Dietary Patterns and Associations with Myopia in Chinese Children
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Basic Information Interview
2.3. Dietary Assessment
Dietary Pattern
2.4. Physical Activity Questionnaire
2.5. Physical Examination
2.6. Covariates
2.7. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Dietary Patterns among Chinese Children
3.3. Association between Dietary Patterns and Myopia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baird, P.N.; Saw, S.M.; Lanca, C.; Guggenheim, J.A.; Smith, E.L., III; Zhou, X.; Matsui, K.O.; Wu, P.C.; Sankaridurg, P.; Chia, A. Myopia. Nat. Rev. Dis. Prim. 2020, 6, 99. [Google Scholar] [CrossRef] [PubMed]
- Flitcroft, D.I.; He, M.; Jonas, J.B.; Jong, M.; Naidoo, K.; Ohno-Matsui, K.; Rahi, J.; Resnikoff, S.; Vitale, S.; Yannuzzi, L. IMI–Defining and classifying myopia: A proposed set of standards for clinical and epidemiologic studies. Investig. Ophthalmol. Vis. Sci. 2019, 60, M20–M30. [Google Scholar] [CrossRef] [PubMed]
- Logan, N.S.; Davies, L.N.; Mallen, E.A.; Gilmartin, B. Ametropia and ocular biometry in a UK university student population. Optom. Vis. Sci. 2005, 82, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.; Hammond, C. High myopia and its risks. Community Eye Health 2019, 32, 5. [Google Scholar]
- Haarman, A.E.; Enthoven, C.A.; Tideman JW, L.; Tedja, M.S.; Verhoeven, V.J.; Klaver, C.C. The complications of myopia: A review and meta-analysis. Investig. Ophthalmol. Vis. Sci. 2020, 61, 49. [Google Scholar] [CrossRef]
- Harle, D.E.; Evans, B.J. The correlation between migraine headache and refractive errors. Optom. Vis. Sci. 2006, 83, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Morgan, I.G.; Ohno-Matsui, K.; Saw, S.M. Myopia. Lancet 2012, 379, 1739–1748. [Google Scholar] [CrossRef] [PubMed]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Vitale, S.; Cotch, M.F.; Sperduto, R.; Ellwein, L. Costs of Refractive Correction of Distance Vision Impairment in the United States, 1999–2002. Ophthalmology 2006, 113, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Morgan, I.G.; French, A.N.; Ashby, R.S.; Guo, X.; Ding, X.; He, M.; Rose, K.A. The epidemics of myopia: Aetiology and prevention. Prog. Retin. Eye Res. 2018, 62, 134–149. [Google Scholar] [CrossRef]
- Jones-Jordan, L.A.; Sinnott, L.T.; Manny, R.E.; Cotter, S.A.; Kleinstein, R.N.; Mutti, D.O.; Twelker, J.D.; Zadnik, K. Early childhood refractive error and parental history of myopia as predictors of myopia. Investig. Ophthalmol. Vis. Sci. 2010, 51, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Harb, E.N.; Wildsoet, C.F. Origins of Refractive Errors: Environmental and Genetic Factors. Annu. Rev. Vis. Sci. 2019, 5, 47–72. [Google Scholar] [CrossRef]
- Young, F.A.; Leary, G.A.; Baldwin, W.R.; West, D.C.; Box, R.A.; Harris, E.; Johnson, C. The transmission of refractive errors within eskimo families. Optom. Vis. Sci. 1969, 46, 676–685. [Google Scholar] [CrossRef]
- Galvis, V.; López-Jaramillo, P.; Tello, A.; Castellanos-Castellanos, Y.A.; Camacho, P.A.; Cohen, D.D.; Gómez-Arbeláez, D.; Merayo-Lloves, J. Is myopia another clinical manifestation of insulin resistance? Med. Hypotheses 2016, 90, 32–40. [Google Scholar] [CrossRef]
- Cordain, L.; Eaton, S.B.; Brand Miller, J.; Lindeberg, S.; Jensen, C. An evolutionary analysis of the aetiology and patho-genesis of juvenile-onset myopia. Acta Ophthalmol. Scand 2002, 80, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Semiz, S.; Kurt, F.; Kurt, D.; Zencir, M.; Sevinç, Ö. Pubertal Development of Turkish Children. J. Pediatr. Endocrinol. Metab. 2008, 21, 951–962. [Google Scholar] [CrossRef] [PubMed]
- Öner, V.; Bulut, A.; Oruç, Y.; Özgür, G. Influence of indoor and outdoor activities on progression of myopia during puberty. Int. Ophthalmol. 2016, 36, 121–125. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, P.; Zhang, Q.; Xu, J.; Yang, Z.; Si, X.; Ma, Z.; Li, R.; Zhang, J.; Guo, S.; et al. Relationship between sugary food intake and myopia in 11-14 years old Chinese children in 2019–2021. J. Hyg. Res. 2022, 51, 713–719. [Google Scholar]
- Liu, Z.; Wang, Q.; Zhao, Q.; Gao, F.; Jin, N.; Di Wang, D.; Wang, B.; Du, B.; Wei, R. Association between whole-grain intake and myopia in chinese children: A cross-sectional epidemiological study. BMC Ophthalmol. 2023, 23, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Tideman, J.W.L.; Polling, J.R.; Voortman, T.; Jaddoe, V.W.V.; Uitterlinden, A.G.; Hofman, A.; Vingerling, J.R.; Franco, O.H.; Klaver, C.C.W. Low serum vitamin D is associated with axial length and risk of myopia in young children. Eur. J. Epidemiol. 2016, 31, 491–499. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, Z.Y.; Li, R.; Xu, L.; Zhai, T.; Wang, Q.; Chen, B.W.; Zhao, W.H. National Nutrition and Health Systematic Survey for 0—18 years old children in China: Study protocol for 6–18 years old children. J. Hyg. Res. 2022, 51, 703–706. [Google Scholar]
- Liu, D.H.; Ju, Z.Y.; Yang, Q.; Zhang, J.F.; Gao, D.P.; Gong, D.D.; Luo, S.Q.; Zhao, W.H. Food Frequency Questionnaire for Chinese Children Aged 12-17 Years: Validity and Reliability. Biomed. Environ. Sci. 2019, 32, 486–495. [Google Scholar] [PubMed]
- Yang, X.; Jago, R.; Zhang, Q.; Wang, Y.Y.; Zhang, J.; Zhao, W.H. Validity and Reliability of the Wristband Activity Monitor in Free-living Children Aged 10–17 Years. Biomed. Environ. Sci. 2019, 32, 812–822. [Google Scholar]
- Ji, C.Y.; Cheng, T.O. Prevalence and geographic distribution of childhood obesity in China in 2005. Int. J. Cardiol. 2008, 131, 1–8. [Google Scholar] [CrossRef] [PubMed]
- WS/T456-2014; Screening Standard for Malnutrition of School-Age Children and Adolescents. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2014.
- WS/T 586-2018; Screening for Overweight and Obesity among School-Aged Children and Adolescents. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2018.
- Wang, J.; Lin, X.; Bloomgarden, Z.T.; Ning, G. The Jiangnan diet, a healthy diet pattern for Chinese. J. Diabetes 2019, 12, 365–371. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Valero-Vello, M.; Peris-Martínez, C.; García-Medina, J.J.; Sanz-González, S.M.; Ramírez, A.I.; Fernández-Albarral, J.A.; Galarreta-Mira, D.; Zanón-Moreno, V.; Casaroli-Marano, R.P.; Pinazo-Duran, M.D. Searching for the Antioxidant, Anti-Inflammatory, and Neuroprotective Potential of Natural Food and Nutritional Supplements for Ocular Health in the Mediterranean Population. Foods 2021, 10, 1231. [Google Scholar] [CrossRef]
- Raimundo, M.F.; Mira, M.D.L.; Cachulo, P.; Barreto, L.; Ribeiro, C.; Farinha, I.; Laíns, S.; Nunes, D.; Alves, J.; Figueira, B.M.; et al. Adherence to a Mediterranean diet, lifestyle and age-related macular degeneration: The Coimbra Eye Study—Report 3. Acta Ophthalmol. 2018, 96, e926–e932. [Google Scholar] [CrossRef]
- Beatty, S.; Koh, H.; Phil, M.; Henson, D.; Boulton, M. The role of oxidative stress in the pathogenesis of age-related macular de-generation. Surv. Ophthalmol. 2000, 45, 115–134. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarieh, M.; Sacu, S.; Wedrich, A. The role of the carotenoids, lutein and zeaxanthin, in protecting against age-related macular degeneration: A review based on controversial evidence. Nutr. J. 2003, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.M.A.; Chong, E.W.; Hodge, A.M.; Guymer, R.H.; Aung, K.Z.; Makeyeva, G.A.; Baird, P.N.; Hopper, J.L.; English, D.R.; Giles, G.G.; et al. Dietary patterns and their associations with age-related macular degeneration: The Melbourne collaborative cohort study. Ophthalmology 2014, 121, 1428–1434.e2. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, P.A. Observations on the Food Habits of Myopic Children. BMJ 1956, 2, 699–700. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, P.A. The diet of growing myopes. Trans. Ophthalmol. Soc. UK 1956, 76, 171–180. [Google Scholar]
- Gardiner, P.A. Dietary treatment of myopia in children. Lancet 1958, 1, 1152–1155. [Google Scholar] [CrossRef] [PubMed]
- Nakaishi, H.H.; Matsumoto, S.T.; Hirayama, M. Effects of black current anthocyanoside intake on dark adap-tation and VDT work-induced transient refractive alteration in healthy humans. Altern Med. Rev. 2000, 5, 553–562. [Google Scholar]
- Nomi, Y.; Iwasaki-Kurashige, K.; Matsumoto, H. Therapeutic Effects of Anthocyanins for Vision and Eye Health. Molecules 2019, 24, 3311. [Google Scholar] [CrossRef] [PubMed]
- Nwachukwu, I.D.; Udenigwe, C.C.; Aluko, R.E. Lutein and zeaxanthin: Production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci. Technol. 2016, 49, 74–84. [Google Scholar] [CrossRef]
- Williams, K.M.; Bentham, G.C.; Young, I.S.; McGinty, A.; McKay, G.J.; Hogg, R.; Hammond, C.J.; Chakravarthy, U.; Rahu, M.; Seland, J.; et al. Association Between Myopia, Ultraviolet B Radiation Exposure, Serum Vitamin D Concentrations, and Genetic Polymorphisms in Vitamin D Metabolic Pathways in a Multicountry European Study. JAMA Ophthalmol. 2017, 135, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.X.; Liu, S.; Yi, B.; Liu, H.Y.; Li, H. High prevalence of myopia and low hyperopia reserve in 4411 Chinese primary school students and associated risk factors. BMC Ophthalmol. 2022, 22, 212. [Google Scholar] [CrossRef]
- Pan, C.-W.; Ramamurthy, D.; Saw, S.-M. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol. Opt. 2011, 32, 3–16. [Google Scholar] [CrossRef]
- Matsumura, S.K.; Dannoue, M.; Kawakami, K.; Uemura, A.; Kameyama, A.T.; Hori, Y. Prevalence of Myopia and Its Associated Factors Among Japanese Preschool Children. Front. Public Health 2022, 10, 901480. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.-K.; Lee, J.H.; Kakizaki, H.; Jee, D. Prevalence of Myopia and its Association with Body Stature and Educational Level in 19-Year-Old Male Conscripts in Seoul, South Korea. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5579–5583. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, H.-J.; Lee, K.G.; Kim, J. Obesity and high myopia in children and adolescents: Korea National Health and Nutrition Examination Survey. PLoS ONE 2022, 17, e0265317. [Google Scholar] [CrossRef]
- Harrington, S.C.; Stack, J.; O’Dwyer, V. Risk factors associated with myopia in schoolchildren in Ireland. Br. J. Ophthalmol. 2019, 103, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.; Burley, V.; Warm, D. Development, validation and utilisation of food-frequency questionnaires—A review. Public. Health Nutr. 2002, 5, 567–587. [Google Scholar]
Characteristics | All | Myopia | Non-Myopia | χ2 | p-Value |
---|---|---|---|---|---|
Total | 7423 | 1746 (23.5) | 5677 (76.5) | ||
Sex (%) | 30.986 | <0.001 | |||
Boy | 3723 | 774 (20.8) | 2949 (79.2) | ||
Girl | 3700 | 972 (26.3) | 2728 (73.7) | ||
Age (%) | 58.717 | <0.001 | |||
10 | 3686 | 727 (19.7) | 2959 (80.3) | ||
11 | 3737 | 1019 (27.3) | 2718 (72.7) | ||
Residency (%) | 173.819 | <0.001 | |||
Urban | 3128 | 973 (31.1) | 2155 (68.9) | ||
Rural | 4292 | 771 (18.0) | 3521 (82.0) | ||
Region (%) | 20.610 | <0.001 | |||
Northern China | 3770 | 969 (25.7) | 2801 (74.3) | ||
Southern China | 3650 | 775 (21.2) | 2875 (78.8) | ||
Nutrition status (%) | 17.139 | <0.001 | |||
Stunting and wasting | 498 | 91 (18.3) | 407 (81.7) | ||
Normal | 4622 | 1045 (22.6) | 3577 (77.4) | ||
Overweight and obesity | 2181 | 567 (26.0) | 1614 (74.0) | ||
Medium- and high-intensity physical activity (d/w) | 3.173 | 0.075 | |||
0 | 2392 | 515 (21.5) | 1877 (78.5) | ||
1 | 1303 | 323 (24.8) | 980 (75.2) | ||
2 | 1828 | 465 (25.4) | 1363 (74.6) | ||
≥3 | 1894 | 443 (23.4) | 1451 (76.6) | ||
Screen time (min/d) | 0.010 | 0.922 | |||
0 | 15 | 5 (33.3) | 10 (66.7) | ||
>0~59 | 5190 | 1217 (23.4) | 3973 (76.6) | ||
≥60 | 2213 | 524 (23.7) | 1689 (76.3) | ||
Sleeping time (h/d) | 0.192 | 0.662 | |||
≤9 | 2328 | 555 (23.8) | 1773 (76.2) | ||
>9 | 5095 | 1191 (23.4) | 3904 (76.6) |
Dietary Pattern A | Dietary Pattern B | Dietary Pattern C | |||
---|---|---|---|---|---|
Total Variance: 16.55% | Total Variance: 15.49% | Total Variance: 14.20% | |||
Food Group | Factor Loading | Food Group | Factor Loading | Food Group | Factor Loading |
Meats | 0.735 | Snacks | 0.738 | Vegetables | 0.807 |
Aquatic product | 0.641 | Beverages | 0.725 | Fruits | 0.728 |
Dairy and its products | 0.627 | Mycorrhizae | 0.421 | Grains and potatoes | 0.432 |
Eggs | 0.373 | ||||
Legumes | 0.338 |
Q1 | Q2 | p | Q3 | p | Q4 | p | p for Trend | |
---|---|---|---|---|---|---|---|---|
Dietary pattern A | n = 1857 | n = 1857 | n = 1855 | n = 1854 | ||||
Unadjusted | Ref | 0.80 (0.69–0.94) | 0.006 | 0.77 (0.66–0.89) | 0.001 | 0.69 (0.59–0.81) | <0.001 | <0.001 |
Model 1 | Ref | 0.83 (0.71–0.97) | 0.022 | 0.83 (0.71–0.97) | 0.021 | 0.78 (0.66–0.91) | 0.002 | 0.004 |
Model 2 | Ref | 0.82 (0.70–0.97) | 0.017 | 0.83 (0.71–0.98) | 0.029 | 0.78 (0.66–0.92) | 0.003 | 0.007 |
Dietary pattern B | n = 1855 | n = 1857 | n = 1855 | n = 1856 | ||||
Unadjusted | Ref | 1.31 (1.12–1.53) | 0.001 | 1.14 (0.98–1.33) | 0.090 | 0.93 (0.80–1.07) | 0.297 | 0.124 |
Model 1 | Ref | 1.30 (1.10–1.52) | 0.001 | 1.15 (0.98–1.34) | 0.079 | 0.99 (0.86–1.16) | 0.989 | 0.613 |
Model 2 | Ref | 1.28 (1.09–1.51) | 0.002 | 1.15 (0.98–1.34) | 0.089 | 1.01 (0.87–1.18) | 0.916 | 0.731 |
Dietary pattern C | n = 1855 | n = 1855 | n = 1858 | n = 1855 | ||||
Unadjusted | Ref | 0.82 (0.70–0.97) | 0.016 | 0.70 (0.60–0.82) | <0.001 | 0.71 (0.60–0.82) | <0.001 | <0.001 |
Model 1 | Ref | 0.78 (0.67–0.92) | 0.003 | 0.71 (0.61–0.83) | <0.001 | 0.69 (0.59–0.81) | <0.001 | <0.001 |
Model 2 | Ref | 0.76 (0.65–0.90) | 0.001 | 0.70 (0.60–0.82) | <0.001 | 0.68 (0.58–0.80) | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.; Gan, Q.; Xu, P.; Yang, T.; Xu, J.; Cao, W.; Wang, H.; Pan, H.; Ren, Z.; Xiao, H.; et al. Dietary Patterns and Associations with Myopia in Chinese Children. Nutrients 2023, 15, 1946. https://doi.org/10.3390/nu15081946
Yin C, Gan Q, Xu P, Yang T, Xu J, Cao W, Wang H, Pan H, Ren Z, Xiao H, et al. Dietary Patterns and Associations with Myopia in Chinese Children. Nutrients. 2023; 15(8):1946. https://doi.org/10.3390/nu15081946
Chicago/Turabian StyleYin, Chunjie, Qian Gan, Peipei Xu, Titi Yang, Juan Xu, Wei Cao, Hongliang Wang, Hui Pan, Zhibin Ren, Hui Xiao, and et al. 2023. "Dietary Patterns and Associations with Myopia in Chinese Children" Nutrients 15, no. 8: 1946. https://doi.org/10.3390/nu15081946
APA StyleYin, C., Gan, Q., Xu, P., Yang, T., Xu, J., Cao, W., Wang, H., Pan, H., Ren, Z., Xiao, H., Wang, K., Xu, Y., & Zhang, Q. (2023). Dietary Patterns and Associations with Myopia in Chinese Children. Nutrients, 15(8), 1946. https://doi.org/10.3390/nu15081946