Different Associations of Coffee Consumption with the Risk of Incident Metabolic Dysfunction-Associated Steatotic Liver Disease and Advanced Liver Fibrosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Definition of MASLD and ALF
2.4. Measurements
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Association of Coffee Consumption and the Risk of Incident MASLD among People without MASLD
3.3. Association of Coffee Consumption and the Risk of Incident ALF among Patients with MASLD
3.4. Longitudinal Changes in FIB-4 Scores by Coffee Consumption Groups in Patients with MASLD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Cirrhosis Collaborators. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 245–266. [Google Scholar] [CrossRef] [PubMed]
- Poynard, T.; Lebray, P.; Ingiliz, P.; Varaut, A.; Varsat, B.; Ngo, Y.; Norha, P.; Munteanu, M.; Drane, F.; Messous, D.; et al. Prevalence of liver fibrosis and risk factors in a general population using non-invasive biomarkers (FibroTest). BMC Gastroenterol. 2010, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Bjornsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver Fibrosis, but No Other Histologic Features, Is Associated with Long-term Outcomes of Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 389–397.e310. [Google Scholar] [CrossRef] [PubMed]
- Hagström, H.; Nasr, P.; Ekstedt, M.; Hammar, U.; Stål, P.; Hultcrantz, R.; Kechagias, S. Fibrosis stage but not NASH predicts mortality and time to development of severe liver disease in biopsy-proven NAFLD. J. Hepatol. 2017, 67, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Ekstedt, M.; Hagström, H.; Nasr, P.; Fredrikson, M.; Stål, P.; Kechagias, S.; Hultcrantz, R. Fibrosis stage is the strongest predictor for disease-specific mortality in NAFLD after up to 33 years of follow-up. Hepatology 2015, 61, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.G.; Roelstraete, B.; Khalili, H.; Hagström, H.; Ludvigsson, J.F. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: Results from a nationwide cohort. Gut 2021, 70, 1375–1382. [Google Scholar] [CrossRef]
- Ciardullo, S.; Perseghin, G. Trends in prevalence of probable fibrotic non-alcoholic steatohepatitis in the United States, 1999–2016. Liver Int. 2023, 43, 340–344. [Google Scholar] [CrossRef]
- Lembo, E.; Russo, M.F.; Verrastro, O.; Anello, D.; Angelini, G.; Iaconelli, A.; Guidone, C.; Stefanizzi, G.; Ciccoritti, L.; Greco, F.; et al. Prevalence and predictors of non-alcoholic steatohepatitis in subjects with morbid obesity and with or without type 2 diabetes. Diabetes Metab. 2022, 48, 101363. [Google Scholar] [CrossRef]
- Barb, D.; Repetto, E.M.; Stokes, M.E.; Shankar, S.S.; Cusi, K. Type 2 diabetes mellitus increases the risk of hepatic fibrosis in individuals with obesity and nonalcoholic fatty liver disease. Obesity 2021, 29, 1950–1960. [Google Scholar] [CrossRef]
- Du Plessis, J.; van Pelt, J.; Korf, H.; Mathieu, C.; van der Schueren, B.; Lannoo, M.; Oyen, T.; Topal, B.; Fetter, G.; Nayler, S.; et al. Association of Adipose Tissue Inflammation with Histologic Severity of Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 635–648.e614. [Google Scholar] [CrossRef] [PubMed]
- Hallsworth, K.; Adams, L.A. Lifestyle modification in NAFLD/NASH: Facts and figures. JHEP Rep. 2019, 1, 468–479. [Google Scholar] [CrossRef]
- Houttu, V.; Csader, S.; Nieuwdorp, M.; Holleboom, A.G.; Schwab, U. Dietary Interventions in Patients with Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 716783. [Google Scholar] [CrossRef] [PubMed]
- Montemayor, S.; Bouzas, C.; Mascaró, C.M.; Casares, M.; Llompart, I.; Abete, I.; Angullo-Martinez, E.; Zulet, M.; Martínez, J.A.; Tur, J.A. Effect of Dietary and Lifestyle Interventions on the Amelioration of NAFLD in Patients with Metabolic Syndrome: The FLIPAN Study. Nutrients 2022, 14, 2223. [Google Scholar] [CrossRef]
- Ebadi, M.; Ip, S.; Bhanji, R.A.; Montano-Loza, A.J. Effect of Coffee Consumption on Non-Alcoholic Fatty Liver Disease Incidence, Prevalence and Risk of Significant Liver Fibrosis: Systematic Review with Meta-Analysis of Observational Studies. Nutrients 2021, 13, 3042. [Google Scholar] [CrossRef] [PubMed]
- Dranoff, J.A.; Feld, J.J.; Lavoie, E.G.; Fausther, M. How does coffee prevent liver fibrosis? Biological plausibility for recent epidemiological observations. Hepatology 2014, 60, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Wadhawan, M.; Anand, A.C. Coffee and Liver Disease. J. Clin. Exp. Hepatol. 2016, 6, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Hodge, A.; Lim, S.; Goh, E.; Wong, O.; Marsh, P.; Knight, V.; Sievert, W.; de Courten, B. Coffee Intake Is Associated with a Lower Liver Stiffness in Patients with Non-Alcoholic Fatty Liver Disease, Hepatitis C, and Hepatitis B. Nutrients 2017, 9, 56. [Google Scholar] [CrossRef]
- Chen, S.; Teoh, N.C.; Chitturi, S.; Farrell, G.C. Coffee and non-alcoholic fatty liver disease: Brewing evidence for hepatoprotection? J. Gastroenterol. Hepatol. 2014, 29, 435–441. [Google Scholar] [CrossRef]
- Loomis, D.; Guyton, K.Z.; Grosse, Y.; Lauby-Secretan, B.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of drinking coffee, mate, and very hot beverages. Lancet Oncol. 2016, 17, 877–878. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Thongprayoon, C.; Ungprasert, P. Coffee consumption and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2017, 29, e8–e12. [Google Scholar] [CrossRef] [PubMed]
- Kositamongkol, C.; Kanchanasurakit, S.; Auttamalang, C.; Inchai, N.; Kabkaew, T.; Kitpark, S.; Chaiyakunapruk, N.; Duangjai, A.; Saokaew, S.; Phisalprapa, P. Coffee Consumption and Non-alcoholic Fatty Liver Disease: An Umbrella Review and a Systematic Review and Meta-analysis. Front. Pharmacol. 2021, 12, 786596. [Google Scholar] [CrossRef] [PubMed]
- Sewter, R.; Heaney, S.; Patterson, A. Coffee Consumption and the Progression of NAFLD: A Systematic Review. Nutrients 2021, 13, 2381. [Google Scholar] [CrossRef] [PubMed]
- Hayat, U.; Siddiqui, A.A.; Okut, H.; Afroz, S.; Tasleem, S.; Haris, A. The effect of coffee consumption on the non-alcoholic fatty liver disease and liver fibrosis: A meta-analysis of 11 epidemiological studies. Ann. Hepatol. 2021, 20, 100254. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Kotronen, A.; Peltonen, M.; Hakkarainen, A.; Sevastianova, K.; Bergholm, R.; Johansson, L.M.; Lundbom, N.; Rissanen, A.; Ridderstråle, M.; Groop, L.; et al. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology 2009, 137, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.G.; Lydecker, A.; Murray, K.; Tetri, B.N.; Contos, M.J.; Sanyal, A.J. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol. 2009, 7, 1104–1112. [Google Scholar] [CrossRef]
- Pae, B.J.; Lee, S.K.; Kim, S.; Siddiquee, A.T.; Hwang, Y.H.; Lee, M.H.; Kim, R.E.Y.; Kim, S.H.; Lee, M.; Shin, C. Effect of physical activity on the change in carotid intima-media thickness: An 8-year prospective cohort study. PLoS ONE 2023, 18, e0287685. [Google Scholar] [CrossRef]
- Milone, M.T.; Kamath, A.F.; Israelite, C.L. Converting between high- and low-sensitivity C-reactive protein in the assessment of periprosthetic joint infection. J. Arthroplast. 2014, 29, 685–689. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J. Hypertens. 2018, 36, 1953–2041. [Google Scholar] [CrossRef] [PubMed]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, O.J.; Fallowfield, J.A.; Poole, R.; Hayes, P.C.; Parkes, J.; Roderick, P.J. All coffee types decrease the risk of adverse clinical outcomes in chronic liver disease: A UK Biobank study. BMC Public Health 2021, 21, 970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Z.; Choudhury, T.; Cornelis, M.C.; Liu, W. Habitual coffee intake and risk for nonalcoholic fatty liver disease: A two-sample Mendelian randomization study. Eur. J. Nutr. 2021, 60, 1761–1767. [Google Scholar] [CrossRef]
- Vitaglione, P.; Mazzone, G.; Lembo, V.; D’Argenio, G.; Rossi, A.; Guido, M.; Savoia, M.; Salomone, F.; Mennella, I.; De Filippis, F.; et al. Coffee prevents fatty liver disease induced by a high-fat diet by modulating pathways of the gut-liver axis. J. Nutr. Sci. 2019, 8, e15. [Google Scholar] [CrossRef] [PubMed]
- Baek, Y.; Hwang, J.Y.; Kim, K.; Moon, H.K.; Kweon, S.; Yang, J.; Oh, K.; Shim, J.E. Dietary intake of fats and fatty acids in the Korean population: Korea National Health and Nutrition Examination Survey, 2013. Nutr. Res. Pract. 2015, 9, 650–657. [Google Scholar] [CrossRef]
- Trends and Prospects in the Korean Domestic Coffee Market; Korea Agro-Fisheries & Food Trade Corporation: Naju, Republic of Korea, 2002.
- Vargas-Pozada, E.E.; Ramos-Tovar, E.; Acero-Hernández, C.; Cardoso-Lezama, I.; Galindo-Gómez, S.; Tsutsumi, V.; Muriel, P. Caffeine mitigates experimental nonalcoholic steatohepatitis and the progression of thioacetamide-induced liver fibrosis by blocking the MAPK and TGF-β/Smad3 signaling pathways. Ann. Hepatol. 2022, 27, 100671. [Google Scholar] [CrossRef]
- Di Mauro, S.; Salomone, F.; Scamporrino, A.; Filippello, A.; Morisco, F.; Guido, M.; Lembo, V.; Cossiga, V.; Pipitone, R.M.; Grimaudo, S.; et al. Coffee Restores Expression of lncRNAs Involved in Steatosis and Fibrosis in a Mouse Model of NAFLD. Nutrients 2021, 13, 2952. [Google Scholar] [CrossRef]
Individuals without MASLD | Individuals with MASLD and without ALF | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Without Coffee Consumption | >0 and <1 cups/day | ≥1 and <2 cups/day | ≥2 cups/day | p * | Without Coffee Consumption | >0 and <1 cups/day | ≥1 and <2 cups/day | ≥2 cups/day | p * |
(n = 1196) | (n = 1269) | (n = 1460) | (n = 1341) | (n = 330) | (n = 338) | (n = 351) | (n = 307) | |||
Male sex, n (%) | 384 (32.1%) | 527 (41.5%) | 565 (38.7%) | 710 (52.9%) | <0.001 | 95 (28.8%) | 134 (39.6%) | 158 (45.0%) | 185 (60.3%) | <0.001 |
Age, years | 54.7 ± 9.1 | 52.2 ± 8.8 | 50.7 ± 8.5 | 49.4 ± 8.0 | <0.001 | 56.1 ± 8.0 | 54.5 ± 8.3 | 52.8 ± 8.4 | 50.8 ± 7.9 | <0.001 |
BMI, kg/m2 | 23.5 ± 2.9 | 23.9 ± 2.8 | 24.1 ± 2.8 | 23.9 ± 2.9 | <0.001 | 26.6 ± 2.9 | 26.7 ± 3.1 | 26.7 ± 2.9 | 26.8 ± 2.8 | 0.718 |
Mean blood pressure, mmHg | 95.4 ± 12.9 | 94.7 ± 12.5 | 92.9 ± 12.5 | 92.8 ± 12.2 | <0.001 | 104.3 ± 12.3 | 103.2 ± 12.6 | 102.2 ± 12.8 | 101.7 ± 11.1 | 0.034 |
Smoking status, n (%) | <0.001 | <0.001 | ||||||||
Never | 918 (77.5%) | 889 (70.8%) | 976 (67.3%) | 694 (52.3%) | 258 (79.1%) | 235 (69.9%) | 222 (63.4%) | 130 (42.6%) | ||
Former | 138 (11.7%) | 155 (12.3%) | 185 (12.8%) | 197 (14.8%) | 37 (11.3%) | 49 (14.6%) | 56 (16.0%) | 64 (21.0%) | ||
Intermittent | 19 (1.6%) | 35 (2.8%) | 23 (1.6%) | 33 (2.5%) | 5 (1.5%) | 6 (1.8%) | 10 (2.9%) | 6 (2.0%) | ||
Every day | 109 (9.2%) | 177 (14.1%) | 266 (18.3%) | 404 (30.4%) | 26 (8.0%) | 46 (13.7%) | 62 (17.7%) | 105 (34.4%) | ||
Current drinker, n (%) | 343 (28.8%) | 579 (45.8%) | 686 (47.2%) | 649(48.6%) | <0.001 | 89 (27.3%) | 129 (38.3%) | 152 (43.4%) | 147 (47.9%) | <0.001 |
Physical activity, n (%) | <0.001 | 0.579 | ||||||||
Low | 93 (8.0%) | 103 (8.5%) | 83 (5.9%) | 100 (7.7%) | 27 (8.4%) | 27 (8.4%) | 26 (7.6%) | 29 (9.7%) | ||
Moderate | 636 (54.5%) | 705 (57.9%) | 958 (67.6%) | 817 (62.6%) | 180 (56.2%) | 183 (56.8%) | 214 (62.8%) | 177 (59.4%) | ||
High | 437 (37.5%) | 409 (33.6%) | 377 (26.6%) | 389 (29.8%) | 113 (35.3%) | 112 (34.8%) | 101 (29.6%) | 92 (30.9%) | ||
Education, n (%) | <0.001 | <0.001 | ||||||||
Elementary/Middle school | 816 (68.8%) | 731 (58.0%) | 713 (49.0%) | 629 (47.2%) | 250 (76.7%) | 206(61.5%) | 211 (60.3%) | 151 (49.3%) | ||
High school | 277 (23.4%) | 361 (28.6%) | 532 (36.6%) | 494 (37.1%) | 49 (15.0%) | 92 (27.5%) | 92 (26.3%) | 102 (33.3%) | ||
College/University | 93 (7.8%) | 169 (13.4%) | 210 (14.4%) | 209 (15.7%) | 27 (8.3%) | 37 (11.0%) | 47 (13.4%) | 53 (17.3%) | ||
Monthly household income, KRW | <0.001 | <0.001 | ||||||||
<100 million | 550 (46.9%) | 459 (36.7%) | 369 (25.6%) | 365 (27.5%) | 160 (50.0%) | 150 (44.9%) | 125 (35.9%) | 92 (31.0%) | ||
100–200 million | 338 (28.8%) | 392 (31.4%) | 466 (32.3%) | 424 (31.9%) | 82 (25.6%) | 83 (24.9%) | 85 (24.4%) | 81 (27.3%) | ||
>200 million | 285 (24.3%) | 398 (31.9%) | 607 (42.1%) | 539 (40.6%) | 78 (24.4%) | 101 (30.2%) | 138 (39.7%) | 124 (41.8%) | ||
Platelet count, 109/L | 267.7 ± 63.6 | 263.2 ± 59.4 | 263.1 ± 59.5 | 268.4 ± 61.1 | 0.035 | 280.5 ± 60.4 | 270.5 ± 62.3 | 276.3 ± 63.5 | 280.5 ± 63.7 | 0.129 |
AST, U/L | 26.7 ± 7.1 | 26.8 ± 7.4 | 26.3 ± 6.8 | 25.9 ± 6.4 | 0.003 | 32.3 ± 13.3 | 31.2 ± 12.0 | 33.0 ± 17.6 | 33.0 ± 18.2 | 0.385 |
ALT, U/L | 21.5 ± 7.8 | 22.5 ± 8.7 | 22.1 ± 9.2 | 22.4 ± 9.5 | 0.013 | 36.2 ± 19.7 | 34.5 ± 19.2 | 38.9 ± 26.0 | 42.0 ± 38.1 | 0.002 |
r-GTP, U/L | 22.3 ± 61.2 | 22.4 ± 24.3 | 22.1 ± 21.2 | 23.7 ± 23.4 | 0.667 | 37.1 ± 44.3 | 39.6 ± 49.2 | 46.5 ± 89.7 | 47.9 ± 60.2 | 0.085 |
Total bilirubin, mg/dL | 0.6 ± 0.3 | 0.6 ± 0.3 | 0.6 ± 0.3 | 0.6 ± 0.3 | 0.005 | 0.5 ± 0.3 | 0.6 ± 0.3 | 0.6 ± 0.3 | 0.6 ± 0.3 | 0.085 |
Albumin, g/dL | 4.2 ± 0.3 | 4.2 ± 0.3 | 4.3 ± 0.3 | 4.3 ± 0.3 | <0.001 | 4.2 ± 0.3 | 4.2 ± 0.3 | 4.3 ± 0.3 | 4.3 ± 0.3 | 0.032 |
hsCRP, mg/dL | 0.1 [0.0;0.2] | 0.1 [0.0;0.2] | 0.1 [0.1;0.2] | 0.1 [0.0;0.2] | 0.490 | 0.2 [0.1;0.3] | 0.2 [0.1;0.3] | 0.2 [0.1;0.3] | 0.2 [0.1;0.3] | 0.938 |
FPG, mg/dL | 82.1 ± 10.3 | 82.7 ± 10.7 | 83.0 ± 14.5 | 82.2 ± 10.3 | 0.160 | 93.3 ± 26.7 | 92.9 ± 24.1 | 96.5 ± 28.8 | 96.9 ± 35.6 | 0.172 |
LDL cholesterol, mg/dL | 113.2 ± 30.5 | 113.0 ± 29.0 | 117.7 ± 32.0 | 117.6 ± 30.4 | <0.001 | 116.6 ± 32.0 | 116.8 ± 31.3 | 120.5 ± 30.6 | 123.3 ± 32.1 | 0.025 |
Total energy intake, kcal/day | 2025.7 ± 807.2 | 2053.9 ± 783.2 | 2171.6 ± 703.4 | 2334.7 ± 921.4 | <0.001 | 2035.8 ± 797.4 | 2100.0 ± 780.8 | 2186.2 ± 729.2 | 2460.2 ± 773.8 | <0.001 |
CHO intake, % of total energy intake | 69.0 ± 8.0 | 68.4 ± 7.8 | 66.7 ± 6.9 | 67.1 ± 7.0 | <0.001 | 70.5 ± 7.3 | 69.7 ± 7.3 | 67.8 ± 7.4 | 67.3 ± 7.4 | <0.001 |
Protein intake, % of total energy intake | 13.6 ± 2.5 | 13.3 ± 2.3 | 13.5 ± 2.1 | 12.8 ± 2.2 | <0.001 | 13.4 ± 2.4 | 13.3 ± 2.3 | 13.3 ± 2.2 | 12.9 ± 2.4 | 0.014 |
Fat intake, % of total energy intake | 16.1 ± 6.4 | 17.0 ± 6.3 | 18.6 ± 5.6 | 18.9 ± 5.6 | <0.001 | 14.9 ± 5.8 | 15.8 ± 5.8 | 17.6 ± 5.9 | 18.6 ± 5.9 | <0.001 |
SFA intake, % of total energy intake | 4.48 ± 1.98 | 4.30 ± 1.74 | 4.54 ± 1.70 | 4.21 ± 1.71 | <0.001 | 4.19 ± 1.80 | 4.09 ± 1.57 | 4.30 ± 1.61 | 4.10 ± 1.57 | 0.325 |
MUFA intake, % of total energy intake | 4.78 ± 2.17 | 4.61 ± 1.94 | 4.85 ± 1.85 | 4.56 ± 1.87 | <0.001 | 4.53 ± 1.99 | 4.44 ± 1.79 | 4.63 ± 1.75 | 4.43 ± 1.65 | 0.439 |
PUFA intake, % of total energy intake | 6.60 ± 2.73 | 5.93 ± 2.28 | 6.17 ± 2.31 | 5.80 ± 2.26 | <0.001 | 6.52 ± 2.61 | 6.05 ± 2.40 | 6.18 ± 2.42 | 5.67 ± 2.29 | <0.001 |
DM, n (%) | 38 (3.2%) | 40 (3.2%) | 49 (3.4%) | 24 (1.8%) | 0.054 | 100 (30.3%) | 89 (26.3%) | 115 (32.8%) | 78 (25.4%) | 0.123 |
HTN, n (%) | 406 (33.9%) | 395 (31.1%) | 402 (27.5%) | 318 (23.7%) | <0.001 | 221 (67.0%) | 216 (63.9%) | 202 (57.5%) | 181 (59.0%) | 0.044 |
Dyslipidemia, n (%) | 463 (38.7%) | 476 (37.5%) | 576 (39.5%) | 521 (38.9%) | 0.773 | 247 (74.8%) | 241 (71.3%) | 251 (71.5%) | 236 (76.9%) | 0.301 |
Coffee intake, cups/day | 0.00 [0.00;0.00] | 0.21 [0.11;0.50] | 1.00 [1.00;1.00] | 3.00 [2.00;3.00] | <0.001 | 0.00 [0.00;0.00] | 0.21 [0.08;0.50] | 1.00 [1.00;1.00] | 3.00 [2.00;3.00] | <0.001 |
sweetened beverage intake, cups/day | 0.00 [0.00;0.04] | 0.03 [0.00;0.08] | 0.03 [0.00;0.21] | 0.03 [0.00;0.21] | <0.001 | 0.00 [0.00;0.03] | 0.03 [0.00;0.08] | 0.03 [0.00;0.21] | 0.03 [0.00;0.21] | <0.001 |
NAFLD-liver fat score | −1.891 [−2.331;−1.344] | −1.900 [−2.311;−1.430] | −1.968 [−2.374;−1.440] | −1.922 [−2.341;−1.448] | 0.106 | 0.151 [−0.284;0.817] | 0.047 [−0.315;0.723] | 0.183 [−0.319;0.864] | 0.129 [−0.325;0.877] | 0.659 |
FIB-4 score | 1.17 [0.93;1.49] | 1.11 [0.88;1.46] | 1.08 [0.87;1.37] | 1.01 [0.81;1.28] | <0.001 | 1.09 [0.85;1.34] | 1.06 [0.85;1.44] | 0.99 [0.80;1.27] | 0.90 [0.72;1.22] | <0.001 |
Total Cases | New-Onset MASLD Cases | Person–Years | Incidence Rate per 1000 Person–Years | Unadjusted | Adjusted * | |||
---|---|---|---|---|---|---|---|---|
Coffee consumption | HR (95% CI) | p | HR (95% CI) | p | ||||
Without coffee consumption | 1196 | 504 | 12,267.6 | 41.08 | 1 (reference) | 1 (reference) | ||
>0 and <1 cups/day | 1269 | 564 | 13,117.3 | 43.00 | 1.04 (0.92–1.18) | 0.497 | 1.04 (0.91–1.17) | 0.595 |
≥1 and <2 cups/day | 1460 | 664 | 15,030.2 | 44.18 | 1.07 (0.96–1.21) | 0.231 | 1.05 (0.93–1.19) | 0.447 |
≥2 cups/day | 1341 | 566 | 13,832.6 | 40.92 | 1.00 (0.89–1.13) | 0.970 | 0.98 (0.86–1.18) | 0.769 |
Total Cases | New-Onset ALF Cases | Person–Years | Incidence Rate per 1000 Person–Years | Unadjusted | Adjusted * | |||
---|---|---|---|---|---|---|---|---|
Coffee consumption | HR (95% CI) | p | HR (95% CI) | p | ||||
Without coffee consumption | 330 | 70 | 4775.0 | 14.66 | 1 (reference) | 1 (reference) | ||
>0 and <1 cups/day | 338 | 81 | 4755.1 | 17.03 | 1.20 (0.87–1.65) | 0.276 | 1.04 (0.73–1.49) | 0.820 |
≥1 and <2 cups/day | 351 | 57 | 5176.3 | 11.01 | 0.76 (0.53–1.07) | 0.115 | 0.80 (0.55–1.17) | 0.248 |
≥2 cups/day | 307 | 42 | 4655.7 | 9.02 | 0.62 (0.43–0.91) | 0.015 | 0.57 (0.37–0.90) | 0.014 |
Total Cases | New-Onset ALF Cases | Person–Years | Incidence Rate per 1000 Person–Years | Unadjusted | Adjusted * | |||
---|---|---|---|---|---|---|---|---|
Coffee consumption | HR (95% CI) | p | HR (95% CI) | p | ||||
Without coffee consumption | 330 | 70 | 4775.0 | 14.66 | 1 (reference) | 1 (reference) | ||
>0 and <1 cups/day | 338 | 81 | 4755.1 | 17.03 | 1.20 (0.87–1.65) | 0.276 | 1.04 (0.73–1.49) | 0.829 |
≥1 and <2 cups/day | 351 | 57 | 5176.3 | 11.01 | 0.76 (0.53–1.07) | 0.115 | 0.80 (0.55–1.17) | 0.245 |
≥2 and <3 cups/day | 141 | 19 | 2136.8 | 8.89 | 0.62 (0.37–1.02) | 0.060 | 0.51 (0.30–0.89) | 0.018 |
≥3 cups/day | 166 | 23 | 2518.9 | 9.13 | 0.63 (0.39–1.09) | 0.054 | 0.65 (0.38–1.12) | 0.119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-H.; Park, J.; Ahn, S.B. Different Associations of Coffee Consumption with the Risk of Incident Metabolic Dysfunction-Associated Steatotic Liver Disease and Advanced Liver Fibrosis. Nutrients 2024, 16, 140. https://doi.org/10.3390/nu16010140
Lee J-H, Park J, Ahn SB. Different Associations of Coffee Consumption with the Risk of Incident Metabolic Dysfunction-Associated Steatotic Liver Disease and Advanced Liver Fibrosis. Nutrients. 2024; 16(1):140. https://doi.org/10.3390/nu16010140
Chicago/Turabian StyleLee, Jun-Hyuk, JooYong Park, and Sang Bong Ahn. 2024. "Different Associations of Coffee Consumption with the Risk of Incident Metabolic Dysfunction-Associated Steatotic Liver Disease and Advanced Liver Fibrosis" Nutrients 16, no. 1: 140. https://doi.org/10.3390/nu16010140
APA StyleLee, J. -H., Park, J., & Ahn, S. B. (2024). Different Associations of Coffee Consumption with the Risk of Incident Metabolic Dysfunction-Associated Steatotic Liver Disease and Advanced Liver Fibrosis. Nutrients, 16(1), 140. https://doi.org/10.3390/nu16010140