Omega-3 Fatty Acids during Pregnancy in Indigenous Australian Women of the Gomeroi Gaaynggal Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics
2.3. Setting
2.4. Participants
2.5. Demographics and Other Health Factors
2.6. Assessment of Pregnancy Outcomes
2.7. Dietary and Supplemental Intake of Omega-3 Fatty Acids
2.8. Red Blood Cell Sample Collection and Analysis
2.8.1. Erythrocyte Membrane Fatty Acid Preparation
2.8.2. Fatty Acid Determination
2.8.3. Fatty Acid Calculations
2.9. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Maternal Dietary Intakes
3.3. Red Blood Cell Analysis
4. Discussion
Practical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlson, S.E.; Colombo, J. Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. Adv. Pediatr. 2016, 63, 453–471. [Google Scholar] [CrossRef] [PubMed]
- Mauro, A.K.; Rengarajan, A.; Albright, C.; Boeldt, D.S. Fatty acids in normal and pathological pregnancies. Mol. Cell. Endocrinol. 2022, 539, 111466. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.L. Effects of n-3 fatty acids during pregnancy and lactation. Am. J. Clin. Nutr. 2006, 83, 1452S–1457S. [Google Scholar] [CrossRef] [PubMed]
- Pischon, T.; Hankinson, S.E.; Hotamisligil, G.S.; Rifai, N.; Willett, W.C.; Rimm, E.B. Habitual dietary intake of n-3 and n-6 fatty acids in relation to inflammatory markers among US men and women. Circulation 2003, 108, 155–160. [Google Scholar] [CrossRef]
- Rangel-Huerta, O.D.; Gil, A. Omega 3 fatty acids in cardiovascular disease risk factors: An updated systematic review of randomised clinical trials. Clin. Nutr. 2018, 37, 72–77. [Google Scholar] [CrossRef]
- Middleton, P.; Gomersall, J.C.; Gould, J.F.; Shepherd, E.; Olsen, S.F.; Makrides, M. Omega-3 fatty acid addition during pregnancy. Cochrane Database Syst. Rev. 2018, 11, CD003402. [Google Scholar] [CrossRef]
- Serra, R.; Penailillo, R.; Monteiro, L.J.; Monckeberg, M.; Pena, M.; Moyano, L.; Brunner, C.; Vega, G.; Choolani, M.; Illanes, S.E. Supplementation of Omega 3 during Pregnancy and the Risk of Preterm Birth: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 1704. [Google Scholar] [CrossRef]
- Gibson, R.A.; Muhlhausler, B.; Makrides, M. Conversion of linoleic acid and alpha-linolenic acid to long-chain polyunsaturated fatty acids (LCPUFAs), with a focus on pregnancy, lactation and the first 2 years of life. Matern. Child Nutr. 2011, 7 (Suppl. S2), 17–26. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; National Health and Medical Research Council: Canberra, Australia, 2006.
- National Health and Medical Research Council. Australian Guide to Healthy Eating; NHMRC: Canberra, Australia, 2013.
- Bloomingdale, A.; Guthrie, L.B.; Price, S.; Wright, R.O.; Platek, D.; Haines, J.; Oken, E. A qualitative study of fish consumption during pregnancy. Am. J. Clin. Nutr. 2010, 92, 1234–1240. [Google Scholar] [CrossRef]
- Taylor, A.L.; Collins, C.E.; Patterson, A.J. The relationship between potential contaminant exposure from fish and nutrient intakes in Australian women by pregnancy status. Nutr. Diet. 2014, 71, 229–235. [Google Scholar] [CrossRef]
- Oken, E.; Kleinman, K.P.; Berland, W.E.; Simon, S.R.; Rich-Edwards, J.W.; Gillman, M.W. Decline in fish consumption among pregnant women after a national mercury advisory. Obstet. Gynecol. 2003, 102, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Australian Institute of Health and Welfare. The Health and Welfare of Australia’s Aboriginal and Torres Strait Islander Peoples 2015; Cat. no. IHW 147; AIHW: Canberra, Australia, 2015.
- Australian Institute of Health and Welfare. Australia’s Mothers and Babies 2014—In Brief; Perinatal Statistics Series No. 32; AIHW: Canberra, Australia, 2016.
- Australian Institute of Health and Welfare. Pregnancy and Birth Outcomes for Aboriginal and Torres Strait Islander Women 2016–2018; AIHW: Canberra, Australia, 2021.
- Australian Bureau of Statistics. Australian Aboriginal and Torres Strait Islander Health Survey: Nutrition Results—Food and Nutrients, 2012–13; 4727.0.55.001; ABS: Canberra, Australia, 2015.
- Beringer, M.; Schumacher, T.; Keogh, L.; Sutherland, K.; Knox, P.; Herden, J.; Brown, L.; Rae, K. Nutritional adequacy and the role of supplements in the diets of Indigenous Australian women during pregnancy. Midwifery 2021, 93, 102886. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.Q.; Collins, C.E.; Schumacher, T.L.; Weatherall, L.J.; Keogh, L.; Sutherland, K.; Gordon, A.; Rae, K.M.; Pringle, K.G. Disparities exist between the dietary intake of Indigenous Australian women during pregnancy and the Australian dietary guidelines: The Gomeroi gaaynggal study. J. Hum. Nutr. Diet. 2018, 31, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Ashman, A.M.; Collins, C.E.; Weatherall, L.; Brown, L.J.; Rollo, M.E.; Clausen, D.; Blackwell, C.C.; Pringle, K.G.; Attia, J.; Smith, R.; et al. A cohort of Indigenous Australian women and their children through pregnancy and beyond: The Gomeroi gaaynggal study. J. Dev. Orig. Health Dis. 2016, 7, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Rae, K.; Weatherall, L.; Blackwell, C.; Pringle, K.; Smith, R.; Lumbers, E. Long conversations: Gomeroi gaaynggal tackles renal disease in an Indigenous community. Australas. Epidemiol. 2014, 21, 44–48. [Google Scholar]
- Australian Bureau of Statistics. Tamworth Regional (A). Available online: https://abs.gov.au/census/find-census-data/quickstats/2016/LGA17310 (accessed on 5 May 2022).
- Australian Bureau of Statistics. Walgett. Available online: https://abs.gov.au/census/find-census-data/quickstats/2016/SSC14096 (accessed on 5 May 2022).
- Avery, J.C.; Taylor, A.W.; Dal Grande, E. Measuring BMI in an Aboriginal population survey: Who are the non-responders? Aust. Indig. Health Bull. 2015, 15, 1–12. [Google Scholar]
- Osman, O.; Maynard, S. Proteinuria in pregnancy—Review. Front Womens Health 2019, 4, 1–5. [Google Scholar]
- National Cancer Institute. 24-h Dietary Recall (24HR) at a Glance. Available online: https://dietassessmentprimer.cancer.gov/profiles/recall/index.html (accessed on 8 May 2022).
- Collins, C.E.; Boggess, M.M.; Watson, J.F.; Guest, M.; Duncanson, K.; Pezdirc, K.; Rollo, M.; Hutchesson, M.J.; Burrows, T.L. Reproducibility and comparative validity of a food frequency questionnaire for Australian adults. Clin. Nutr. 2014, 33, 906–914. [Google Scholar] [CrossRef]
- Food Standards Australia and New Zealand. AUSNUT 2011-13—Australian Food Composition Database; Food Standards Australia and New Zealand: Canberra, Australia, 2014.
- National Cancer Institute. ASA24-Australia. Available online: https://epi.grants.cancer.gov/asa24/respondent/australia.html (accessed on 8 May 2022).
- Spencer, B.H. Essentiality of Trace Element Micronutrition in Human Pregnancy: A Systematic Review. J. Pregnancy Child Health 2015, 2, 157. [Google Scholar] [CrossRef]
- Schumacher, T.L.; Burrows, T.L.; Rollo, M.E.; Wood, L.G.; Callister, R.; Collins, C.E. Comparison of fatty acid intakes assessed by a cardiovascular-specific food frequency questionnaire with red blood cell membrane fatty acids in hyperlipidaemic Australian adults: A validation study. Eur. J. Clin. Nutr. 2016, 70, 1433–1438. [Google Scholar] [CrossRef]
- Tomoda, A.; Kodaira, K.; Taketo, A.; Tanimoto, K.; Yoneyama, Y. Isolation of human erythrocyte membranes in glucose solution. Anal. Biochem. 1984, 140, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Von Schacky, C. The Omega-3 Index: A new risk factor for death from coronary heart disease? Prev. Med. 2004, 39, 212–220. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. STATA/IC; StataCorp LLC: College Station, TX, USA, 2017. [Google Scholar]
- NSW Government Food Authority. Mercury and Fish. Available online: https://www.foodauthority.nsw.gov.au/consumer/life-events-and-food/pregnancy/mercury-and-fish (accessed on 26 April 2022).
- Food Standards Australia and New Zealand. FSANZ Advice on Fish Consumption. Available online: https://www.foodstandards.gov.au/consumer/chemicals/mercury/documents/mif%20brochure.pdf (accessed on 26 April 2022).
- Araujo, P.; Kjellevold, M.; Nerhus, I.; Dahl, L.; Aakre, I.; Moe, V.; Smith, L.; Markhus, M.W. Fatty Acid Reference Intervals in Red Blood Cells among Pregnant Women in Norway-Cross Sectional Data from the ‘Little in Norway’ Cohort. Nutrients 2020, 12, 2950. [Google Scholar] [CrossRef]
- Hoge, A.; Bernardy, F.; Donneau, A.F.; Dardenne, N.; Degee, S.; Timmermans, M.; Nisolle, M.; Guillaume, M.; Castronovo, V. Low Omega-3 index values and monounsaturated fatty acid levels in early pregnancy: An analysis of maternal erythrocytes fatty acids. Lipids Health Dis. 2018, 17, 63. [Google Scholar] [CrossRef]
- Enke, U.; Jaudszus, A.; Schleussner, E.; Seyfarth, L.; Jahreis, G.; Kuhnt, K. Fatty acid distribution of cord and maternal blood in human pregnancy: Special focus on individual trans fatty acids and conjugated linoleic acids. Lipids Health Dis. 2011, 10, 247. [Google Scholar] [CrossRef]
- Matorras, R.; Ruiz, J.I.; Perteagudo, L.; Barbazan, M.J.; Diaz, A.; Valladolid, A.; Sanjurjo, P. Longitudinal study of fatty acids in plasma and erythrocyte phospholipids during pregnancy. J. Perinat. Med. 2001, 29, 293–297. [Google Scholar] [CrossRef]
- Otto, S.J.; van Houwelingen, A.C.; Badart-Smook, A.; Hornstra, G. Changes in the maternal essential fatty acid profile during early pregnancy and the relation of the profile to diet. Am. J. Clin. Nutr. 2001, 73, 302–307. [Google Scholar] [CrossRef]
- Saito, S.; Kawabata, T.; Tatsuta, N.; Kimura, F.; Miyazawa, T.; Mizuno, S.; Nishigori, H.; Arima, T.; Kagawa, Y.; Yoshimasu, K.; et al. Determinants of polyunsaturated fatty acid concentrations in erythrocytes of pregnant Japanese women from a birth cohort study: Study protocol and baseline findings of an adjunct study of the Japan environment & Children’s study. Environ. Health Prev. Med. 2017, 22, 22. [Google Scholar] [CrossRef]
- Brenna, J.T. Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr. Opin. Clin. Nutr. Metab. Care 2002, 5, 127–132. [Google Scholar] [CrossRef]
- Burdge, G. Alpha-linolenic acid metabolism in men and women: Nutritional and biological implications. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 137–144. [Google Scholar] [CrossRef]
- Gerster, H. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int. J. Vitam. Nutr. Res. 1998, 68, 159–173. [Google Scholar] [PubMed]
- Goyens, P.L.; Spilker, M.E.; Zock, P.L.; Katan, M.B.; Mensink, R.P. Conversion of alpha-linolenic acid in humans is influenced by the absolute amounts of alpha-linolenic acid and linoleic acid in the diet and not by their ratio. Am. J. Clin. Nutr. 2006, 84, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Larque, E.; Garcia-Ruiz, P.A.; Perez-Llamas, F.; Zamora, S.; Gil, A. Dietary trans fatty acids alter the compositions of microsomes and mitochondria and the activities of microsome delta6-fatty acid desaturase and glucose-6-phosphatase in livers of pregnant rats. J. Nutr. 2003, 133, 2526–2531. [Google Scholar] [CrossRef] [PubMed]
- Leikin-Frenkel, A.I. Is there A Role for Alpha-Linolenic Acid in the Fetal Programming of Health? J. Clin. Med. 2016, 5, 40. [Google Scholar] [CrossRef]
- von Schacky, C. Omega-3 Fatty Acids in Pregnancy-The Case for a Target Omega-3 Index. Nutrients 2020, 12, 898. [Google Scholar] [CrossRef]
- von Schacky, C. Confusion about the effects of Omega-3 fatty acids: Contemplation of study data taking the Omega-3 index into consideration. Internist 2019, 60, 1319–1327. [Google Scholar] [CrossRef]
- Abdelrahman, M.A.; Osama, H.; Saeed, H.; Madney, Y.M.; Harb, H.S.; Abdelrahim, M.E.A. Impact of n-3 polyunsaturated fatty acid intake in pregnancy on maternal health and birth outcomes: Systematic review and meta-analysis from randomized controlled trails. Arch. Gynecol. Obstet. 2023, 307, 249–262. [Google Scholar] [CrossRef]
- Hu, F.B.; Rimm, E.; Smith-Warner, S.A.; Feskanich, D.; Stampfer, M.J.; Ascherio, A.; Sampson, L.; Willett, W.C. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am. J. Clin. Nutr. 1999, 69, 243–249. [Google Scholar] [CrossRef]
- Best, K.P.; Gibson, R.A.; Makrides, M. ISSFAL statement number 7—Omega-3 fatty acids during pregnancy to reduce preterm birth. Prostaglandins Leukot. Essent. Fatty Acids 2022, 186, 102495. [Google Scholar] [CrossRef]
Characteristic | n | (%) |
---|---|---|
Maternal Indigenous identity | ||
Indigenous | 167 | (81.9%) |
Carrying an Indigenous child | 37 | (18.1%) |
Level of education | ||
<Year 10 | 18 | (12.1%) |
Year 10 or equivalent | 60 | (40.3%) |
Year 12 or equivalent | 31 | (20.8%) |
Trade/apprenticeship | 23 | (15.4%) |
University degree | 10 | (6.7%) |
Currently studying | 7 | (4.7%) |
(missing) | 55 | |
Employment status | ||
Full-time | 16 | (12.3%) |
Part-time | 10 | (7.7%) |
Casual | 9 | (6.9%) |
No employment | 90 | (69.2%) |
Other | 5 | (3.9%) |
(missing) | 74 | |
Income | ||
<$20,000 | 59 | (54.1%) |
$20,001–40,000 | 19 | (17.4%) |
$40,001–70,000 | 19 | (17.4%) |
>$70,001 | 12 | (11.0%) |
(missing) | 95 |
Uncomplicated (n = 176) | Preterm Birth * (n = 18) | HDP * (n = 16) | Total (n = 204) | |||||
---|---|---|---|---|---|---|---|---|
n (%) or Median (IQR) | n (%) or Median (IQR) | n (%) or Median (IQR) | n (%) or Median (IQR) | |||||
Characteristic | ||||||||
Age | 24.0 | (15.5–50.4) | 25.5 | (18.2–34.4) | 24.0 | (16.7–40.8) | 24.2 | (15.5–50.4) |
Pre-pregnancy BMI (kg/m2) | 29.8 | (17.4–52.0) | 32.4 | (21.3–59.8) | 27.7 | (22.1–43.5) | 29.7 | (17.4–59.8) |
(missing) | 69 | 9 | 6 | 81 | ||||
Parity | ||||||||
0 | 19 | (16.7%) | 3 | (25.0%) | 2 | (20.0%) | 23 | (17.3%) |
1–2 | 68 | (59.6%) | 6 | (50.0%) | 5 | (50.0%) | 78 | (58.6%) |
3+ | 27 | (23.7%) | 3 | (25.0%) | 3 | (30.0%) | 32 | (24.1%) |
(missing) | 62 | 6 | 6 | 71 | ||||
Smoking status | ||||||||
Current | 44 | (28.0%) | 8 | (47.1%) | 3 | (20.0%) | 53 | (29.0%) |
Non-smoker | 113 | (72.0%) | 9 | (52.9%) | 12 | (80.0%) | 130 | (71.0%) |
(missing) | 19 | 1 | 1 | 21 | ||||
Gestational age (weeks) | 39.2 | (37–43) | 36.1 | (30.3–36.5) | 37.8 | (30.3–41.4) | 39.0 | (30.3–43.0) |
(missing) | 22 | - | - | 22 | ||||
Birth weight (g) | 3455 | (1719–5430) | 2612 | (910–3550) | 2915 | (1150–4125) | 3372.5 | (910–5430) |
(missing) | 22 | - | - | 22 | ||||
Diabetes status | ||||||||
Nil | 136 | (87.7%) | 13 | (72.2%) | 10 | (62.5%) | 156 | (85.2%) |
T1DM, T2DM or GDM | 19 | (12.3%) | 5 | (27.8%) | 6 | (37.5%) | 27 | (14.8%) |
(missing) | 21 | - | - | 21 |
24-h Recall Dietary Analysis | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Uncomplicated (n = 125) | Preterm Birth * (n = 13) | HDP * (n = 10) | Total (n = 143) | ||||||||||
Median | (IQR) | Meeting NRV | Median | (IQR) | Meeting NRV | Median | (IQR) | Meeting NRV | Median | (IQR) | Meeting NRV | ||
Nutrient | NRV | ||||||||||||
Energy (kJ/day) | 5200–15,600 (EER) | 7443 | (710–16,992) | - | 6959 | (1939–11,705) | - | 7227 | (5754–14,095) | - | 7443 | (710–16,992) | - |
Energy total Fat (%) | 20–35% (AMDR) | 34.4 | (6.8–57.8) | 48.0% | 34.7 | (19.4–65.3) | 53.8% | 34.8 | (19.3–54.0) | 50.0% | 34.5 | (6.8–65.3) | 48.3% |
Energy total SFAs (%) | 8–10% (AMDR) | 13.9 | (1.2–31.0) | 9.6% | 14.3 | (8.4–25.3) | 15.4% | 15.3 | (5.7–25.3) | 0.0% | 14.0 | (1.2–31.0) | 8.5% |
Total n-3 LC-PUFAs (mg/day) | 115 (AI) | 87.0 | (0–588.7) | 37.6% | 82.8 | (4.7–588.3) | 38.5% | 170.3 | (32.9–588.3) | 50.0% | 84.4 | (0–588.7) | 37.1% |
EPA | - | 12.9 | (0–172.4) | - | 18.1 | (0–186.1) | - | 48.0 | (4.7–130.5) | - | 13.1 | (0–186.1) | - |
DPA | - | 44.4 | (0–212.0) | - | 45.7 | (4.7–174.1) | - | 46.8 | (16.1–174.1) | - | 44.6 | (0–212.0) | - |
DHA | - | 16.2 | (0–343.7) | - | 11.6 | (0–415.4) | - | 23.0 | (0–415.4) | - | 15.5 | (0–415.4) | - |
ALA (18:3) (g/day) | 1.0 (AI) | 1.1 | (0.1–4.6) | 56.8% | 0.9 | (0.1–2.6) | 38.5% | 1.0 | (0.5–1.9) | 50.0% | 1.1 | (0.1–4.6) | 55.2% |
LA (18:2) (g/day) | 10 (AI) | 7.6 | (0.3–20.9) | 29.6% | 5.5 | (1.5–25.1) | 15.4% | 5.7 | (3.5–13.6) | 20.0% | 7.6 | (0.3–25.1) | 28.7% |
SFAs (g/day) | - | 28.5 | (2.8–102.5) | - | 25.7 | (5.0–52.9) | - | 32.1 | (8.9–64.9) | - | 28.5 | (2.8–102.5) | - |
MUFAs (g/day) | - | 27.2 | (2.2–81.6) | - | 25.4 | (2.9–61.7) | - | 25.1 | (11.2–55.2) | - | 26.7 | (2.2–81.6) | - |
PUFAs (g/day) | - | 9.4 | (0.4–25.7) | - | 6.4 | (1.7–28.1) | - | 7.1 | (4.6–15.1) | - | 9.4 | (0.4–28.1) | - |
n-6/n-3 ratio | - | 5.9 | (2.1–16.6) | - | 6.1 | (3.0–10.4) | - | 5.4 | (3.4–10.5) | - | 5.9 | (2.1–16.6) | - |
FFQ Dietary Analysis | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Uncomplicated (n = 86) | Preterm Birth (n = 4) | HDP * (n = 7) | Total (n = 95) | ||||||||||
Median | (IQR) | Meeting NRV (%) | Median | (IQR) | Meeting NRV (%) | Median | (IQR) | Meeting NRV (%) | Median | (IQR) | Meeting NRV (%) | ||
Nutrient | NRV | ||||||||||||
Energy (kJ/day) | 5200–15,600 (EER) | 8632.5 | (5031–19,809) | - | 9416 | (6918–13,940) | - | 10,482 | (4739–14,401) | - | 8689 | (4739–19,809) | - |
Energy total Fat (%) | 20–35% (AMDR) | 34.8 | (24.3–42.7) | 53.5% | 41.5 | (33.9–45.1) | 25.0% | 35.5 | (23.1–43.7) | 28.6% | 34.9 | (23.1–45.1) | 50.5% |
Energy total SFAs (%) | 8–10% (AMDR) | 14.1 | (8.2–18.9) | 4.7% | 17.9 | (12.4–19.4) | 0.0% | 15.0 | (8.7–17.1) | 14.3% | 14.1 | (8.2–19.4) | 5.3% |
Total n-3 LC-PUFAs (mg/day) | 115 (AI) | 188.8 | (54.6–643.9) | 82.6% | 132.6 | (76.6–536.9) | 50.0% | 238.1 | (20.6–536.9) | 71.4% | 186.7 | (20.6–643.9) | 81.1% |
EPA | - | 49.5 | (8.0–194.3) | - | 36.2 | (23.5–139.1) | - | 56.0 | (3.2–139.1) | - | 49.4 | (3.2–194.3) | - |
DPA | - | 84.1 | (21.0–255.8) | - | 79.9 | (40.7–267.4) | - | 91.2 | (11.5–267.4) | - | 84.6 | (11.5–267.4) | - |
DHA | - | 49.1 | (4.0–290.4) | - | 16.6 | (12.3–130.4) | - | 65.0 | (5.8–130.4) | - | 48.6 | (4.0–290.4) | - |
ALA (18:3) (g/day) | 1.0 (AI) | 1.1 | (0.5–2.2) | 59.3% | 1.3 | (0.8–2.7) | 50.0% | 1.2 | (0.4–2.7) | 57.1% | 1.1 | (0.5–2.7) | 59.0% |
LA (18:2) (g/day) | 10 (AI) | 8.0 | (3.7–19.2) | 32.6% | 10.9 | (6.3–16.5) | 50.0% | 9.5 | (4.3–16.5) | 28.6% | 8.1 | (3.7–19.2) | 32.6% |
SFAs (g/day) | - | 33.1 | (11.9–81.3) | - | 48.6 | (23.2–64.5) | - | 41.8 | (11.1–64.5) | - | 35.2 | (11.1–81.3) | - |
MUFAs (g/day) | - | 33.1 | (14.3–90.1) | - | 40.8 | (25.8–59.9) | - | 39.1 | (10.5–64.3) | - | 33.2 | (10.5–90.1) | - |
PUFAs (g/day) | - | 9.7 | (4.5–21.8) | - | 12.7 | (7.4–20.7) | - | 11.5 | (4.9–20.7) | - | 9.8 | (4.5–21.8) | - |
n-6/n-3 ratio | - | 6.3 | (3.9–9.1) | - | 6.8 | (5.2–8.4) | - | 6.7 | (5.2–9.3) | - | 6.3 | (3.9–9.3) | - |
Trimester | Total (n = 174) | |||||||
---|---|---|---|---|---|---|---|---|
One (1–12 Wks) (n = 4) | Two (13–28 Wks) (n = 85) | Three (29 Wks–Birth) (n = 85) | ||||||
Median | (IQR) | Median | (IQR) | Median | (IQR) | Median | (IQR) | |
Nutrient | ||||||||
LA (18:2) (%) | 7.2 | (3.1–8.9) | 7.7 | (3.2–10.2) | 8.0 | (2.2–10.0) | 7.9 | (2.2–10.2) |
ALA (18:3) (%) | 0.0 | (0.0) | 0.0 | (0.0–0.4) | 0.0 | (0.0–0.6) | 0.0 | (0.0–0.6) |
EPA (20:5) (%) | 0.5 | (0.0–0.8) | 0.5 | (0.0–1.0) | 0.6 | (0.0–1.1) | 0.5 | (0.0–1.1) |
DPA (22:5) (%) | 1.1 | (0.4–2.8) | 2.0 | (0.0–2.7) | 2.0 | (0.0–2.7) | 2.0 | (0.0–2.8) |
DHA (22:6) (%) | 2.6 | (0.5–4.9) | 4.9 | (0.0–8.1) | 5.1 | (0.0–8.4) | 5.0 | (0.0–8.4) |
SFAs (%) | 48.9 | (43.9–60.9) | 43.1 | (41.1–71.9) | 43.3 | (41.1–70.0) | 43.2 | (41.1–71.9) |
MUFAs (%) | 20.2 | (17.6–28.4) | 20.9 | (18.4–28.1) | 20.9 | (8.2–30.7) | 20.9 | (8.2–30.7) |
n-6 LC-PUFA (%) | 25.9 | (9.7–31.8) | 28.2 | (4.7–31.5) | 27.7 | (5.3–32.9) | 27.9 | (4.7–32.9) |
n-3 LC-PUFA (%) | 5.0 | (1.1–6.7) | 7.6 | (0.0–10.8) | 7.7 | (0.0–10.6) | 7.6 | (0.0–10.8) |
n-6/n-3 ratio | 5.3 | (4.7–9.2) | 3.7 | (0.0–15.2) | 3.6 | (0.0–13.4) | 3.7 | (0.0–15.2) |
Omega-3 Index | 3.3 | (0.5–5.2) | 5.5 | (0.0–8.7) | 5.7 | (0.0–9.0) | 5.5 | (0.0–9.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gray, N.L.; Stoodley, I.; Wood, L.G.; Collins, C.E.; Brown, L.J.; Rae, K.M.; Pringle, K.G.; Schumacher, T.L.; the Gomeroi Gaaynggal Advisory Committee. Omega-3 Fatty Acids during Pregnancy in Indigenous Australian Women of the Gomeroi Gaaynggal Cohort. Nutrients 2023, 15, 1943. https://doi.org/10.3390/nu15081943
Gray NL, Stoodley I, Wood LG, Collins CE, Brown LJ, Rae KM, Pringle KG, Schumacher TL, the Gomeroi Gaaynggal Advisory Committee. Omega-3 Fatty Acids during Pregnancy in Indigenous Australian Women of the Gomeroi Gaaynggal Cohort. Nutrients. 2023; 15(8):1943. https://doi.org/10.3390/nu15081943
Chicago/Turabian StyleGray, Natalie L., Isobel Stoodley, Lisa G. Wood, Clare E. Collins, Leanne J. Brown, Kym M. Rae, Kirsty G. Pringle, Tracy L. Schumacher, and the Gomeroi Gaaynggal Advisory Committee. 2023. "Omega-3 Fatty Acids during Pregnancy in Indigenous Australian Women of the Gomeroi Gaaynggal Cohort" Nutrients 15, no. 8: 1943. https://doi.org/10.3390/nu15081943
APA StyleGray, N. L., Stoodley, I., Wood, L. G., Collins, C. E., Brown, L. J., Rae, K. M., Pringle, K. G., Schumacher, T. L., & the Gomeroi Gaaynggal Advisory Committee. (2023). Omega-3 Fatty Acids during Pregnancy in Indigenous Australian Women of the Gomeroi Gaaynggal Cohort. Nutrients, 15(8), 1943. https://doi.org/10.3390/nu15081943