Association of 24 h Behavior Rhythm with Non-Alcoholic Fatty Liver Disease among American Adults with Overweight/Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Activity–Rest Rhythm Indices
2.3. Feeding–Fasting Rhythm Indices
2.4. NAFLD Assessment
2.5. Covariates
2.6. Statistical Analyses
2.7. Sensitivity Analyses
3. Results
3.1. Baseline Characteristics
3.2. Association of 24 h Behavior Rhythm Indices with NAFLD among Participants with Overweight/Obesity
3.3. Association of 24 h Behavior Rhythm Indices with NAFLD among Participants with Obesity
3.4. Sensitivity Analyses
4. Discussion
4.1. Summary of This Study
4.2. Activity–Rest Rhythm and NAFLD
4.3. Feeding–Fasting Rhythm and NAFLD
4.4. Strengths and Limitations
4.5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Seo, Y.A.; Park, S.K. Serum selenium and non-alcoholic fatty liver disease (NAFLD) in U.S. adults: National Health and Nutrition Examination Survey (NHANES) 2011–2016. Environ. Res. 2021, 197, 111190. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; De, A.; Chowdhury, A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl. Gastroenterol. Hepatol. 2020, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Thosar, S.S.; Butler, M.P.; Shea, S.A. Role of the circadian system in cardiovascular disease. J. Clin. Investig. 2018, 128, 2157–2167. [Google Scholar] [CrossRef]
- Takahashi, J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 2017, 18, 164–179. [Google Scholar] [CrossRef]
- Schroeder, A.M.; Colwell, C.S. How to fix a broken clock. Trends Pharmacol. Sci. 2013, 34, 605–619. [Google Scholar] [CrossRef] [PubMed]
- Ruan, W.; Yuan, X.; Eltzschig, H.K. Circadian rhythm as a therapeutic target. Nat. Rev. Drug. Discov. 2021, 20, 287–307. [Google Scholar] [CrossRef] [PubMed]
- Scheer, F.A.; Hilton, M.F.; Mantzoros, C.S.; Shea, S.A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. USA 2009, 106, 4453–4458. [Google Scholar] [CrossRef]
- Li, J.; Vungarala, S.; Somers, V.K.; Di, J.; Lopez-Jimenez, F.; Covassin, N. Rest-Activity Rhythm Is Associated With Obesity Phenotypes: A Cross-Sectional Analysis. Front. Endocrinol. 2022, 13, 907360. [Google Scholar] [CrossRef]
- Xu, Y.; Su, S.; McCall, W.V.; Isales, C.; Snieder, H.; Wang, X. Rest-activity circadian rhythm and impaired glucose tolerance in adults: An analysis of NHANES 2011–2014. BMJ Open. Diabetes Res. Care 2022, 10, e002632. [Google Scholar] [CrossRef]
- Xiao, Q.; Matthews, C.E.; Playdon, M.; Bauer, C. The association between rest-activity rhythms and glycemic markers: The US National Health and Nutrition Examination Survey, 2011–2014. Sleep 2022, 45, zsab291. [Google Scholar] [CrossRef]
- Xu, Y.; Su, S.; McCall, W.V.; Wang, X. Blunted rest-activity rhythm is associated with increased white blood-cell-based inflammatory markers in adults: An analysis from NHANES 2011–2014. Chronobiol. Int. 2022, 39, 895–902. [Google Scholar] [CrossRef]
- Hatori, M.; Vollmers, C.; Zarrinpar, A.; DiTacchio, L.; Bushong, E.A.; Gill, S.; Leblanc, M.; Chaix, A.; Joens, M.; Fitzpatrick, J.A.; et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell. Metab. 2012, 15, 848–860. [Google Scholar] [CrossRef]
- Chaix, A.; Zarrinpar, A.; Miu, P.; Panda, S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell. Metab. 2014, 20, 991–1005. [Google Scholar] [CrossRef]
- Takaesu, Y. Circadian rhythm in bipolar disorder: A review of the literature. Psychiatry Clin. Neurosci. 2018, 72, 673–682. [Google Scholar] [CrossRef]
- Akhavan Rezayat, A.; Ghasemi Nour, M.; Bondarsahebi, Y.; Hozhabrossadati, S.A.; Amirkhanlou, F.; Akhavan Rezayat, S.; Kiani, M.; Imani, B. The effects of melatonin therapy on the treatment of patients with Non-alcoholic steatohepatitis: A systematic review and Meta-analysis on clinical trial studies. Eur. J. Pharmacol. 2021, 905, 174154. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Z.; Jing, H.; Fu, W.; Yuan, M.; Xia, W.; Cai, L.; Gan, X.; Chen, Y.; Zou, M.; et al. SAK-HV Triggered a Short-period Lipid-lowering Biotherapy Based on the Energy Model of Liver Proliferation via a Novel Pathway. Theranostics 2017, 7, 1749–1769. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Tian, Z.; Tian, W.; Song, Y.; Qi, G.; Qi, J.; Sun, C. Association of rest-activity circadian rhythm with chronic respiratory diseases, a cross-section survey from NHANES 2011–2014. Respir. Med. 2023, 209, 107147. [Google Scholar] [CrossRef]
- McHill, A.W.; Phillips, A.J.; Czeisler, C.A.; Keating, L.; Yee, K.; Barger, L.K.; Garaulet, M.; Scheer, F.A.; Klerman, E.B. Later circadian timing of food intake is associated with increased body fat. Am. J. Clin. Nutr. 2017, 106, 1213–1219. [Google Scholar] [CrossRef] [PubMed]
- Hadizadeh, F.; Faghihimani, E.; Adibi, P. Nonalcoholic fatty liver disease: Diagnostic biomarkers. World J. Gastrointest. Pathophysiol. 2017, 8, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.R.; Kim, D.; Vazquez-Montesino, L.M.; Escober, J.A.; Li, A.A.; Tighe, S.P.; Fernandes, C.T.; Cholankeril, G.; Ahmed, A. Diet quality and its association with nonalcoholic fatty liver disease and all-cause and cause-specific mortality. Liver Int. 2020, 40, 815–824. [Google Scholar] [CrossRef]
- Ghodsian, N.; Abner, E.; Emdin, C.A.; Gobeil, E.; Taba, N.; Haas, M.E.; Perrot, N.; Manikpurage, H.D.; Gagnon, E.; Bourgault, J.; et al. Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. Cell. Rep. Med. 2021, 2, 100437. [Google Scholar] [CrossRef] [PubMed]
- Drummen, M.; Tischmann, L.; Gatta-Cherifi, B.; Raben, A.; Adam, T.; Westerterp-Plantenga, M.S. Reproducibility and associations with obesity and insulin resistance of circadian-rhythm parameters in free-living vs. controlled conditions during the PREVIEW lifestyle study. Int. J. Obes. 2021, 45, 2038–2047. [Google Scholar] [CrossRef]
- Smagula, S.F.; Zhang, G.; Gujral, S.; Covassin, N.; Li, J.; Taylor, W.D.; Reynolds, C.F., 3rd; Krafty, R.T. Association of 24-Hour Activity Pattern Phenotypes with Depression Symptoms and Cognitive Performance in Aging. JAMA Psychiatry 2022, 79, 1023–1031. [Google Scholar] [CrossRef]
- Li, Y.; Ma, J.; Yao, K.; Su, W.; Tan, B.; Wu, X.; Huang, X.; Li, T.; Yin, Y.; Tosini, G.; et al. Circadian rhythms and obesity: Timekeeping governs lipid metabolism. J. Pineal Res. 2020, 69, e12682. [Google Scholar] [CrossRef]
- Hoopes, E.K.; Witman, M.A.; D’Agata, M.N.; Berube, F.R.; Brewer, B.; Malone, S.K.; Grandner, M.A.; Patterson, F. Rest-activity rhythms in emerging adults: Implications for cardiometabolic health. Chronobiol. Int. 2021, 38, 543–556. [Google Scholar] [CrossRef]
- Sohail, S.; Yu, L.; Bennett, D.A.; Buchman, A.S.; Lim, A.S. Irregular 24-hour activity rhythms and the metabolic syndrome in older adults. Chronobiol. Int. 2015, 32, 802–813. [Google Scholar] [CrossRef]
- Li, H.; Yu, X.H.; Ou, X.; Ouyang, X.P.; Tang, C.K. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog. Lipid Res. 2021, 83, 101109. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Pan, X.; Luo, J.; Xiao, X.; Li, J.; Bestman, P.L.; Luo, M. Association of Inflammatory Cytokines with Non-Alcoholic Fatty Liver Disease. Front. Immunol. 2022, 13, 880298. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.W.; Yun, K.E.; Jung, H.S.; Chang, Y.; Choi, E.S.; Kwon, M.J.; Lee, E.H.; Woo, E.J.; Kim, N.H.; Shin, H.; et al. Sleep duration and quality in relation to non-alcoholic fatty liver disease in middle-aged workers and their spouses. J. Hepatol. 2013, 59, 351–357. [Google Scholar] [CrossRef]
- Marin-Alejandre, B.A.; Abete, I.; Cantero, I.; Riezu-Boj, J.I.; Milagro, F.I.; Monreal, J.I.; Elorz, M.; Herrero, J.I.; Benito-Boillos, A.; Quiroga, J.; et al. Association between Sleep Disturbances and Liver Status in Obese Subjects with Nonalcoholic Fatty Liver Disease: A Comparison with Healthy Controls. Nutrients 2019, 11, 322. [Google Scholar] [CrossRef] [PubMed]
- Marjot, T.; Ray, D.W.; Williams, F.R.; Tomlinson, J.W.; Armstrong, M.J. Sleep and liver disease: A bidirectional relationship. Lancet Gastroenterol. Hepatol. 2021, 6, 850–863. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell. Metab. 2018, 27, 1212–1221.e1213. [Google Scholar] [CrossRef] [PubMed]
- Longo, V.D.; Panda, S. Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. Cell. Metab. 2016, 23, 1048–1059. [Google Scholar] [CrossRef]
- Acosta-Rodriguez, V.; Rijo-Ferreira, F.; Izumo, M.; Xu, P.; Wight-Carter, M.; Green, C.B.; Takahashi, J.S. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science 2022, 376, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.; Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell. Metab. 2015, 22, 789–798. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Corey, K.E.; Lim, J.K. AGA Clinical Practice Update on Lifestyle Modification Using Diet and Exercise to Achieve Weight Loss in the Management of Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology 2021, 160, 912–918. [Google Scholar] [CrossRef]
- Chaix, A.; Lin, T.; Le, H.D.; Chang, M.W.; Panda, S. Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. Cell. Metab. 2019, 29, 303–319.e304. [Google Scholar] [CrossRef]
- Hepler, C.; Weidemann, B.J.; Waldeck, N.J.; Marcheva, B.; Cedernaes, J.; Thorne, A.K.; Kobayashi, Y.; Nozawa, R.; Newman, M.V.; Gao, P.; et al. Time-restricted feeding mitigates obesity through adipocyte thermogenesis. Science 2022, 378, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Nobs, S.P.; Tuganbaev, T.; Elinav, E. Microbiome diurnal rhythmicity and its impact on host physiology and disease risk. EMBO Rep. 2019, 20, e47129. [Google Scholar] [CrossRef]
- Perna, S.; Ilyas, Z.; Giacosa, A.; Gasparri, C.; Peroni, G.; Faliva, M.A.; Rigon, C.; Naso, M.; Riva, A.; Petrangolini, G.; et al. Is Probiotic Supplementation Useful for the Management of Body Weight and Other Anthropometric Measures in Adults Affected by Overweight and Obesity with Metabolic Related Diseases? A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 666. [Google Scholar] [CrossRef]
- Challet, E. The circadian regulation of food intake. Nat. Rev. Endocrinol. 2019, 15, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.B.; Patterson, R.E.; Ang, A.; Emond, J.A.; Shetty, N.; Arab, L. Timing of energy intake during the day is associated with the risk of obesity in adults. J. Hum. Nutr. Diet. 2014, 27 (Suppl. 2), 255–262. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.S.; Ratcliffe, W.F.; Grenett, M.H.; Brewer, R.A.; Gamble, K.L.; Young, M.E. Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int. J. Obes. 2013, 37, 843–852. [Google Scholar] [CrossRef] [PubMed]
- Adamovich, Y.; Rousso-Noori, L.; Zwighaft, Z.; Neufeld-Cohen, A.; Golik, M.; Kraut-Cohen, J.; Wang, M.; Han, X.; Asher, G. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell. Metab. 2014, 19, 319–330. [Google Scholar] [CrossRef]
Characteristics | Total | Non-NAFLD | NAFLD | p-Value |
---|---|---|---|---|
(n = 4502) | (n = 2826) | (n = 1676) | ||
Age, years | 49.18 (0.48) | 50.39 (0.55) | 47.18 (0.52) | <0.001 |
Female, (%) | 51.26 (0.89) | 46.42 (1.02) | 59.21 (1.45) | <0.001 |
Non-Hispanic White, (%) | 66.07 (2.89) | 67.53 (2.30) | 63.68 (3.14) | <0.001 |
BMI, kg/m2 | 32.26 (0.19) | 31.67 (0.19) | 33.23 (0.27) | <0.001 |
>USD 100,000 annual household income, (%) | 19.71 (1.57) | 19.77 (1.85) | 19.61 (1.73) | 0.729 |
College graduate or above, (%) | 25.11 (1.28) | 26.16 (1.43) | 23.39 (1.64) | 0.106 |
Current smoking, (%) | 17.53 (0.93) | 18.87 (1.02) | 15.34 (1.46) | 0.044 |
Current drinking, (%) | 69.66 (1.63) | 70.87 (1.26) | 67.67 (2.71) | 0.142 |
Regular exercise, (%) | 24.46 (0.83) | 24.18 (1.00) | 24.93 (1.24) | 0.614 |
Energy, kcal | 2048.39 (18.16) | 2061.00 (16.98) | 2027.65 (27.41) | 0.007 |
Self-reported diabetes, (%) | 13.96 (0.59) | 13.61 (0.67) | 14.55 (1.23) | 0.354 |
Self-reported hypertension, (%) | 39.22 (1.16) | 39.19 (1.33) | 39.26 (2.06) | 0.976 |
Self-reported hypercholesterolemia, (%) | 39.97 (1.09) | 40.01 (1.27) | 39.91 (1.53) | 0.929 |
AHEI | 53.37 (0.37) | 53.62 (0.32) | 52.96 (0.59) | 0.125 |
Cancer, (%) | 10.70 (0.63) | 10.62 (1.02) | 10.84 (0.87) | 0.882 |
Cardiovascular diseases, (%) | 10.17 (0.52) | 11.59 (0.57) | 7.84 (0.67) | <0.001 |
IS | 0.58 (0.00) | 0.58 (0.00) | 0.58 (0.00) | 0.868 |
IV | 0.70 (0.01) | 0.71 (0.01) | 0.69 (0.01) | 0.242 |
RA | 0.84 (0.00) | 0.85 (0.00) | 0.84 (0.00) | 0.053 |
L5 | 1.20 (0.02) | 1.16 (0.02) | 1.28 (0.03) | 0.029 |
L5 start time, h:m:s | 00:45:56 (00:02:36) | 00:45:18 (00:03:16) | 00:46:58 (00:03:13) | 0.596 |
M10 | 14.13 (0.09) | 13.99 (0.11) | 14.34 (0.13) | 0.576 |
M10 start time, h:m:s | 09:18:11 (00:02:53) | 09:17:17 (00:03:54) | 09:19:40 (00:05:04) | 0.365 |
Fasting duration, hour | 11.30 (0.05) | 11.35 (0.06) | 11.22 (0.08) | 0.042 |
Feeding rhythm score | 0.73 (0.00) | 0.73 (0.00) | 0.72 (0.01) | 0.072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, W.; Han, T.; Sun, C. Association of 24 h Behavior Rhythm with Non-Alcoholic Fatty Liver Disease among American Adults with Overweight/Obesity. Nutrients 2023, 15, 2101. https://doi.org/10.3390/nu15092101
Gu W, Han T, Sun C. Association of 24 h Behavior Rhythm with Non-Alcoholic Fatty Liver Disease among American Adults with Overweight/Obesity. Nutrients. 2023; 15(9):2101. https://doi.org/10.3390/nu15092101
Chicago/Turabian StyleGu, Wenbo, Tianshu Han, and Changhao Sun. 2023. "Association of 24 h Behavior Rhythm with Non-Alcoholic Fatty Liver Disease among American Adults with Overweight/Obesity" Nutrients 15, no. 9: 2101. https://doi.org/10.3390/nu15092101
APA StyleGu, W., Han, T., & Sun, C. (2023). Association of 24 h Behavior Rhythm with Non-Alcoholic Fatty Liver Disease among American Adults with Overweight/Obesity. Nutrients, 15(9), 2101. https://doi.org/10.3390/nu15092101