The Effect of Caffeine Supplementation on Female Volleyball Players’ Performance and Wellness during a Regular Training Week
Highlights
- Caffeine supplementation at 5 mg/kg body weight significantly improved the physical performance of female volleyball players after one week of regular training.
- Key improvements were observed in their countermovement jumping (CMJ), hand grip strength and fatigue endurance during repeated jumping tests.
- Caffeine improved the players' perception of fatigue and well-being without negatively affecting their sleep.
- The results suggest that caffeine may be an effective ergogenic aid for female athletes, particularly for sports requiring explosive movements such as volleyball.
- This study supports the use of caffeine to enhance both the performance and well-being of female athletes during periods of intensive training.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verhagen, E.; Van der Beek, A.J.; Bouter, L.M.; Bahr, R.M.; Van Mechelen, W. A One Season Prospective Cohort Study of Volleyball Injuries. Br. J. Sports Med. 2004, 38, 477–481. [Google Scholar] [CrossRef]
- Bere, T.; Kruczynski, J.; Veintimilla, N.; Hamu, Y.; Bahr, R. Injury Risk Is Low among World-Class Volleyball Players: 4-Year Data from the FIVB Injury Surveillance System. Br. J. Sports Med. 2015, 49, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Zbinden-Foncea, H.; Rada, I.; Gomez, J.; Kokaly, M.; Stellingwerff, T.; Deldicque, L.; Peñailillo, L. Effects of Caffeine on Countermovement-Jump Performance Variables in Elite Male Volleyball Players. Int. J. Sports Physiol. Perform. 2018, 13, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Pérez-López, A.; Abian-Vicen, J.; Salinero, J.J.; Lara, B.; Valadés, D. Enhancing Physical Performance in Male Volleyball Players with a Caffeine-Containing Energy Drink. Int. J. Sports Physiol. Perform. 2014, 9, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E. ISSN Exercise & Sports Nutrition Review Update: Research & Recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [PubMed]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and Smell the Coffee: Caffeine Supplementation and Exercise Performance—An Umbrella Review of 21 Published Meta-Analyses. Br. J. Sports Med. 2020, 54, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Stadheim, H.K.; Spencer, M.; Olsen, R.; Jensen, J. Caffeine and Performance over Consecutive Days of Simulated Competition. Med. Sci. Sports Exerc. 2015, 46, 1787–1796. [Google Scholar] [CrossRef] [PubMed]
- Puente, C.; Abián-Vicén, J.; Salinero, J.J.; Lara, B.; Areces, F.; Del Coso, J. Caffeine Improves Basketball Performance in Experienced Basketball Players. Nutrients 2017, 9, 1033. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of Caffeine Intake on Muscle Strength and Power: A Systematic Review and Meta-Analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef]
- Del Coso, J.; Muñoz, G.; Muñoz-Guerra, J. Prevalence of Caffeine Use in Elite Athletes Following Its Removal from the World Anti-Doping Agency List of Banned Substances. Appl. Physiol. Nutr. Metab. 2011, 36, 555–561. [Google Scholar] [CrossRef]
- Magkos, F.; Kavouras, S.A. Caffeine Use in Sports, Pharmacokinetics in Man, and Cellular Mechanisms of Action. Crit. Rev. Food Sci. Nutr. 2005, 45, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central Nervous System Effects of Caffeine and Adenosine on Fatigue. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; Spriet, L.L. Metabolic, Catecholamine, and Exercise Performance Responses to Various Doses of Caffeine. J. Appl. Physiol. 1995, 78, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Perez-Lopez, A.; Salinero, J.J.; Abian-Vicen, J.; Valades, D.; Lara, B.; Hernandez, C.; Areces, F.; Gonzalez, C.; Del Coso, J. Caffeinated Energy Drinks Improve Volleyball Performance in Elite Female Players. Med. Sci. Sports Exerc. 2015, 47, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bruton, A.; Marin-Puyalto, J.; Muñiz-Pardos, B.; Matute-Llorente, A.; Del Coso, J.; Gomez-Cabello, A.; Vicente-Rodriguez, G.; Casajus, J.A.; Lozano-Berges, G. Does Acute Caffeine Supplementation Improve Physical Performance in Female Team-Sport Athletes? Evidence from a Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3663. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E. Caffeine, Coffee and Ephedrine: Impact on Exercise Performance and Metabolism. Can. J. Appl. Physiol. 2001, 26, S186–S191. [Google Scholar] [CrossRef]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of Caffeine Ingestion on Muscular Strength and Endurance: A Meta-Analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef]
- Grgic, J.; Del Coso, J. Ergogenic Effects of Acute Caffeine Intake on Muscular Endurance and Muscular Strength in Women: A Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 5773. [Google Scholar] [CrossRef]
- Clemente, F.M.; Afonso, J.; Costa, J.; Oliveira, R.; Pino-Ortega, J.; Rico-González, M. Relationships between Sleep, Athletic and Match Performance, Training Load, and Injuries: A Systematic Review of Soccer Players. Healthcare 2021, 9, 808. [Google Scholar] [CrossRef]
- Coutts, A.J.; Reaburn, P. Monitoring Changes in Rugby League Players’ Perceived Stress and Recovery during Intensified Training. Percept. Mot. Ski. 2008, 106, 904–916. [Google Scholar] [CrossRef]
- Kupperman, N.; Curtis, M.A.; Saliba, S.A.; Hertel, J. Quantification of Workload and Wellness Measures in a Women’s Collegiate Volleyball Season. Front. Sports Act. Living 2021, 3, 702419. [Google Scholar] [CrossRef] [PubMed]
- Saw, A.E.; Kellmann, M.; Main, L.C.; Gastin, P.B. Athlete Self-Report Measures in Research and Practice: Considerations for the Discerning Reader and Fastidious Practitioner. Int. J. Sports Physiol. Perform. 2017, 12, S2127–S2135. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and External Training Load: 15 Years On. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Cullen, B.D.; McCarren, A.L.; Malone, S. Ecological Validity of Self-Reported Wellness Measures to Assess Pre-Training and Pre-Competition Preparedness within Elite Gaelic Football. Sport Sci. Health 2021, 17, 163–172. [Google Scholar] [CrossRef]
- Gastin, P.B.; Meyer, D.; Robinson, D. Perceptions of Wellness to Monitor Adaptive Responses to Training and Competition in Elite Australian Football. J. Strength Cond. Res. 2013, 27, 2518–2526. [Google Scholar] [CrossRef]
- Montgomery, P.G.; Hopkins, W.G. The Effects of Game and Training Loads on Perceptual Responses of Muscle Soreness in Australian Football. Int. J. Sports Physiol. Perform. 2013, 8, 312–318. [Google Scholar] [CrossRef]
- Buchheit, M.; Mendez-Villanueva, A.; Quod, M.; Quesnel, T.; Ahmaidi, S. Improving Acceleration and Repeated Sprint Ability in Well-Trained Adolescent Handball Players: Speed versus Sprint Interval Training. Int. J. Sports Physiol. Perform. 2010, 5, 152–164. [Google Scholar] [CrossRef]
- Govus, A.D.; Coutts, A.; Duffield, R.; Murray, A.; Fullagar, H. Relationship between Pretraining Subjective Wellness Measures, Player Load, and Rating-of-Perceived-Exertion Training Load in American College Football. Int. J. Sports Physiol. Perform. 2018, 13, 95–101. [Google Scholar] [CrossRef]
- Moalla, W.; Fessi, M.S.; Farhat, F.; Nouira, S.; Wong, D.P.; Dupont, G. Relationship between Daily Training Load and Psychometric Status of Professional Soccer Players. Res. Sports Med. 2016, 24, 387–394. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Chen, Y.-C.; Tung, K.; Chao, H.-H.; Wang, H.-S. Effects of Caffeine and Sex on Muscle Performance and Delayed-Onset Muscle Soreness after Exercise-Induced Muscle Damage: A Double-Blind Randomized Trial. J. Appl. Physiol. 2019, 127, 798–805. [Google Scholar] [CrossRef]
- Doherty, M.; Smith, P.M. Effects of Caffeine Ingestion on Rating of Perceived Exertion during and after Exercise: A Meta-analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78. [Google Scholar] [CrossRef]
- Doherty, M.; Smith, P.M. Effects of Caffeine Ingestion on Exercise Testing: A Meta-Analysis. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 626–646. [Google Scholar] [CrossRef] [PubMed]
- Mielgo-Ayuso, J.; Calleja-Gonzalez, J.; Del Coso, J.; Urdampilleta, A.; León-Guereño, P.; Fernández-Lázaro, D. Caffeine Supplementation and Physical Performance, Muscle Damage and Perception of Fatigue in Soccer Players: A Systematic Review. Nutrients 2019, 11, 440. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Wang, H.-S.; Tung, K.; Chao, H.-H. Effects of Gender Difference and Caffeine Supplementation on Anaerobic Muscle Performance. Int. J. Sports Med. 2015, 36, 974–978. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J. A Review of Nutritional Intervention on Delayed Onset Muscle Soreness. Part I. J. Exerc. Rehabil. 2014, 10, 349. [Google Scholar] [CrossRef] [PubMed]
- Beck, T.W.; Housh, T.J.; Schmidt, R.J.; Johnson, G.O.; Housh, D.J.; Coburn, J.W.; Malek, M.H. The Acute Effects of a Caffeine-Containing Supplement on Strength, Muscular Endurance, and Anaerobic Capabilities. J. Strength Cond. Res. 2006, 20, 506–510. [Google Scholar] [PubMed]
- Ramos-Campo, D.J.; Pérez, A.; Ávila-Gandía, V.; Pérez-Piñero, S.; Rubio-Arias, J.Á. Impact of Caffeine Intake on 800-m Running Performance and Sleep Quality in Trained Runners. Nutrients 2019, 11, 2040. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Lee, J.H.; Kim, I.S.; Jang, K.H.; Duffy, J.F. Self-Reported Sleep Duration, Daytime Sleepiness, and Caffeine Use in Male and Female Morning and Evening Types. Sleep Med. Res. 2012, 3, 32–38. [Google Scholar] [CrossRef]
- Filip-Stachnik, A. Does Acute Caffeine Intake before Evening Training Sessions Impact Sleep Quality and Recovery-Stress State? Preliminary Results from a Study on Highly Trained Judo Athletes. Appl. Sci. 2022, 12, 9957. [Google Scholar] [CrossRef]
- Tallis, J.; Guimaraes-Ferreira, L.; Clarke, N.D. Not Another Caffeine Effect on Sports Performance Study—Nothing New or More to Do? Nutrients 2022, 14, 4696. [Google Scholar] [CrossRef]
- Giráldez-Costas, V.; Del Coso, J.; Mañas, A.; Salinero, J.J. The Long Way to Establish the Ergogenic Effect of Caffeine on Strength Performance: An Overview Review. Nutrients 2023, 15, 1178. [Google Scholar] [CrossRef]
- Hooper, S.L.; Mackinnon, L.T. Monitoring Overtraining in Athletes. Sports Med. 1995, 20, 321–327. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, F.T.; Rico-González, M.; Siquier-Coll, J.; Falces-Prieto, M.; Clemente, F.M. Wellness Reports in Young Soccer Players: A within and between-Weeks Analysis. J. Phys. Educ. Sport 2022, 22, 1685–1693. [Google Scholar]
- O’Loughlin, E.K.; Marashi, M.; Sabiston, C.M.; Lucibello, K.M.; Sylvestre, M.-P.; O’Loughlin, J.L. Predictors of Food and Physical Activity Tracking Among Young Adults. Health Educ. Behav. 2023, 50, 647–657. [Google Scholar] [CrossRef] [PubMed]
- Filip-Stachnik, A.; Kaszuba, M.; Dorozynski, B.; Komarek, Z.; Gawel, D.; Del Coso, J.; Klocek, T.; Spieszny, M.; Krzysztofik, M. Acute Effects of Caffeinated Chewing Gum on Volleyball Performance in High-Performance Female Players. J. Hum. Kinet. 2022, 84, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo Intermittent Recovery Test: A Useful Tool for Evaluation of Physical Performance in Intermittent Sports. Sports Med. 2008, 38, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Dal Pupo, J.; Gheller, R.G.; Dias, J.A.; Rodacki, A.L.F.; Moro, A.R.P.; Santos, S.G. Reliability and Validity of the 30-s Continuous Jump Test for Anaerobic Fitness Evaluation. J. Sci. Med. Sport 2014, 17, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.P.; Comyns, T.M. The Use of Contact Time and the Reactive Strength Index to Optimize Fast Stretch-Shortening Cycle Training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef]
- Mitsionis, G.; Pakos, E.E.; Stafilas, K.S.; Paschos, N.; Papakostas, T.; Beris, A.E. Normative Data on Hand Grip Strength in a Greek Adult Population. Int. Orthop. 2009, 33, 713–717. [Google Scholar] [CrossRef]
- Newman, D.G.; Pearn, J.; Barnes, A.; Young, C.M.; Kehoe, M.; Newman, J. Norms for Hand Grip Strength. Arch. Dis. Child. 1984, 59, 453–459. [Google Scholar] [CrossRef]
- Draper, J.A. The 505 Test: A Test for Agility in Horizontal Plane. Aust. J. Sci. Med. Sport 1985, 17, 15–18. [Google Scholar]
- Sánchez-Pay, A.; Martínez-Gallego, R.; Crespo, M.; Sanz-Rivas, D. Key Physical Factors in the Serve Velocity of Male Professional Wheelchair Tennis Players. Int. J. Environ. Res. Public Health 2021, 18, 1944. [Google Scholar] [CrossRef] [PubMed]
- Krustrup, P.; Mohr, M.; Amstrup, T.; Rysgaard, T.; Johansen, J.; Steensberg, A.; Pedersen, P.K.; Bangsbo, J. The Yo-Yo Intermittent Recovery Test: Physiological Response, Reliability, and Validity. Med. Sci. Sports Exerc. 2003, 35, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, B.; Pfeifer, C.; Kreitz, K.; Borowski, M.; Faldum, A.; Brand, S.-M. The Yo-Yo Intermittent Tests: A Systematic Review and Structured Compendium of Test Results. Front. Physiol. 2018, 9, 870. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Sawilowsky, S.S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 26. [Google Scholar] [CrossRef]
- Ribeiro, B.G.; Morales, A.P.; Sampaio-Jorge, F.; Barth, T.; de Oliveira, M.B.C.; Coelho, G.M.; Leite, T.C. Caffeine Attenuates Decreases in Leg Power without Increased Muscle Damage. J. Strength Cond. Res. 2016, 30, 2354–2360. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.H.B.; Forbes, S.C.; Barros, M.P.; Smolarek, A.C.; Enes, A.; Lancha-Junior, A.H.; Martins, G.L.; Souza-Junior, T.P. High Doses of Caffeine Increase Muscle Strength and Calcium Release in the Plasma of Recreationally Trained Men. Nutrients 2022, 14, 4921. [Google Scholar] [CrossRef]
- Behrens, M.; Mau-Moeller, A.; Weippert, M.; Fuhrmann, J.; Wegner, K.; Skripitz, R.; Bader, R.; Bruhn, S. Caffeine-Induced Increase in Voluntary Activation and Strength of the Quadriceps Muscle during Isometric, Concentric and Eccentric Contractions. Sci. Rep. 2015, 5, 10209. [Google Scholar] [CrossRef]
- Hussain, N. The Effect of Caffeine on Athletic Performance. Sci. Prepr. 2021. [Google Scholar] [CrossRef]
- Karayigit, R.; Forbes, S.C.; Osmanov, Z.; Yilmaz, C.; Yasli, B.C.; Naderi, A.; Buyukcelebi, H.; Benesova, D.; Gabrys, T.; Esen, O. Low and Moderate Doses of Caffeinated Coffee Improve Repeated Sprint Performance in Female Team Sport Athletes. Biology 2022, 11, 1498. [Google Scholar] [CrossRef]
- Marques, A.C.; Jesus, A.A.; Giglio, B.M.; Marini, A.C.; Lobo, P.C.B.; Mota, J.F.; Pimentel, G.D. Acute Caffeinated Coffee Consumption Does Not Improve Time Trial Performance in an 800-m Run: A Randomized, Double-Blind, Crossover, Placebo-Controlled Study. Nutrients 2018, 10, 657. [Google Scholar] [CrossRef]
- Grgic, J.; Varovic, D. Moderators of Caffeine’s Effects on Jumping Performance in Females: A Systematic Review and Meta-Analysis. J. Am. Nutr. Assoc. 2023, 43, 92–100. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A Review of Caffeine’s Effects on Cognitive, Physical and Occupational Performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef]
- Miller, B.; O’Connor, H.; Orr, R.; Ruell, P.; Cheng, H.L.; Chow, C.M. Combined Caffeine and Carbohydrate Ingestion: Effects on Nocturnal Sleep and Exercise Performance in Athletes. Eur. J. Appl. Physiol. 2014, 114, 2529–2537. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Arnaud, M.J. Pharmacokinetics and Metabolism of Natural Methylxanthines in Animal and Man. Methylxanthines 2011, 33–91. [Google Scholar] [CrossRef]
- Granfors, M.T.; Backman, J.T.; Laitila, J.; Neuvonen, P.J. Oral Contraceptives Containing Ethinyl Estradiol and Gestodene Markedly Increase Plasma Concentrations and Effects of Tizanidine by Inhibiting Cytochrome P450 1A2. Clin. Pharmacol. Ther. 2005, 78, 400–411. [Google Scholar] [CrossRef] [PubMed]
- Fleck, S.J.; Kraemer, W. Designing Resistance Training Programs, 4E; Human Kinetics: Champaign, IL, USA, 2014; ISBN 0736081704. Available online: www.humankinetics.com (accessed on 18 December 2023).
- Enns, D.L.; Tiidus, P.M. The Influence of Estrogen on Skeletal Muscle: Sex Matters. Sports Med. 2010, 40, 41–58. [Google Scholar] [CrossRef]
- Nakamura, Y.; Aizawa, K. Sex Hormones, Menstrual Cycle, and Resistance Exercise. In Sex Hormones, Exercise and Women: Scientific and Clinical Aspects; Springer: Berlin/Heidelberg, Germany, 2023; pp. 227–243. [Google Scholar]
- Lara, B.; Salinero, J.J.; Giráldez-Costas, V.; Del Coso, J. Similar Ergogenic Effect of Caffeine on Anaerobic Performance in Men and Women Athletes. Eur. J. Nutr. 2021, 60, 4107–4114. [Google Scholar] [CrossRef]
- Lara, B.; Gutiérrez-Hellín, J.; García-Bataller, A.; Rodríguez-Fernández, P.; Romero-Moraleda, B.; Del Coso, J. Ergogenic Effects of Caffeine on Peak Aerobic Cycling Power during the Menstrual Cycle. Eur. J. Nutr. 2020, 59, 2525–2534. [Google Scholar] [CrossRef]
- Muljadi, J.A.; Kaewphongsri, P.; Chaijenkij, K.; Kongtharvonskul, J. Effect of Caffeine on Delayed-Onset Muscle Soreness: A Meta-Analysis of RCT. Bull. Natl. Res. Cent. 2021, 45, 197. [Google Scholar] [CrossRef]
- Mesquita, R.N.O.; Cronin, N.J.; Kyröläinen, H.; Hintikka, J.; Avela, J. Effects of Caffeine on Neuromuscular Function in a Non-Fatigued State and during Fatiguing Exercise. Exp. Physiol. 2020, 105, 690–706. [Google Scholar] [CrossRef] [PubMed]
- Adelman, W.J.; Palti, Y.; Senft, J.P. Potassium Ion Accumulation in a Periaxonal Space and Its Effect on the Measurement of Membrane Potassium Ion Conductance. J. Membr. Biol. 1973, 13, 387–410. [Google Scholar] [CrossRef] [PubMed]
- Rybicki, K.J.; Waldrop, T.G.; Kaufman, M.P. Increasing Gracilis Muscle Interstitial Potassium Concentrations Stimulate Group III and IV Afferents. J. Appl. Physiol. 1985, 58, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.L.; Amann, M.; Duchateau, J.; Meeusen, R.; Rice, C.L. Neural Contributions to Muscle Fatigue: From the Brain to the Muscle and Back Again. Med. Sci. Sports Exerc. 2016, 48, 2294–2306. [Google Scholar] [CrossRef]
- de Salles Painelli, V.; Teixeira, E.L.; Tardone, B.; Moreno, M.; Morandini, J.; Larrain, V.H.; Pires, F.O. Habitual Caffeine Consumption Does Not Interfere With the Acute Caffeine Supplementation Effects on Strength Endurance and Jumping Performance in Trained Individuals. Int. J. Sport Nutr. Exerc. Metab. 2021, 31, 321–328. [Google Scholar] [CrossRef]
- Filip-Stachnik, A.; Wilk, M.; Krzysztofik, M.; Lulińska, E.; Tufano, J.J.; Zajac, A.; Stastny, P.; Del Coso, J. The Effects of Different Doses of Caffeine on Maximal Strength and Strength-endurance in Women Habituated to Caffeine. J. Int. Soc. Sports Nutr. 2021, 18, 25. [Google Scholar] [CrossRef]
- Romero-Moraleda, B.; Del Coso, J.; Gutiérrez-Hellín, J.; Lara, B. The Effect of Caffeine on the Velocity of Half-Squat Exercise during the Menstrual Cycle: A Randomized Controlled Trial. Nutrients 2019, 11, 2662. [Google Scholar] [CrossRef]
Caffeine Condition | Placebo Condition | |||||
---|---|---|---|---|---|---|
MD-4 | MD-3 | MD-1 | MD-4 | MD-3 | MD-1 | |
Internal load | ||||||
Sleep (AU) | 3.38 ± 1.92 | 2.88 ± 2.10 | 2.88± 1.81 | 4.38 ±1.77 | 3.50 ± 1.51 | 2.88 ± 1.81 |
Fatigue (AU) | 3.00 ± 1.51 | 3.13 ± 1.36 | 3.25 ± 2.19 | 4.00 ± 1.60 | 3.63 ± 1.60 | 3.50 ± 1.93 |
Stress (AU) | 3.75 ± 1.28 | 3.50 ± 1.85 | 2.88 ± 1.73 | 3.88 ± 0.99 | 4.25 ± 1.39 | 2.88 ± 1.13 |
Muscle soreness (AU) | 2.63 ± 1.19 | 3.13 ± 1.55 | 3.50 ± 2.33 | 3.25 ± 1.04 | 3.88 ± 1.46 | 4.50 ± 1.41 |
External load | ||||||
Handgrip dominant (kg) | 33.61 ± 4.10 | 35.58 ± 3.71 | 35.04 ± 3.46 | 34.46 ± 3.73 | 33.19 ± 3.21 | 35.35 ± 4.71 |
Handgrip non-dominant (kg) | 31.83 ± 4.39 | 32.51 ± 4.16 | 31.01 ± 4.63 | 32.62 ± 2.08 | 32.23 ± 4.47 | 32.60 ± 3.89 |
COD 505 test (s) | 4.32 ± 0.19 | 4.17 ± 0.19 | 4.13 ± 0.14 | 4.31 ± 0.23 | 4.17 ± 0.19 | 4.15 ± 0.11 |
CMJ height (cm) | 34.18 ± 5.60 | 37.18 ± 4.70 | 35.47 ± 6.09 | 30.69 ± 4.42 | 34.72 ± 5.95 | 33.88 ± 6.99 |
RJ height (cm) | 28.27 ± 2.76 | 30.28 ± 2.40 | 30.29 ± 3.41 | 26.18 ± 2.61 | 28.54 ± 4.53 | 27.79 ± 2.98 |
RJ RSI (m/s) | 1.18 ± 0.16 | 1.35 ± 0.25 | 1.35 ± 0.26 | 1.02 ± 0.16 | 1.26 ± 0.17 | 1.19 ± 0.15 |
RJ min jump (cm) | 20.32 ± 2.36 | 24.73 ± 2.58 | 23.07 ± 2.68 | 19.45 ± 3.68 | 24.25 ± 5.30 | 24.48 ± 4.37 |
RJ max jump (cm) | 34.16 ± 2.09 | 32.77 ± 3.63 | 32.09 ± 3.79 | 31.33 ± 3.71 | 32.64 ± 3.75 | 32.53 ± 3.68 |
RJ FI (%) | 108.70 ± 14.40 | 101.98 ± 12.02 | 97.75 ± 9.69 | 94.98 ± 12.85 | 96.25 ± 11.51 | 94.60 ± 11.47 |
RJ contact time (s) | 0.34 ± 0.11 | 0.25 ± 0.04 | 0.23 ± 0.03 | 0.32 ± 0.11 | 0.25 ± 0.06 | 0.25 ± 0.05 |
Main Effect of Condition | Main Effect of Moment | Interaction Condition * Moment | |
---|---|---|---|
Internal Load | |||
sleep (AU) | F (1.7) = 2.85, p = 0.13, η2 = 0.28 | F (2.14) = 2.88, p = 0.09, η2 = 0.29 | F < 1 |
Fatigue (AU) | F (1.7) = 7.29, p = 0.03 *, η2 = 0.51 | F < 1 | F (2.14) = 1.04, p = 0.37, η2 = 0.1 |
Stress (AU) | F < 1 | F (2.14) = 4.69, p = 0.02 *, η2 = 0.40 | F (2.14) = 1.58, p = 0.23, η2 = 0.18 |
Muscle soreness (AU) | F (1.7) = 7.54, p = 0.02 *, η2 = 0.52 | (2.14) = 2.46, p = 0.12, η2 = 0.26 | F < 1 |
External Load | |||
Handgrip dominant (kg) | F (1.7) = 1.18, p = 0.32, η2 = 0.19 | F < 1 | F (2.14) = 9.56, p = 0.004 **, η2 = 0.65 |
Handgrip non-dominant (kg) | F < 1 | F < 1 | F < 1 |
COD 505 test (sec) | F < 1 | F (2.14) = 4.61, p = 0.03 *, η2 = 0.39 | F < 1 |
CMJ height (cm) | F (1.7) = 8.41, p = 0.02 *, η2 = 0.54 | F (2.14) = 6.40, p = 0.01 *, η2 = 0.47, | F < 1 |
RJ height (cm) | F (1.7) = 5.97, p = 0.04 *, η2 = 0.46 | F (2.14) = 8.57, p = 0.001 **, η2 = 0.55 | F < 1 |
RJ RSI (m/s) | F (1.7) = 22.88, p = 0.001 **, η2 = 0.76 | F (2.14) = 12.91, p = 0.001 **, η2 = 0.64 | F < 1 |
RJ min jump (cm) | F < 1 | F (2.14) = 15.18, p = 0.001 **, η2 = 0.68 | F < 1 |
RJ max jump (cm) | F (1.7) = 1.53, p = 0.25, η2 = 0.17 | F < 1 | F (2.14) = 1.85, p = 0.19, η2 = 0.29 |
RJ FI (%) | F (1.7) = 7.33, p = 0.03 *, η2 = 0.51 | F (2.14) = 1.20, p = 0.32, η2 = 0.14, | F < 1 |
RJ contact time (s) | F < 1 | F (2.14) = 20.81, p = 0.001 **, η2 = 0.74 | F < 1 |
Caffeine Sleep | Placebo Sleep | Caffeine Fatigue | Placebo Fatigue | Caffeine Stress | Placebo Stress | Caffeine MS | Placebo MS | |
---|---|---|---|---|---|---|---|---|
Caffeine HG Dom | r = 0.12 | r = −0.01 | r = 0.13 | r = −0.12 | r = 0.12 | r = −0.57 | r = 0.01 | r = −0.13 |
p = 0.76 | p = 0.98 | p = 0.73 | p = 0.74 | p = 0.75 | p = 0.10 | p = 0.97 | p = 0.73 | |
Placebo HG Dom | r = −0.17 | r = −0.17 | r = 0.11 | r = −0.05 | r = 0.14 | r = −0.59 | r = 0.14 | r = 0.02 |
p = 0.65 | p = 0.65 | p = 0.76 | p = 0.89 | p = 0.70 | p = 0.09 | p = 0.70 | p = 0.94 | |
Caffeine HG Non-Dom | r = −0.38 | r = −0.29 | r = 0.06 | r = 0.11 | r = 0.25 | r = −0.48 | r = 0.32 | r = 0.16 |
p = 0.31 | p = 0.43 | p = 0.87 | p = 0.76 | p = 0.50 | p = 0.18 | p = 0.38 | p = 0.67 | |
Placebo HG Non-Dom | r = −0.01 | r = −0.03 | r = 0.27 | r = −0.13 | r = 0.12 | r = −0.57 | r = 0.01 | r = −0.17 |
p = 0.99 | p = 0.93 | p = 0.47 | p = 0.75 | p = 0.75 | p = 0.10 | p = 0.97 | p = 0.66 | |
Caffeine COD 505 test | r = 0.17 | r = −0.10 | r = 0.08 | r = 0.20 | r = 0.11 | r = 0.06 | r = 0.23 | r = 0.44 |
p = 0.65 | p = 0.78 | p = 0.83 | p = 0.59 | p = 0.76 | p = 0.85 | p = 0.54 | p = 0.22 | |
Placebo COD 505 test | r = 0.15 | r = −0.17 | r = 0.09 | r = 0.32 | r = 0.15 | r = 0.26 | r = 0.29 | r = 0.50 |
p = 0.69 | p = 0.65 | p = 0.79 | p = 0.39 | p = 0.68 | p = 0.48 | p = 0.44 | p = 0.17 | |
Caffeine CMJ height | r = −0.01 | r = 0.25 | r = 0.03 | r = 0.01 | r = −0.04 | r = 0.16 | r = 0.03 | r = −0.22 |
p = 0.96 | p = 0.51 | p = 0.93 | p = 0.98 | p = 0.90 | p = 0.67 | p = 0.93 | p = 0.55 | |
Placebo CMJ height | r = −0.04 | r = 0.32 | r = −0.04 | r = −0.21 | r = −0.16 | r = −0.08 | r = −0.14 | r = −0.43 |
p = 0.89 | p = 0.39 | p = 0.90 | p = 0.58 | p = 0.67 | p = 0.82 | p = 0.71 | p = 0.24 | |
Caffeine RJ height | r = −0.09 | r = −0.26 | r = −0.14 | r = 0.06 | r = 0.04 | r = 0.08 | r = 0.02 | r = 0.45 |
p = 0.80 | p = 0.49 | p = 0.70 | p = 0.87 | p =0.91 | p = 0.83 | p = 0.95 | p = 0.21 | |
Placebo RJ height | r = −0.13 | r = −0.37 | r = −0.26 | r = −0.06 | r = 0.08 | r = 0.40 | r = −0.05 | r = 0.28 |
p = 0.73 | p = 0.32 | p = 0.49 | p = 0.86 | p = 0.83 | p = 0.28 | p = 0.88 | p = 46 | |
Caffeine RJ RSI | r = −0.19 | r = −0.13 | r = −0.05 | r = 0.01 | r = −0.09 | r = −0.34 | r = 0.17 | r = 0.17 |
p = 0.62 | p = 0.73 | p = 0.88 | p = 0.98 | p = 0.81 | p = 0.36 | p = 0.65 | p = 0.65 | |
Placebo RJ RSI | r = 0.06 | r = 0.18 | r = 0.07 | r = 0.04 | r = −0.05 | r = −0.24 | r = 0.24 | r = 0.12 |
p = 0.86 | p = 0.62 | p = 0.84 | p = 0.91 | p = 0.88 | p = 0.53 | p = 0.52 | p = 0.75 | |
Caffeine RJ min jump | r = 0.09 | r = 0.17 | r = 0.15 | r = 0.11 | r = 0.16 | r = −0.21 | r = 0.05 | r = 0.32 |
p = 0.79 | p = 0.66 | p = 0.69 | p = 0.77 | p = 0.67 | p = 0.57 | p = 0.88 | p = 0.39 | |
Placebo RJ min jump | r = −0.20 | r = 0.07 | r = −0.27 | r = −0.51 | r = −0.49 | r = −0.75 | r = −0.41 | r = −0.52 |
p = 0.59 | p = 0.85 | p = 0.47 | p = 0.15 | p = 0.17 | p = 0.02 * | p = 0.26 | p = 0.14 | |
Caffeine RJ max jump | r = 0.18 | r = 0.44 | r = 0.13 | r = 0.02 | r = −0.20 | r = −0.36 | r = 0.07 | r = −0.09 |
p = 0.63 | p = 0.22 | p = 0.72 | p = 0.94 | p = 0.60 | p = 0.33 | p = 0.85 | p = 0.81 | |
Placebo RJ max jump | r = 0.24 | r = 0.38 | r = −0.10 | r = −0.29 | r = −0.33 | r = −0.22 | r = −0.22 | r = −0.30 |
p = 0.53 | p = 0.31 | p = 0.79 | p = 0.43 | p = 0.37 | p = 0.55 | p = 0.56 | p = 0.42 | |
Caffeine RJ FI | r = −0.27 | r = −0.42 | r = −0.32 | r = −0.11 | r = −0.17 | r = 0.08 | r = −0.34 | r = 0.07 |
p = 0.47 | p = 0.24 | p = 0.38 | p = 0.76 | p = 0.65 | p = 0.82 | p = 0.35 | p = 0.84 | |
Placebo RJ FI | r = 0.18 | r = 0.07 | r = 0.26 | r = 0.41 | r = 0.28 | r = 0.54 | r = 0.13 | r = 0.17 |
p = 0.63 | p = 0.84 | p = 0.49 | p = 0.27 | p = 0.45 | p = 0.13 | p = 0.73 | p = 0.64 | |
Caffeine RJ time | r = 0.60 | r = 0.72 | r = 0.46 | r = 0.36 | r = 0.27 | r = 0.40 | r = 0.20 | r = 0.09 |
p = 0.08 | p = 0.03 * | p = 0.20 | p = 0.33 | p = 0.47 | p = 0.28 | p = 0.59 | p = 0.81 | |
Placebo RJ time | r = −0.22 | r = −0.38 | r = −0.45 | r = −0.46 | r = −0.25 | r = 0.15 | r = −0.53 | r = −0.37 |
p = 0.55 | p = 0.30 | p = 0.21 | p = 0.20 | p = 0.51 | p = 0.70 | p = 0.13 | p = 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siquier-Coll, J.; Delgado-García, G.; Soto-Méndez, F.; Liñán-González, A.; García, R.; González-Fernández, F.T. The Effect of Caffeine Supplementation on Female Volleyball Players’ Performance and Wellness during a Regular Training Week. Nutrients 2024, 16, 29. https://doi.org/10.3390/nu16010029
Siquier-Coll J, Delgado-García G, Soto-Méndez F, Liñán-González A, García R, González-Fernández FT. The Effect of Caffeine Supplementation on Female Volleyball Players’ Performance and Wellness during a Regular Training Week. Nutrients. 2024; 16(1):29. https://doi.org/10.3390/nu16010029
Chicago/Turabian StyleSiquier-Coll, Jesús, Gabriel Delgado-García, Fulgencio Soto-Méndez, Antonio Liñán-González, Raquel García, and Francisco Tomás González-Fernández. 2024. "The Effect of Caffeine Supplementation on Female Volleyball Players’ Performance and Wellness during a Regular Training Week" Nutrients 16, no. 1: 29. https://doi.org/10.3390/nu16010029
APA StyleSiquier-Coll, J., Delgado-García, G., Soto-Méndez, F., Liñán-González, A., García, R., & González-Fernández, F. T. (2024). The Effect of Caffeine Supplementation on Female Volleyball Players’ Performance and Wellness during a Regular Training Week. Nutrients, 16(1), 29. https://doi.org/10.3390/nu16010029