCGGGCGGATCCGCCACCATGGGTCGGGGG | ||
Tgfβr2-R | TTCCTGCAGAAGCTTGGATCCTTTGGTAGTGTTCAGCGAGCC | ||
Acvr2a-F | CGCTCTAGCCCGGGCGGATCCGCCACCATGGGAGCTGCT | ||
Acvr2a-R | TTCCTGCAGAAGCTTGGATCCTAGACTAGATTCTTTGGGAGGAAAGTC | ||
Acvr2b-F | CGCTCTAGCCCGGGCGGATCCGCCACCATGACGGCGCCC | ||
Acvr2b-R | TTCCTGCAGAAGCTTGGATCCGATGCTGGACTCTTTAGGGAGCA | ||
Bmpr2-F | CGCTCTAGCCCGGGCGGATCCGCCACCATGACTTCCTCGC | ||
Bmpr2-R | TTCCTGCAGAAGCTTGGATCCCAGACAATTCATTCCTATATCTTTAGACAC | ||
Bmp8b-F | CGCTCTAGCCCGGGCGGATCCGCCACCATGGACAGACACGA | ||
Bmp8b-R | TTCCTGCAGAAGCTTGGATCCTAAACAGCCACAATTCTTGACCA | ||
pLVX-mCMV-ZsGreen1-Puro | pLVX-Bmp8b-F | GGTACCGCGGGCCCGGGATCCGCCACCATGGCTGCGCGT | Stable transfection |
pLVX-Bmp8b-R | GCAAATACGCGTCGCGGATCCGTGGCAGCCACAGGCCTG | ||
pLVX-shRNA2-Puro | shRNA-scrambled-F | TTGTGGAAAGGACGAGGATCCCCGGCCTAAGGTTAAGTCGC | |
shRNA-scrambled-R | ATTCGAAGCTTGTCCGGATCCCAAAAACCTAAGGTTAAGTCGCCC | ||
shRNA-Bmp8b#1-F | TTGTGGAAAGGACGAGGATCCGCTCTACTATGATAGAAACAATTCAAGAGA | ||
shRNA-Bmp8b#1-R | ATTCGAAGCTTGTCCGGATCCAAAAAAGCTCTACTATGATAGAAACAATCTC | ||
shRNA-Bmp8b#2-F | TTGTGGAAAGGACGAGGATCCGCCTTTCATGGTTGGTTTCTTT | ||
shRNA-Bmp8b#2-R | ATTCGAAGCTTGTCCGGATCCAAAAAAGCCTTTCATGGTTGGT | ||
shRNA-Bmp8b#3-F | TTGTGGAAAGGACGAGGATCCGCTGACCTGATTATGAGCTTTTTCA | ||
shRNA-Bmp8b#3-R | ATTCGAAGCTTGTCCGGATCCAAAAAAGCTGACCTGATTATGAGCT | ||
pLVX-mCMV-ZsGreen1-Puro | pLVX-Alk3-F | GGTACCGCGGGCCCGGGATCCGCCACCATGACTCAGCTATACACT | Dominant negative mutant |
pLVX-Alk3-R | GCAAATACGCGTCGCGGATCCTCAAATCTTTACATCCTGGGATTCA | ||
pLVX-Alk4-F | GGTACCGCGGGCCCGGGATCCGCCACCATGGCGGAGTCG | ||
pLVX-Alk4-R | GCAAATACGCGTCGCGGATCCTTAAATCTTCACATCTTCCTGCACG | ||
pLVX-Alk5-F | GGTACCGCGGGCCCGGGATCCGCCACCATGGAGGCGGCG | ||
pLVX-Alk5-R | GCAAATACGCGTCGCGGATCCTTACATTTTGATGCCTTCCTGTTG | ||
pLVX-Alk3-△GS-F | CCAGTCCCAATTGCCTTTATTGGTTCAGCGAAC | ||
pLVX-Alk3-△GS-R | AAAGGCAATTGGGACTGGTCAATCAGGTCTTTC | ||
pLVX-Alk4-△GS-F | TCTCCACGTTACCCCTTTTTGTCCAGCGCACAG | ||
pLVX-Alk4-△GS-R | AAAGGGGTAACGTGGAGAGGTCGTAGACGAGAT | ||
pLVX-Alk5-△GS-F | TGACAACATTACCACTGCTTGTTCAAAGAACAA | ||
pLVX-Alk5-△GS-R | GCAGTGGTAATGTTGTCATATCATAAATTAAATCTTTTAAGG | ||
pGL3-basic | pGL3-Pparγ-F | TGGTAAAATCGATAAGGATCCAACAAACAGACAAAGGAAGGAAATAA | Luciferase assay |
pGL3-Pparγ-R | AGGGCATCGGTCGACGGATCCGGAGGCCCCGCGCCCGCA | ||
pGL3-Pparγ-△R1-F | GGGTAGAAAAGTCTAAAGTACATGGATGGTGAACCAAG | ||
pGL3-Pparγ-△R1-R | CTTTAGACTTTTCTACCCTAGATATTTTCTATAAATG | ||
pGL3-Pparγ-△R2-F | AGACGATATAGCAAGACCTTTTCAAAAAGTTTA | ||
pGL3-Pparγ-△R2-R | GGTCTTGCTATATCGTCTTGAACTTATTGTTATTCTCCTAAGGCC | ||
pGL3-Pparγ-△R3-F | ACTTCTCCAGGACATGGACATCGGTCTGAGGGA | ||
pGL3-Pparγ-△R3-R | TCCATGTCCTGGAGAAGTTTGTTTTTTTCCTAGATG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, S.; Du, X.; Gao, J.; Ji, G.; Liu, Z. BMP8B Activates Both SMAD2/3 and NF-κB Signals to Inhibit the Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes. Nutrients 2024, 16, 64. https://doi.org/10.3390/nu16010064
Zhong S, Du X, Gao J, Ji G, Liu Z. BMP8B Activates Both SMAD2/3 and NF-κB Signals to Inhibit the Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes. Nutrients. 2024; 16(1):64. https://doi.org/10.3390/nu16010064
Chicago/Turabian StyleZhong, Shenjie, Xueqing Du, Jing Gao, Guangdong Ji, and Zhenhui Liu. 2024. "BMP8B Activates Both SMAD2/3 and NF-κB Signals to Inhibit the Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes" Nutrients 16, no. 1: 64. https://doi.org/10.3390/nu16010064
APA StyleZhong, S., Du, X., Gao, J., Ji, G., & Liu, Z. (2024). BMP8B Activates Both SMAD2/3 and NF-κB Signals to Inhibit the Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes. Nutrients, 16(1), 64. https://doi.org/10.3390/nu16010064