Oral intake of Lactiplantibacillus pentosus LPG1 Produces a Beneficial Regulation of Gut Microbiota in Healthy Persons: A Randomised, Placebo-Controlled, Single-Blind Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Capsules
2.2. Clinical Trial
2.3. Baseline Characterisation of Groups
2.4. Human Faeces Processing
2.5. Metataxonomic Analysis
2.6. Analysis of Gut Bacterial Diversity
2.7. CoDa Analysis of Gut Microbiota
3. Results and Discussion
3.1. Bacterial Diversity of Volunteers’ Faeces
3.2. Predominant Bacterial Genera
3.3. Metataxonomic CoDa Analysis
3.3.1. Applying selbal
3.3.2. Applying coda4microbiome
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arroyo-Lopez, F.N.; Bautista-Gallego, J.; Dominguez-Manzano, J.; Romero-Gil, V.; Rodriguez-Gomez, F.; Garcia-Garcia, P.; Garrido-Fernandez, A.; Jimenez-Diaz, R. Formation of lactic acid bacteria-yeasts communities on the olive surface during Spanish-style Manzanilla fermentations. Food Microbiol. 2012, 32, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Cabello, A.; Torres-Maravilla, E.; Bermúdez-Humarán, L.; Langella, P.; Martín, R.; Jiménez-Díaz, R.; Arroyo-López, F.N. Probiotic Properties of Lactobacillus Strains Isolated from Table Olive Biofilms. Probiotics Antimicro. Proteins 2020, 12, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Benitez-Cabello, A.; Calero-Delgado, B.; Rodriguez-Gomez, F.; Garrido-Fernandez, A.; Jimenez-Diaz, R.; Arroyo-Lopez, F.N. Biodiversity and Multifunctional Features of Lactic Acid Bacteria Isolated From Table Olive Biofilms. Front. Microbiol. 2019, 10, 836. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Garcia, E.; Benitez-Cabello, A.; Ramiro-Garcia, J.; Ladero, V.; Arroyo-Lopez, F.N. In Silico Evidence of the Multifunctional Features of Lactiplantibacillus pentosus LPG1, a Natural Fermenting Agent Isolated from Table Olive Biofilms. Foods 2023, 12, 938. [Google Scholar] [CrossRef] [PubMed]
- Kotani, Y.; Shinkai, S.; Okamatsu, H.; Toba, M.; Ogawa, K.; Yoshida, H.; Fukaya, T.; Fujiwara, Y.; Chaves, P.H.; Kakumoto, K.; et al. Oral intake of Lactobacillus pentosus strain b240 accelerates salivary immunoglobulin A secretion in the elderly: A randomized, placebo-controlled, double-blind trial. Immun. Ageing 2010, 7, 11. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Guo, Z.; Kwok, L.; Ma, C.; Zhang, W.; Lv, Q.; Huang, W.; Zhang, H. Effect of oral consumption of probiotic Lactobacillus plantarum P-8 on fecal microbiota, SIgA, SCFAs, and TBAs of adults of different ages. Nutrition 2014, 30, 776–783.e771. [Google Scholar] [CrossRef]
- de Vos, P.; Mujagic, Z.; de Haan, B.J.; Siezen, R.J.; Bron, P.A.; Meijerink, M.; Wells, J.M.; Masclee, A.A.M.; Boekschoten, M.V.; Faas, M.M.; et al. Lactobacillus plantarum Strains Can Enhance Human Mucosal and Systemic Immunity and Prevent Non-steroidal Anti-inflammatory Drug Induced Reduction in T Regulatory Cells. Front. Immunol. 2017, 8, 1000. [Google Scholar] [CrossRef]
- Rudzki, L.; Ostrowska, L.; Pawlak, D.; Malus, A.; Pawlak, K.; Waszkiewicz, N.; Szulc, A. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology 2019, 100, 213–222. [Google Scholar] [CrossRef]
- Ahn, S.H.; Yoon, W.; Lee, S.Y.; Shin, H.S.; Lim, M.Y.; Nam, Y.D.; Yoo, Y. Effects of Lactobacillus pentosus in Children with Allergen-Sensitized Atopic Dermatitis. J. Korean Med. Sci. 2020, 35, e128. [Google Scholar] [CrossRef]
- Gloor, G.B.; Macklaim, J.M.; Pawlowsky-Glahn, V.; Egozcue, J.J. Microbiome Datasets Are Compositional: And This Is Not Optional. Front. Microbiol. 2017, 8, 2224. [Google Scholar] [CrossRef]
- Rivera-Pinto, J.; Egozcue, J.J.; Pawlowsky-Glahn, V.; Paredes, R.; Noguera-Julian, M.; Calle, M.L. Balances: A New Perspective for Microbiome Analysis. mSystems 2018, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Calle, M.L. Statistical Analysis of Metagenomics Data. Genomics Inform. 2019, 17, e6. [Google Scholar] [CrossRef] [PubMed]
- Nearing, J.T.; Douglas, G.M.; Hayes, M.G.; MacDonald, J.; Desai, D.K.; Allward, N.; Jones, C.M.A.; Wright, R.J.; Dhanani, A.S.; Comeau, A.M.; et al. Microbiome differential abundance methods produce different results across 38 datasets. Nat. Commun. 2022, 13, 342. [Google Scholar] [CrossRef]
- Accardi, G.; Aiello, A.; Gargano, V.; Gambino, C.M.; Caracappa, S.; Marineo, S.; Vesco, G.; Carru, C.; Zinellu, A.; Zarcone, M.; et al. Nutraceutical effects of table green olives: A pilot study with Nocellara del Belice olives. Immun. Ageing 2016, 13, 11. [Google Scholar] [CrossRef] [PubMed]
- Klindworth, A.; Pruesse, E.; Schweer, T.; Peplies, J.; Quast, C.; Horn, M.; Glockner, F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013, 41, e1. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.H.D.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Quinn, T.P.; Erb, I.; Richardson, M.F.; Crowley, T.M. Understanding sequencing data as compositions: An outlook and review. Bioinformatics 2018, 34, 2870–2878. [Google Scholar] [CrossRef]
- Palarea-Albaladejo, J.; Martín-Fernández, J.A. zCompositions—R package for multivariate imputation of left-censored data under a compositional approach. Chemom. Intell. Lab. Syst. 2015, 143, 85–96. [Google Scholar] [CrossRef]
- Calle, M.L.; Pujolassos, M.; Susin, A. coda4microbiome: Compositional data analysis for microbiome cross-sectional and longitudinal studies. BMC Bioinform. 2023, 24, 82. [Google Scholar] [CrossRef]
- Hooper, L.V.; Gordon, J.I. Commensal host-bacterial relationships in the gut. Science 2001, 292, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Tasnim, N.; Abulizi, N.; Pither, J.; Hart, M.M.; Gibson, D.L. Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live? Front. Microbiol. 2017, 8, 1935. [Google Scholar] [CrossRef] [PubMed]
- Arora, T.; Singh, S.; Sharma, R.K. Probiotics: Interaction with gut microbiome and antiobesity potential. Nutrition 2013, 29, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Palaria, A.; Johnson-Kanda, I.; O’Sullivan, D.J. Effect of a synbiotic yogurt on levels of fecal bifidobacteria, clostridia, and enterobacteria. Appl. Environ. Microbiol. 2012, 78, 933–940. [Google Scholar] [CrossRef]
- Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473, 174–180. [Google Scholar] [CrossRef]
- Zafar, H.; Saier, M.H., Jr. Gut Bacteroides species in health and disease. Gut Microbes 2021, 13, 1848158. [Google Scholar] [CrossRef]
- Miquel, S.; Martín, R.; Rossi, O.; Bermúdez-Humarán, L.G.; Chatel, J.M.; Sokol, H.; Thomas, M.; Wells, J.M.; Langella, P. Faecalibacterium prausnitzii and human intestinal health. Curr. Opin. Microbiol. 2013, 16, 255–261. [Google Scholar] [CrossRef]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.G.; Gratadoux, J.J.; Blugeon, S.; Bridonneau, C.; Furet, J.P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef]
- La Reau, A.J.; Suen, G. The Ruminococci: Key symbionts of the gut ecosystem. J. Microbiol. 2018, 56, 199–208. [Google Scholar] [CrossRef]
- Iljazovic, A.; Roy, U.; Galvez, E.J.C.; Lesker, T.R.; Zhao, B.; Gronow, A.; Amend, L.; Will, S.E.; Hofmann, J.D.; Pils, M.C.; et al. Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal. Immunol. 2021, 14, 113–124. [Google Scholar] [CrossRef]
- Precup, G.; Vodnar, D.C. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: A comprehensive literature review. Br. J. Nutr. 2019, 122, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, L.; Wang, X.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Lu, X. Roles of intestinal Parabacteroides in human health and diseases. FEMS Microbiol. Lett. 2022, 369, fnac072. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Mercado, A.I.; Navarro-Oliveros, M.; Robles-Sanchez, C.; Plaza-Diaz, J.; Saez-Lara, M.J.; Munoz-Quezada, S.; Fontana, L.; Abadia-Molina, F. Microbial Population Changes and Their Relationship with Human Health and Disease. Microorganisms 2019, 7, 68. [Google Scholar] [CrossRef] [PubMed]
- Hua, X.; Zhu, J.; Yang, T.; Guo, M.; Li, Q.; Chen, J.; Li, T. The Gut Microbiota and Associated Metabolites Are Altered in Sleep Disorder of Children With Autism Spectrum Disorders. Front. Psychiatry 2020, 11, 855. [Google Scholar] [CrossRef] [PubMed]
- Stene, C.; Rome, A.; Palmquist, I.; Linninge, C.; Molin, G.; Ahrne, S.; Johnson, L.B.; Jeppsson, B. Administration of probiotics to healthy volunteers: Effects on reactivity of intestinal mucosa and systemic leukocytes. BMC Gastroenterol. 2022, 22, 100. [Google Scholar] [CrossRef]
Parameter | Group A—LPG1 | Group B—Placebo | p-Value * |
---|---|---|---|
Number of participants | n = 20 | n = 19 | |
Men/Women | 9/11 | 10/9 | |
Age, years | 31.45 ± 8.28 | 33.63 ± 6.96 | 0.380 |
Weight, kg | 68.07 ± 13.13 | 70.97 ± 12.50 | 0.484 |
BMI, kg/m2 # | 23.95 ± 2.50 | 24.82 ± 2.95 | 0.323 |
Total fat, % | 30.60 ± 6.91 | 29.14 ± 9.79 | 0.601 |
SBP, mm Hg | 117.73 ± 9.91 | 120. 66 ± 14.56 | 0.477 |
DBP, mm Hg | 71.25 ± 9.55 | 71.83 ± 12.21 | 0.870 |
Fasting glucose, mg/dL | 80.20 ± 6.11 | 78.88 ± 6.14 | 0.515 |
Fasting insulin, mU/L | 7.85 ± 3.20 | 7.08 ± 3.72 | 0.495 |
Total cholesterol, mg/dL | 174.55 ± 34.07 | 169.47 ± 26.77 | 0.609 |
LDL-cholesterol, mg/dL | 104.35 ± 27.06 | 95.26 ± 25.67 | 0.290 |
HDL-cholesterol, mg/dL | 53.05 ± 11.49 | 55.89 ± 16.08 | 0.527 |
Triglycerides, mg/dL | 85.75 ± 41.30 | 91.31 ± 48.31 | 0.701 |
hsCRP, mg/dL | 3.01 ± 5.13 | 1.15 ± 1.39 | 0.136 |
Variable | Minimum | Maximum | Mean | SE | K-W p-Value |
---|---|---|---|---|---|
TAXA_S | 43.000 | 83.000 | 68.679 | 8.307 | 0.370 |
Individuals | 20,142.000 | 45,067.000 | 34,660.974 | 4752.616 | 0.017 |
Dominance D | 0.033 | 0.212 | 0.105 | 0.041 | 0.002 |
Simpson_1-D | 0.788 | 0.967 | 0.895 | 0.041 | 0.002 |
Shannon_H | 2.089 | 3.712 | 3.003 | 0.314 | 0.010 |
Evenness_eH/S | 0.178 | 0.535 | 0.303 | 0.071 | 0.012 |
Brillouin | 2.084 | 3.701 | 2.997 | 0.313 | 0.010 |
Menhinick | 0.240 | 0.515 | 0.372 | 0.052 | 0.146 |
Margalef | 4.048 | 7.848 | 6.481 | 0.797 | 0.353 |
Equitability_J | 0.555 | 0.854 | 0.710 | 0.060 | 0.010 |
Fisher_alpha | 4.893 | 10.310 | 8.253 | 1.132 | 0.371 |
Berger–Parker | 0.075 | 0.394 | 0.238 | 0.077 | 0.002 |
Chao-1 | 43.000 | 83.000 | 68.692 | 8.328 | 0.372 |
Step Order | Numerator | Denominator | Accuracy | Increase |
---|---|---|---|---|
Group A—LPG1 | ||||
1 | Granulicatella | Lactobacillus | 0.8588 | 0.8588 |
2 | Ruminiclostridium_5 | 0.8850 | 0.0263 | |
3 | Faecalicoccus | 0.9300 | 0.0450 | |
4 | Ruminococcus_1 | 0.9400 | 0.0100 | |
5 | Ruminococcaceae_UCG-004 | 0.9800 | 0.0400 | |
6 | Parabacteroides | 0.9850 | 0.0050 | |
7 | Coprococcus_3 | 0.9975 | 0.0125 | |
8 | Anaerostipes | 1.0000 | 0.0025 | |
Group B—placebo | ||||
1 | Granulicatella | Faecalibacterium | 0.8310 | 0.8310 |
2 | Subdoligranulum | 0.89474 | 0.06371 | |
3 | Faecalicoccus | 0.94183 | 0.0360 | |
4 | Angelakisella | 0.96399 | 0.02216 | |
5 | Fusicatenibacter | 0.98338 | 0.01939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-García, E.; Benítez-Cabello, A.; Arenas-de Larriva, A.P.; Gutierrez-Mariscal, F.M.; Pérez-Martínez, P.; Yubero-Serrano, E.M.; Garrido-Fernández, A.; Arroyo-López, F.N. Oral intake of Lactiplantibacillus pentosus LPG1 Produces a Beneficial Regulation of Gut Microbiota in Healthy Persons: A Randomised, Placebo-Controlled, Single-Blind Trial. Nutrients 2023, 15, 1931. https://doi.org/10.3390/nu15081931
López-García E, Benítez-Cabello A, Arenas-de Larriva AP, Gutierrez-Mariscal FM, Pérez-Martínez P, Yubero-Serrano EM, Garrido-Fernández A, Arroyo-López FN. Oral intake of Lactiplantibacillus pentosus LPG1 Produces a Beneficial Regulation of Gut Microbiota in Healthy Persons: A Randomised, Placebo-Controlled, Single-Blind Trial. Nutrients. 2023; 15(8):1931. https://doi.org/10.3390/nu15081931
Chicago/Turabian StyleLópez-García, Elio, Antonio Benítez-Cabello, Antonio Pablo Arenas-de Larriva, Francisco Miguel Gutierrez-Mariscal, Pablo Pérez-Martínez, Elena María Yubero-Serrano, Antonio Garrido-Fernández, and Francisco Noé Arroyo-López. 2023. "Oral intake of Lactiplantibacillus pentosus LPG1 Produces a Beneficial Regulation of Gut Microbiota in Healthy Persons: A Randomised, Placebo-Controlled, Single-Blind Trial" Nutrients 15, no. 8: 1931. https://doi.org/10.3390/nu15081931
APA StyleLópez-García, E., Benítez-Cabello, A., Arenas-de Larriva, A. P., Gutierrez-Mariscal, F. M., Pérez-Martínez, P., Yubero-Serrano, E. M., Garrido-Fernández, A., & Arroyo-López, F. N. (2023). Oral intake of Lactiplantibacillus pentosus LPG1 Produces a Beneficial Regulation of Gut Microbiota in Healthy Persons: A Randomised, Placebo-Controlled, Single-Blind Trial. Nutrients, 15(8), 1931. https://doi.org/10.3390/nu15081931