Characterization and Exploration of the Neuroprotective Potential of Oat-Protein-Derived Peptides in PC12 Cells and Scopolamine-Treated Zebrafish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Oat Protein Isolates (OPI)
2.3. Ultrasound-Pretreated Enzymatic Hydrolysis of Oat Protein Isolates
2.4. Estimating the Degree of Hydrolysis (DH) and In Vitro Antioxidant Capacity of OPH
2.5. Cell Culturing and Treatments
2.5.1. Assessment of Viability and Quantification of Lactate Dehydrogenase
2.5.2. Nuclear-Morphology Analysis
2.5.3. Measurement of ROS Concentration
2.5.4. Assessing the Activity of CAT, SOD and GSH-px
2.6. RNA Isolation and Quantification by RT-qPCR
2.7. Identification of Peptides
2.8. Molecular Docking
2.9. Animal Housing and Treatments
2.10. T-Maze Testing
2.11. Determination of Biochemical Parameters in the Zebrafish Brain
2.12. RNA Isolation and Quantification by RT-qPCR
2.13. Statistical Analysis
3. Results and Discussion
3.1. Effect of Ultrasound Pretreatment on the Degree of Hydrolysis (DH) and Antioxidant Activities of OPH
3.2. Neuroprotective Effect of OPH in PC12 Cells
3.2.1. Effect of OPH on Cell Viability, LDH Release, and Nuclear Morphology
3.2.2. Effect of OPH on the Inhibition of ROS Generation in H2O2-Damaged Cells
3.2.3. Effect of OPH on Intracellular CAT, SOD and GSH-px Activities
3.2.4. Effect of OPH on Nrf2-Keap1/HO-1 mRNA Expression in H2O2 Induced PC12 Cells
3.3. OPH Peptides Sequence Identification
3.4. Interaction of Peptides with Keap1 Protein in a Molecular-Docking Simulation
3.5. Effects of HL-8, RW-9, and DF-10 Peptides on Zebrafish Behavior in T-Maze Testing
3.6. Effects of HL-8, RW-9, and DF-10 Peptides on Acetylcholinesterase Activity in the Zebrafish Brain
3.7. Effects of HL-8, RW-9, and DF-10 Peptides on the Levels of MDA, GSH, and T-AOC in the Zebrafish Brain
3.8. Effects of HL-8, RW-9, and DF-10 Peptides on the Levels of Proinflammatory Cytokines in the Zebrafish Brain
3.9. Effects of HL-8, RW-9, and DF-10 Peptides on mRNA Expression of Nrf2, Bdnf and Erg-1 in Zebrafish Brain
3.10. Correlation Analysis of Behavioral, Genetic and Biochemical Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Q.; Liao, C.; Ge, F.; Ao, J.; Liu, T. Acetylcholine bidirectionally regulates learning and memory. J. Neurorestoratol. 2022, 10, 100002. [Google Scholar] [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L. Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Park, C.H.; Park, S.K.; Seung, T.W.; Kang, J.Y.; Ha, J.S.; Lee, D.S.; Lee, U.; Ki, D.O.; Heo, H.J. Ginsenoside Re Ameliorates Brain Insulin Resistance and Cognitive Dysfunction in High Fat Diet-Induced C57BL/6 Mice. J. Agric. Food Chem. 2017, 65, 2719–2729. [Google Scholar] [CrossRef] [PubMed]
- Foret, M.K.; Carmo, S.D.; Lincon, R.; Greene, L.E.; Zhang, W.; Cuello, A.C.; Cosa, G. Effect of antioxidant supplements on lipid peroxidation levels in primary cortical neuron cultures. Free Radic. Biol. Med. 2019, 130, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Giudetti, A.M.; Salzet, M.; Cassano, T. Editorial Oxidative Stress in Aging Brain: Nutritional and Pharmacological Interventions for Neurodegenerative Disorders. Hindawi Oxidative Med. Cell. Longev. 2018, 2018, 3416028. [Google Scholar] [CrossRef]
- Yuan, J.; Amin, P.; Ofengeim, D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat. Rev. Neurosci. 2019, 20, 19–33. [Google Scholar] [CrossRef]
- Simpson, D.S.A. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef]
- Lee, J.; Song, K.; Huh, E.; Sook, M.; Shik, Y. Redox Biology Neuroprotection against 6-OHDA toxicity in PC12 cells and mice through the Nrf2 pathway by a sesquiterpenoid from Tussilago farfara. Redox Biol. 2018, 18, 6–15. [Google Scholar] [CrossRef]
- Buendia, I.; Michalska, P.; Navarro, E.; Gameiro, I.; Egea, J.; León, R. Pharmacology & Therapeutics Nrf2–ARE pathway: An emerging target against oxidative stress and neuroin fl ammation in neurodegenerative diseases. Pharmacol. Ther. 2016, 157, 84–104. [Google Scholar] [CrossRef]
- Widowati, M.W.; Prahastuti, S.; Hidayat, M.; Hasiana, S.T.; Wahyudianingsih, R.; Afifah, E.; Kusuma, H.S.W.; Rizal, R.; Subangkit, M. Protective Effect of Ethanolic Extract of Jati Belanda (Guazuma ulmifolia L.) by Inhibiting Oxidative Stress and Inflammatory Processes in Cisplatin-induced Nephrotoxicity in Rats. Pak. Vet. J. 2022, 42, 376–382. [Google Scholar]
- Bae, I.K.; Kim, K.J.; Choi, J.S.; Choi, Y.I.; Ha, J.H. Quality properties and storage characteristics of pyeonyuk with different additional levels of turmeric powder. Food Sci. Anim. Resour. 2019, 39, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Pokorny, J.P. Are natural antioxidants better-and safer-than synthetic antioxidants? Eur. J. Lipid Sci. Technol. 2007, 109, 629–642. [Google Scholar] [CrossRef]
- Hussein, M.M.A.; Gaafar, S.F. Histidine-Dipeptides in Relation to Diabetes and Obesity. Int. J. Vet. Sci. 2022, 11, 221–228. [Google Scholar]
- Kiliç, A.; Gökhan, K.D.; Sözmen, A.; Uysal, E.Y. Liver Histology and Biochemistry of Exposed Newborn and Infant Rats with Experimental Aflatoxicosis. Pak. Vet. J. 2022, 42, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Dou, B.; Pugh, J.E.; Lett, A.M.; Frost, G.S. The impact of starchy food structure on postprandial glycemic response and appetite: A systematic review with meta-analysis of randomized crossover trials. Am. J. Clin. Nutr. 2021, 114, 472–487. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, M.; Lin, L.; Wang, J.; Waterhouse, D.S.; Dong, Y.; Zhuang, M.; Su, G. Identification of antioxidative peptides from defatted walnut meal hydrolysate with potential for improving learning and memory. Food Res. Int. 2015, 78, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.K.; Lee, S.J.; Hwang, J.W.; Kin, C.G.; Choi, D.K.; Lim, B.O.; Kanh, H.; Moon, S.O.; Jeon, B.T.; Park, P.J. In vitro investigation on antioxidative effect of Inonotus obliquus extracts against oxidative stress on PC12 cells. J. Appl. Biol. Chem. 2011, 54, 112–117. [Google Scholar] [CrossRef]
- Sudhakar, S.; Nazeer, R.A. Structural characterization of an Indian squid antioxidant peptide and its protective effect against cellular reactive oxygen species. J. Funct. Foods 2015, 14, 502–512. [Google Scholar] [CrossRef]
- Asala, C.A.T.M.; Rowaiye, A.B.; Salami, S.A.; Baba-onoja, M.; Abatan, M.O.; Ocheja, B.O.; Ada, A.G.; Ogu, A.M. The Antioxidant and Hematopoietic Effects of the Methanolic Extract Fractions of Ocimum basilicum in Acetaminophen-Induced Albino Rats. Int. J. Vet. Sci. 2022, 11, 289–294. [Google Scholar]
- Majhi, S. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool. Ultrason. Sonochem. 2021, 77, 105665. [Google Scholar] [CrossRef]
- Li, W.; Chen, W.; Ma, H.; Wu, D.; Zhang, Z.; Yang, Y. Ultrasonics Sonochemistry Structural characterization and angiotensin-converting enzyme (ACE) inhibitory mechanism of Stropharia rugosoannulata mushroom peptides prepared by ultrasound. Ultrason. Sonochem. 2022, 88, 106074. [Google Scholar] [CrossRef] [PubMed]
- Rafique, H.; Dong, R.; Wang, X.; Alim, A.; Aadil, R.M.; Li, L.; Zou, L.; Hu, X. Dietary-Nutraceutical Properties of Oat Protein and Peptides. Front. Nutr. 2022, 9, 950400. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Gu, Z.; Zhu, Z.; Yi, J.; Ohm, J.B.; Chen, B.; Rao, J. Impact of defatting treatment and oat varieties on structural, functional properties, and aromatic profile of oat protein. Food Hydrocoll. 2021, 112, 106368. [Google Scholar] [CrossRef]
- You, L.; Zhao, M.; Regenstein, J.M.; Ren, J. In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion. Food Chem. 2011, 124, 188–194. [Google Scholar] [CrossRef]
- Esfandi, R.; Willmore, W.G.; Tsopmo, A. Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chem. 2019, 279, 49–57. [Google Scholar] [CrossRef]
- Ma, S.; Liu, H.; Jiao, H.; Wang, L.; Chen, L.; Liang, J.; Zhao, M.; Zhang, X. Neuroprotective effect of ginkgolide K on glutamate-induced cytotoxicity in PC12 cells via inhibition of ROS generation and Ca2+ influx. Neurotoxicology 2012, 33, 59–69. [Google Scholar] [CrossRef]
- Hroudová, J.; Singh, N.; Fišar, Z. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to alzheimer’s disease. Biomed Res. Int. 2014, 2014, 175062. [Google Scholar] [CrossRef]
- Vlieghe, P.; Lisowski, V.; Martinez, J.; Khrestchatisky, M. Synthetic therapeutic peptides: Science and market. Drug Discov. Today 2010, 15, 40–56. [Google Scholar] [CrossRef]
- Wang, S.; Su, G.; Zhang, Q.; Zhao, T.; Liu, Y.; Zheng, L.; Zhao, M. Walnut (Juglans regia) Peptides Reverse Sleep Deprivation-Induced Memory Impairment in Rat via Alleviating Oxidative Stress. J. Agric. Food Chem. 2018, 66, 10617–10627. [Google Scholar] [CrossRef]
- Zhao, T.; Su, G.; Wang, S.; Zhang, Q.; Zhang, J.; Zheng, L.; Sun, B.; Zhao, M. Neuroprotective Effects of Acetylcholinesterase Inhibitory Peptides from Anchovy (Coilia mystus) against Glutamate-Induced Toxicity in PC12 Cells. J. Agric. Food Chem. 2017, 65, 11192–11201. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.; Jia, J.; Kuang, C.; Yang, H. Effect of ultrasonic pretreatment on whey protein hydrolysis by alcalase: Thermodynamic parameters, physicochemical properties and bioactivities. Process Biochem. 2018, 67, 46–54. [Google Scholar] [CrossRef]
- Jia, J.; Ma, H.; Zhao, W.; Wang, Z.; Tian, W.; Luo, L.; He, R. The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein. Food Chem. 2010, 119, 336–342. [Google Scholar] [CrossRef]
- Wang, B.; Ma, H.; Jia, J.; He, R.; Luo, L.; Pan, Z. Ultrasonic Treatment Effect on Enzymolysis Kinetics and Activities of ACE-Inhibitory Peptides from Oat-Isolated Protein. Food Biophys. 2015, 10, 244–252. [Google Scholar] [CrossRef]
- He, L.; Gao, Y.; Wang, X.; Han, L.; Yu, Q.; Shi, H.; Song, R. Ultrasonics Sonochemistry Ultrasonication promotes extraction of antioxidant peptides from oxhide gelatin by modifying collagen molecule structure. Ultrason. Sonochem. 2021, 78, 105738. [Google Scholar] [CrossRef] [PubMed]
- Resendiz-Vazquez, J.A.; Ullao, J.A.; Urias-Silvas, J.E.; Bautista-Rosales, P.U.; Ramirez-Ramirez, J.C.; Rosas-Ullao, P.; Gonzalez-Torres, L. Effect of high-intensity ultrasound on the technofunctional properties and structure of jackfruit (Artocarpus heterophyllus) seed protein isolate. Ultrason. Sonochem. 2017, 37, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.; Li, S.; Oladejo, A.O.; Ruan, S.; Wang, Y.; Huang, S.; Ma, H. Effects of ultrasound pretreatment with different frequencies and working modes on the enzymolysis and the structure characterization of rice protein. Ultrason. Sonochem. 2017, 38, 19–28. [Google Scholar] [CrossRef]
- Daskaya-Dikmen, C.; Yucetepe, A.; Karbancioglu-Guler, F.; Daskaya, H.; Ozcelik, B. Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients 2017, 9, 316. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, L.; Li, X.; Liu, C.; Sun, X.; Wu, L.; Li, T.; Yang, H.; Chen, J. Potential molecular mechanisms mediating the protective effects of tetrahydroxystilbene glucoside on MPP+-induced PC12 cell apoptosis. Mol. Cell. Biochem. 2017, 436, 203–213. [Google Scholar] [CrossRef]
- Ott, M.; Gogvadze, V.; Orrenius, S. Mitochondria, oxidative stress and cell death. Apoptosis 2007, 12, 913–922. [Google Scholar] [CrossRef]
- Tang, X.; Ren, Y.; Zhou, C.; Yang, C.; Gu, H. Neurochemistry International Hydrogen sulfide prevents formaldehyde-induced neurotoxicity to PC12 cells by attenuation of mitochondrial dysfunction and pro-apoptotic potential. Neurochem. Int. 2012, 61, 16–24. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Z.; He, J.; Zhang, Y.; Zhang, T.; Jiang, Y. Function Anti-oxidative and anti-apoptosis effects of egg. Food Funct. 2014, 5, 3179–3188. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.Y.; Snyder, P.J.; Wu, W.C.; Zhang, M.; Echeverria, A.; Alber, J. Pathophysiologic relationship between Alzheimer’s disease, cerebrovascular disease, and cardiovascular risk: A review and synthesis. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2017, 7, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Chen, M.; Song, D.; Li, X.; Yang, Y.; Zheng, Z.; Li, Y.; Liu, Y.; Yu, L.; Hua, Z.; et al. Apios americana Medik flowers polysaccharide (AFP-2) attenuates H2O2 induced neurotoxicity in PC12 cells. Int. J. Biol. Macromol. 2019, 123, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.R.; Chang, C.F.; Lai, J.H.; Wu, J.C.C.; Chen, Y.H.; Kang, S.J.; Hoffer, B.J.; Tweedie, D.; Luo, W.; Greig, N.H. Pomalidomide ameliorates H2O2-induced oxidative stress injury and cell death in rat primary cortical neuronal cultures by inducing anti-oxidative and anti-apoptosis effects. Int. J. Mol. Sci. 2018, 19, 3252. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.C.; Zhao, J.; Liu, Y.T.; Liu, T.; Tao, M.M.; You, Q.D.; Jiang, Z.Y. CPUY192018, a potent inhibitor of the Keap1-Nrf2 protein-protein interaction, alleviates renal inflammation in mice by restricting oxidative stress and NF-κB activation. Redox Biol. 2019, 26, 101266. [Google Scholar] [CrossRef]
- Ren, B.; Yuan, T.; Diao, Z.; Zhang, C.; Liu, Z.; Liu, X. Protective effects of sesamol on systemic oxidative stress-induced cognitive impairments: Via regulation of Nrf2/Keap1 pathway. Food Funct. 2018, 9, 5912–5924. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Liu, C.; Fang, L.; Lu, H.; Wang, J.; Gao, Y.; Gabbianelli, R.; Min, W. Walnut-Derived Peptide Activates PINK1 via the NRF2/KEAP1/HO-1 Pathway, Promotes Mitophagy, and Alleviates Learning and Memory Impairments in a Mice Model. J. Agric. Food Chem. 2021, 69, 2758–2772. [Google Scholar] [CrossRef]
- Mustafa, O.; Gu, K.; Esra, C. Antioxidant Activity/Capacity Measurement. 1. Classi fication, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Nie, S.; Ding, L.; Wang, L.; Liu, J.; Liu, W.; Zhang, T. Direct inhibition of Keap1–Nrf2 interaction by egg-derived peptides DKK and DDW revealed by molecular docking and fluorescence polarization. RSC Adv. 2017, 7, 34963–34971. [Google Scholar] [CrossRef]
- Wang, S.; Su, G.; Zhang, X.; Song, G.; Zhang, L.; Zheng, L.; Zhao, M. Characterization and Exploration of Potential Neuroprotective Peptides in Walnut (Juglans regia) Protein Hydrolysate against Cholinergic System Damage and Oxidative Stress in Scopolamine-Induced Cognitive and Memory Impairment Mice and Zebrafish. J. Agric. Food Chem. 2021, 69, 2773–2783. [Google Scholar] [CrossRef]
- Boiangiu, R.S.; Mihasan, M.; Gorgan, D.L.; Hritcu, L.; Stache, B.A. Antioxidant Effects of Cotinine and 6-Hydroxy-L-Nicotine in Scopolamine-Induced Zebrafish (Danio rerio) Model of Alzheimer’s Disease. Antioxidants 2021, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Coradini, K.; de-Andrade, D.F.; Altenhofen, S.; Reolon, G.K.; Nery, L.R.; Silva, N.E.; Roca-Vianna, M.R.M.; Bonan, C.D.; Beck, R.E.R. Free and nanoencapsulated curcumin prevents scopolamine-induced cognitive impairment in adult zebrafish. J. Drug Deliv. Sci. Technol. 2021, 66, 102781. [Google Scholar] [CrossRef]
- Willcox, D.C.; Scapagnini, G.; Willcox, B.J.; Science, H. Healthy aging diets other than the Mediterranean: A Focus on the Okinawan Diet. Mech. Ageing Dev. 2014, 136, 148–162. [Google Scholar] [CrossRef] [PubMed]
- Schliebs, R.; Arendt, T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 2011, 221, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Schliebs, R.; Arendt, T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural Transm. 2006, 113, 1625–1644. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.; Singh, D. Acetylcholinesterase inhibitors as Alzheimer therapy: From nerve toxins to neuroprotection. Eur. J. Med. Chem. 2013, 70, 165–188. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K. Cholinesterase inhibitors as Alzheimer’s therapeutics (Review). Mol. Med. Rep. 2019, 20, 1479–1487. [Google Scholar] [CrossRef]
- Capatina, L.; Boiangiu, R.S.; Dumitru, G.; Napoli, E.M.; Ruberto, G.; Hritcu, L. Todirascu-Ciornea E Rosmarinus officinalis Essential Oil Improves Scopolamine-Induced Neurobehavioral Changes via Restoration of Cholinergic Function and Brain Antioxidant Status in Zebrafish (Danio rerio). Antioxidants 2020, 9, 62. [Google Scholar] [CrossRef]
- Salim, S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [Google Scholar] [CrossRef]
- Tu, S.; Okamoto, S.; Lipton, S.A.; Xu, H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol. Neurodegener. 2014, 9, 48. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Boyd-kimball, D. Oxidative Stress, Amyloid-β Peptide, and Altered Key Molecular Pathways in the Pathogenesis and Progression of Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 62, 1345–1367. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, L.; Zhao, T.; Zhang, Q.; Liu, Y.; Sun, B.; Su, G.; Zhao, M. Inhibitory Effects of Walnut (Juglans regia) Peptides on Neuroin fl ammation and Oxidative Stress in Lipopolysaccharide-Induced Cognitive Impairment Mice. J. Agric. Food Chem. 2020, 68, 2381–2392. [Google Scholar] [CrossRef] [PubMed]
- Prabha, N.; Guru, A.; Harikrishnan, R.; Gatashesh, M.; Hataleh, A.A.; Juliet, A.; Arockiaraj, J. Neuroprotective and antioxidant capability of RW20 peptide from histone acetyltransferases caused by oxidative stress-induced neurotoxicity in in vivo zebrafish larval model. J. King Saud Univ.-Sci. 2022, 34, 101861. [Google Scholar] [CrossRef]
- Zheng, L.; Zhao, Y.; Dong, H.; Su, G.; Zhao, M. Structure–activity relationship of antioxidant dipeptides: Dominant role of Tyr, Trp, Cys and Met residues. J. Funct. Foods 2016, 21, 485–496. [Google Scholar] [CrossRef]
- Han, Z.; Shen, F.; He, Y.; Degos, V.; Camus, M.; Maze, M.; Young, W.; Su, H. Activation of a-7 Nicotinic Acetylcholine Receptor Reduces Ischemic Stroke Injury through Reduction of Pro-Inflammatory Macrophages and Oxidative Stress. PLoS ONE 2014, 9, e0105711. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.; Ryu, B.; Kim, S. Purification of novel anti-inflammatory peptides from enzymatic hydrolysate of the edible microalgal Spirulina maxima. J. Funct. Foods 2013, 5, 1336–1346. [Google Scholar] [CrossRef]
- Kim, E.; Kim, Y.S.; Hwang, J.W.; Kang, S.E.; Choi, D.K.; Lee, K.H.; Lee, J.S.; Moon, S.H.; Jeon, B.T.; Park, P.J. Purification of a novel nitric oxide inhibitory peptide derived from enzymatic hydrolysates of Mytilus coruscus. Fish Shellfish Immunol. 2013, 34, 1416–1420. [Google Scholar] [CrossRef]
- Lee, S.; Kim, E.K.; Kim, Y.S.; Hwang, J.W.; Lee, K.H.; Choi, D.K.; Kang, H.; Moon, S.H.; Jeon, B.T.; Park, P.J. Purification and characterization of a nitric oxide inhibitory peptide from Ruditapes philippinarum. Food Chem. Toxicol. 2012, 50, 1660–1666. [Google Scholar] [CrossRef]
- Hwang, J.; Lee, S.J.; Kim, Y.S.; Kim, E.K.; Ahn, C.B.; Jeon, Y.J.; Moon, S.H.; Jeon, B.T.; Park, P.J. Purification and characterization of a novel peptide with inhibitory effects on colitis induced mice by dextran sulfate sodium from enzymatic hydrolysates of Crassostrea gigas. Fish Shellfish Immunol. 2012, 33, 993–999. [Google Scholar] [CrossRef]
- Bamdad, F.; Bark, S.; Kwon, C.H.; Suh, J.W.; Sunwoo, H. Anti-Inflammatory and Antioxidant Properties of Peptides Released from β-Lactoglobulin by High Hydrostatic Pressure-Assisted Enzymatic Hydrolysis. Molecules 2017, 22, 949. [Google Scholar] [CrossRef]
- Bellezza, I.; Giambanco, I.; Minelli, A.; Donato, R. Nrf2-Keap1 signaling in oxidative and reductive stress. BBA-Mol. Cell Res. 2018, 1865, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, J.W.; Niture, S.K.; Jaiswal, A.K. Nrf2: INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 2009, 47, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Wuu, J.; Mufson, E.J.; Fahnestock, M. Precursor form of brain-derived neurotrophic factor and mature brain-derived neurotrophic factor are decreased in the pre-clinical stages of Alzheimer’s disease. J. Neurochem. 2005, 93, 1412–1421. [Google Scholar] [CrossRef] [PubMed]
- Barco, A.; Bailey, C.H.; Kandel, E.R. Common molecular mechanisms in explicit and implicit memory. J. Neurochem. 2006, 97, 1520–1533. [Google Scholar] [CrossRef]
- Lesuis, S.L.; Hoeijmakers, L.; Korosi, A.; de Rooij, S.R.; Swaab, D.S.; Kessels, H.W.; Lucassen, P.J.; Krugers, H.J. Vulnerability and resilience to Alzheimer’s disease: Early life conditions modulate neuropathology and determine cognitive reserve. Alzheimer’s Res. Ther. 2018, 10, 95. [Google Scholar] [CrossRef]
- Neurochemistry, J.O.F. Transcriptional co-repressor SIN3A silencing rescues decline in memory consolidation during scopolamine-induced amnesia. J. Neurochem. 2018, 145, 204–216. [Google Scholar] [CrossRef]
- Lai, S.; Chen, J.H.; Lin, H.Y.; Liu, Y.S.; Tsai, C.F.; Chang, P.C.; Lu, D.Y.; Lin, C. Regulatory Effects of Neuroinflammatory Responses through Brain-Derived Neurotrophic Factor Signaling in Microglial Cells. Mol. Neurobiol. 2018, 55, 7487–7499. [Google Scholar] [CrossRef]
Peptide Sequence | Molecular Mass (Da) | NCBI Accession Number (a) | Peptide Ranker Score (b) | Peak Intensity | Binding Affinity (kcal/mol) |
---|---|---|---|---|---|
ADHPFLFL | 958.49 | AAD31175 | 0.968736 | 3.9672 × 107 | + |
APSKDAPMF | 962.45 | ANQ69423 | 0.851488 | 4.553 × 108 | −8 |
APSKDAPMFVM | 1192.56 | QBA82502 | 0.8609 | 1.5592 × 109 | −5.1 |
DFGWGRPVFM | 1210.55 | QDC27805 | 0.954285 | 4.4557 × 107 | + |
DFVADHPFLF (DF-10) | 1206.57 | AAD31175 | 0.923659 | 1.5872 × 109 | −10.1 |
DFVADHPFLFL | 1319.65 | AAD31175 | 0.934308 | 6.1868 × 108 | + |
DHHDRFMPF | 1200.51 | AEL03787 | 0.90309 | 4.4413 × 108 | + |
FIDNIFRF | 1070.55 | ABH02581 | 0.956105 | 5.3257 × 107 | −8.9 |
FNPDKSPAYPIRF | 1550.78 | AAF80276 | 0.883611 | 1.7912 × 109 | + |
FSLAPLVPRL | 1111.67 | AAA86837 | 0.875095 | 5.1651 × 107 | −8.2 |
GDGIIYPWETFRGL | 1622.80 | G1JSL4.1 | 0.883918 | 4.4366 × 107 | --- |
GWVANKGEWILL | 1384.75 | G1JSL4.1 | 0.845169 | 1.2307 × 108 | + |
HGQNFPIL (HL-8) | 924.48 | CAA54152 | 0.811976 | 1.4818 × 109 | −10.1 |
IDFVADHPFLFL | 1432.73 | AAD31175 | 0.908569 | 4.399 × 108 | --- |
KDFPLTWPW | 1188.59 | AFJ91164 | 0.95263 | 1.3177 × 108 | −8.5 |
PGGGVRLDPGKSWAL | 1508.81 | AAB02259 | 0.830548 | 1.2107 × 108 | --- |
QGLQFLKPF | 1076.60 | P12615 | 0.875919 | 9.3927 × 108 | −8.6 |
RDFPITWPW (RW-9) | 1216.60 | P27919 | 0.921925 | 3.7349 × 109 | −10.0 |
SGVFTPKF | 881.46 | CAA54152 | 0.841774 | 1.6579109 | −8.5 |
SIQHELGGFF | 1133.55 | UKZ80143 | 0.814202 | 8.4774 × 108 | −2.7 |
VADHPFLFL | 1057.55 | AAD31175 | 0.929798 | 3.7088 × 108 | −9.6 |
VWPGALPGGGVR | 1164.64 | AAB02259 | 0.83325 | 3.4743 × 107 | −9.8 |
LIPFPRLH | 991.59 | QBA82506 | 0.809332 | 1.4957 × 108 | −8.7 |
NLIPFPRL | 968.58 | QBA82506 | 0.893781 | 3.4329 × 107 | −7.7 |
NLIPFPRLH | 1105.63 | QBA82506 | 0.796125 | 3.6755 × 108 | −7.7 |
Parameters | Keap1–DFVADHPFLF | Keap1–HGQNFPIL | Keap1–RDFPITWPW |
---|---|---|---|
hydrogen bond | SER555, LEU557, VAL463, VAL418, VAL418, VAL465, VAL512 | VAL465-GLN3, VAL512, VAL608, THR560, VAL606, ASN4-PHE5, GLY367, ILE559, ILE559, | SER602, ARG415, ASN414, SER363, ASN382, ILE559, ILE559, VAL369, VAL420 |
carbon hydrogen bond | ARG415, ARG415, GLY509, GLY509, Gly462, GLY511, GLY464, GLY417, GLY417, GLY367 | SER508, ARG415, GLY364, GLY464, Ala366, GLY558, ALA607 | ARG415, SER365, GLY462, GLY509, AL510, GLY558, VAL606, VAL418, CYS368, VAL369 |
π–alkyl | CYS368, VAL420 | ALA556, CYS513, VAL514, VAL467 | |
alkyl | CYS513, VAL514 | ALA556, VAL512, ALA607 | |
π–π stacked | TYR525 | ||
π–donor | SER508 | VAL514, VAL467 |
Treatment Group | Escape Latency (S) | Total Distance (mm) | Target Time (S) |
---|---|---|---|
NC | 6.63 ± 2.06 d | 1035.89 ± 117.86 d | 173.36 ± 2.1 a |
Model | 85.38 ± 18.52 a | 11,283.03 ± 2138.72 a | 94.61 ± 18.5 d |
HL-8 | 16.72 ± 2.11 bc | 1728.3987 ± 205.5 cd | 163.27 ± 2.11 bc |
RW-9 | 9.08 ± 2.40 cd | 1249.01 ± 213.9 d | 170.91 ± 2.4 ab |
DF-10 | 21.09 ± 5.58 b | 3319.97 ± 103.8 b | 158.90 ± 5.6 c |
Piracetam | 16.53 ± 4.07 bc | 2374.7217 ± 549.6 bc | 163.46 ± 4.1 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rafique, H.; Hu, X.; Ren, T.; Dong, R.; Aadil, R.M.; Zou, L.; Sharif, M.K.; Li, L. Characterization and Exploration of the Neuroprotective Potential of Oat-Protein-Derived Peptides in PC12 Cells and Scopolamine-Treated Zebrafish. Nutrients 2024, 16, 117. https://doi.org/10.3390/nu16010117
Rafique H, Hu X, Ren T, Dong R, Aadil RM, Zou L, Sharif MK, Li L. Characterization and Exploration of the Neuroprotective Potential of Oat-Protein-Derived Peptides in PC12 Cells and Scopolamine-Treated Zebrafish. Nutrients. 2024; 16(1):117. https://doi.org/10.3390/nu16010117
Chicago/Turabian StyleRafique, Hamad, Xinzhong Hu, Tian Ren, Rui Dong, Rana Muhammad Aadil, Liang Zou, Mian Kamran Sharif, and Lu Li. 2024. "Characterization and Exploration of the Neuroprotective Potential of Oat-Protein-Derived Peptides in PC12 Cells and Scopolamine-Treated Zebrafish" Nutrients 16, no. 1: 117. https://doi.org/10.3390/nu16010117
APA StyleRafique, H., Hu, X., Ren, T., Dong, R., Aadil, R. M., Zou, L., Sharif, M. K., & Li, L. (2024). Characterization and Exploration of the Neuroprotective Potential of Oat-Protein-Derived Peptides in PC12 Cells and Scopolamine-Treated Zebrafish. Nutrients, 16(1), 117. https://doi.org/10.3390/nu16010117