Reduced Intake of Dietary Tryptophan Improves Beneficial Action of Budesonide in Patients with Lymphocytic Colitis and Mood Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Laboratory and Clinical Examinations
2.2.1. Routine Laboratory Tests
2.2.2. Lymphocytic Colitis Diagnosis
2.2.3. Patients’ Self-Assessment of Gastrointestinal and Mental Symptoms
2.2.4. Determination of Tryptophan and Its Metabolites in Urea
2.3. Therapeutic Interventions
2.4. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pisani, L.; Tontini, G.E.; Vecchi, M.; Pastorelli, L. Microscopic Colitis: What Do We Know About Pathogenesis? Inflamm. Bowel Dis. 2016, 22, 450–458. [Google Scholar] [CrossRef] [Green Version]
- Park, T.; Cave, D.; Marshal, C.; Marshall, C. Microscopic colitis: A review of etiology, treatment and refractory diseases. World J. Gastroenterol. 2015, 21, 8804–8810. [Google Scholar] [CrossRef]
- Wickbom, A.; Nyhlin, N.; Montgomery, S.M.; Bohr, j.; Tysk, C. Familly history, smoking and other risk factors in microscopic colitis: A case-control study. Eur. J. Gastroenterol. Hepatol. 2017, 29, 587–594. [Google Scholar] [CrossRef]
- Pardi, D.S. Diagnosis and Management of Microscopic Colitis. Am. J. Gastroenterol. 2017, 112, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Engel, P.J.H.; Fiehn, A.K.; Munck, L.K.; Kristensen, M. The subtypes of microscopic colitis from a pathologist’s perspective: Past, present and future. Ann. Transl. Med. 2018, 6, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langner, C.; Aust, D.; Ensari, A.; Vilannacci, V.; Becheanu, G.; Miehlke, S.; Geboes, K.; Münchon, A. Histology of microscopic colitis–review with a practical approach for pathologist. Histopathology 2015, 66, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Sonnenberg, A.; Turner, K.O.; Genta, R.M. Associations of Microscopic Colitis with Other Lymphocytic Disorders of the Gastrointestinal Tract. Clin. Gastroenterol. Hepatol. 2018, 16, 1762–1767. [Google Scholar] [CrossRef]
- Cesta, M.F. Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol. Pathol. 2006, 34, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Montalban-Arques, A.; Chaparro, M.; Gisbert, J.P.; Bernardo, D. The Innate Immune System in the Gastrointestinal Tract: Role of Intraepithelial Lymphocytes and Lamina Propria Innate Lymphoid Cells in Intestinal Inflammation. Inflamm. Bowel Dis. 2018, 24, 1649–1659. [Google Scholar] [CrossRef] [Green Version]
- El-Salhy, M.; Gunderson, D.; Hatlebakk, J.G.; Hausken, T. Clinical presentation, diagnosis, pathogenesis ant treatment options for lymphocytic colitis (Review). Int. J. Mol. Med. 2013, 32, 267–270. [Google Scholar] [CrossRef]
- Finke, D.; Acha-Orbea, H. Differential migration of in vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs. Eur. J. Immunol. 2001, 31, 2603–2611. [Google Scholar] [CrossRef] [PubMed]
- Fedor, I.; Zold, E.; Barta, Z. Microscopic colitis: Controversies in clinical symptoms and autoimmune comorbidities. Ann. Med. 2021, 53, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, O.H.; Fernandez–Banares, F.; Sato, T.; Pardi, D.S. Microscopic colitis: Ethiopaathology, diagnosis, and rational management. eLife 2022, 11, e79397. [Google Scholar] [CrossRef]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.H.; Lomer, M.C.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adult. Gut 2019, 68, 1–106. [Google Scholar] [CrossRef] [Green Version]
- Larsson, J.K.; Soneestedt, E.; Ohlson, B.; Manjer, J.; Sjöberg, K. The association between the intake of specific dietary components and lifestyle factors and microscopic colitis. Eur. J. Clin. Nutr. 2016, 70, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Bertani, L.; Ribaldone, D.G.; Bellini, M.; Mumolo, M.G.; Costa, F. Inflammatory Bowel Diseases: Is There a Role for Nutritional Suggestions? Nutrients 2021, 13, 1387. [Google Scholar] [CrossRef]
- Bodini, G.; Zanella, C.; Crespi, M.; Pumo, S.L.; Demarzo, M.G.; Savariono, V.; Giannini, E.G. A randomized, 6-week trails of a low FODMAP diet in patients with inflammatory bowel disease. Nutrition 2019, 67–68, 110542. [Google Scholar] [CrossRef]
- Zhan, Y.L.; Zhan, Y.A.; Dai, S.X. Is a low FODMAP diet beneficial for patients with inflammatory bowel disease? A meta-analysis and systematic review. Clin. Nutr. 2017, 37, 123–129. [Google Scholar] [CrossRef]
- Cox, S.R.; Lindsay, J.O.; Fromentin, S.; Stagg, A.J.; McCarthy, N.E.; Galleron, N.; Ibraim, S.B.; Roume, H.; Levenez, F.; Pons, N.; et al. Effects of Low FODMAP Diet on Symptoms, Fecal Microbiome, and Markers of Inflammation in Patients WITH Quiescent Infalammatory Bowel Disease in a Randomized Trial. Gastroenterology 2020, 158, 176–188.e7. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Yi, J.; Liu, X. Low-FODMAP Diet Provides Benefits for Functional Gastrointestinal Symptoms but Not for Improving Stool Consistency and Mucosal Inflammation in IBD: A Systemic Review and Meta–Analysis. Nutrients 2022, 14, 2072. [Google Scholar] [CrossRef]
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J. Amino Acids 2016, 2016, 8952520. [Google Scholar] [CrossRef] [Green Version]
- Fukuwatari, T. Possibility of Amino Acid Treatment to Prevent the Psychiatric Disorders via Modulation of the Production of Tryptophan Metabolite Kynurenic Acid. Nutrients 2020, 12, 1403. [Google Scholar] [CrossRef] [PubMed]
- Modoux, M.; Rolhion, N.; Mani, S.; Sokol, H. Tryptophan Metabolism as a Pharmacological Target. Trends Pharmacol. Sci. 2021, 42, 60–73. [Google Scholar] [CrossRef] [PubMed]
- Badawy, A.A. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int. J. Tryptophan Res. 2017, 10, 1178646917691938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chojnacki, C.; Popławski, T.; Gąsiorowska, A.; Chojnacki, J.; Błasiak, J. Serotonin in the Pathogenesis of Lymphocytic Colitis. J. Clin. Med. 2020, 10, 285. [Google Scholar] [CrossRef]
- Chojnacki, C.; Medrek-Socha, M.; Błonska, A.; Zajdel, R.; Chojnacki, J.; Poplawski, T. A Reduced Tryptophan Diet in Patients with Diarrhoea-Predominant Irritable Bowel Syndrome and Their Quality of Life trough Reduction of Serotonin Levels and Its Urinary Metabolites. Int. J. Mol. Sci. 2022, 23, 15314. [Google Scholar] [CrossRef]
- Chojnacki, C.; Wiśniewska-Jarosińska, M.; Kulig, G.; Majsterek, I.; Reiter, R.J.; Chojnacki, J. Evaluation of enterochromaffin cells ans melatonin secretion exponents in ulcerative colitis. World J. Gastroenterol. 2013, 19, 3602–3607. [Google Scholar] [CrossRef] [PubMed]
- Chojnacki, C.; Błasiak, J.; Fichna, J.; Chojnacki, J.; Popławski, T. Evaluation of Melatonin Secretion and Metabolism Exponents in Patients with Ulcerative and Lymphocytic Colitis. Molecules 2018, 23, 272. [Google Scholar] [CrossRef] [Green Version]
- Guzel, T.; Mirowska-Guzel, D. The Role of serotonin Neurotransmission in Gastrointestinal Tract. Molecules 2022, 27, 1680. [Google Scholar] [CrossRef]
- Shor, J.; Churrango, G.; Hosseini, N.; Marshall, C. Management of microscopic colitis: Challanes and solutions. Clin. Exp. Gastroenterol. 2019, 12, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Chande, N.; Yatama, N.; Bhanji, T.; Nguyen, T.M.; McDonald, J.W.D.; MacDonald, J.K. Interventions for treating for lymphocytic colitis. Cochrane Database Syst. Rev. 2017, 7, CD006096. [Google Scholar] [CrossRef] [PubMed]
- Miehlke, S.; Guagnozzi, D.; Zabana, Y.; Tontini, G.E.; Kanstrup Fiehn, A.M.; Wildt, S.; Bohr, J.; Bonderup, O.; Bouma, G.; D’Amato, M.; et al. European guidelines on microscopic colitis: United European Gastroenterology (UEG) and European Microscopic Colitis Group (EMCG) statements and recommendations. United Eur. Gastroenterol. J. 2021, 9, 13–37. [Google Scholar] [CrossRef]
- Estaban, S.; Nicolaus, C.; Garmundi, A.; Rial, R.V.; Rodriguez, A.B.; Ortega, E.; Ibars, C.B. Effects of orally administrated L-tryptophan on serotonin, melatonin, and the innate immune response in the rat. Mol. Cell. Biochem. 2004, 267, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, T.A.; Nguyen, J.C.D.; Polglaze, K.E.; Bertrand, P.P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 2016, 8, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schopman, S.M.E.; Bosman, R.C.; Muntinght, A.D.T.; van Balkom, A.J.L.M.; Batelaan, N.M. Effects of tryptophan depletion on anxiety, a systemic review. Transl. Psych. 2021, 11, 118. [Google Scholar] [CrossRef]
- Young, S.N. Acute tryptophan depletion in humans: A review of thereotical, practical and ethical aspects. J. Psych. Neurosci. 2013, 38, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Booij, L.; Van der Does, A.; Hoffmans, P.M.J.; Riedel, W.J.; Fekkes, D.; Blom, M.J.B. The effects of high-dose and low-dose tryptophan depletion on mood and cognitive functions of remitted depressed patients. Psychopharmacology 2005, 19, 267–275. [Google Scholar] [CrossRef]
- Fermstrom, J.D. Effects and side effects associated with the non-nutritional use of tryptophan bay humans. J. Nutr. 2012, 142, 2236–2244. [Google Scholar] [CrossRef] [Green Version]
- Hiratsuka, C.; Fukuwatari, T.; Sano, M.; Saito, S.; Shibata, K. Supplementing Healthy Women with up to 5.o g/d of L-Tryptophan has no Adverse Effects. J. Nutr. 2013, 143, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Clarke, G.; Fitzgerald, P.; Cryan, J.F.; Cassidy, E.M.; Quigley, E.M.; Dinan, T.G. Tryptophan degradation in irritable bowel syndrome: Evidence of indoleamine 2,3-dioxygenase activation in a male cohort. BMC Gastroenterol. 2009, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Shufflebotham, J.; Hood, S.; Hendry, J.; Hince, D.A.; Morris, K.; Nutt, D.; Probert, C.; Potokar, J. Acute tryptophan depletion alters gastrointestinal and anxiety symptoms in irritable bowel syndrome. Am. J. Gastroenterol. 2006, 101, 2582–2587. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, H.R.; Agarval, S.; Fulgoni, V.L. Tryptophan Intake in the US Adult Population is not Related to Liver or Kidney Function but is Associated with Depression and Sleep Outcomes. J. Nutr. 2016, 146, 26095–26155. [Google Scholar] [CrossRef] [PubMed]
- Pisani, L.F.; Tontini, G.E.; Marinoni, B.; Villanacci, V.; Bruni, B.; Vecchi, M.; Pastorelli, L. Biomarkers and Microscopic Colitis: An Unmet Need in Clinical Practice. Front. Med. 2017, 4, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hata, T.; Asano, Y.; Yoshihara, K.; Kimura-Todani, T.; Miyata, N.; Zhang, X.-T.; Takakura, S.; Aiba, Y.; Koga, Y.; Sudo, N. Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS ONE 2017, 12, e0180745. [Google Scholar] [CrossRef] [Green Version]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef] [Green Version]
- Alvarado, D.M.; Chen, B.; Iticovici, M.; Thaker, A.I.; Dai, N.; VanDussen, K.L.; Shaikh, N.; Lim, C.K.; Guillemin, G.J.; Tarr, P.I.; et al. Epithelial Indeloamine 2,3-Dioxygenase 1 Modulates Aryl Hydrocarbon Receptor and Notch Signaling to Increase Differerentiation of Secretory Cells and Alter Mucus-Associated Microbiota. Gastroenterology 2019, 157, 1093–1108.e11. [Google Scholar] [CrossRef]
- Zhang, B.; Jiang, M.; Zhao, J.; Song, Y.; Du, W.; Shi, J. The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Front. Endocrinol. 2022, 13, 841703. [Google Scholar] [CrossRef]
- Dudzińska, E.; Szymona, K.; Kloc, R.; Gil-Kulik, P.; Kocki, T.; Świstowska, M.; Bogucki, J.; Kocki, J.; Urbanska, E.M. Increased expression of kynurenine aminotransferases mRNA in lymphocytes of patients with inflammatory bowel disease. Ther. Adv. Gastroenterol. 2019, 12, 1756284819881304. [Google Scholar] [CrossRef]
Feature a | Controls | LC Patients |
---|---|---|
Age (years) | 46.1 ± 10.2 | 48.3 ± 9.94 |
Gender (M/F) | 8/32 | 27/33 *** |
BMI (kg/m2) | 23.4 ± 1.9 | 22.9 ± 1.85 |
GFR (mL/min) | 94.6 ± 5.32 | 96.5 ± 4.96 |
AST (U/L) | 13.2 ± 1.93 | 15.1 ± 2.55 |
ALT (U/L) | 15.8 ± 3.51 | 17.6 ± 4.21 |
CRP (µg/L) | 2.42 ± 0.89 | 3.56 ± 0.91 *** |
FC (µg/g) | 26.8 ± 7.81 | 37.4 ± 7.88 *** |
IEL (no.) | 13.9 ± 3.52 | 31.8 ± 5.76 *** |
EC (no.) | 26.8 ± 7.81 | 32.4 ± 7.85 *** |
TRP intake (mg/kg bw/d) | 20.8 ± 2.46 | 21.3 ± 2.16 |
Product a | Controls | LC Patients |
---|---|---|
TRP | 13.78 ± 1.851 | 11.54 ± 1.225 *** |
5-HIAA | 2.93 ± 0.96 | 6.54 ± 0.76 *** |
KYN | 0.46 ± 0.11 | 0.61 ± 0.18 *** |
KYNA | 2.39 ± 0.50 | 2.37 ± 0.71 |
QA | 3.07 ± 0.94 | 7.11 ± 1.03 *** |
Symptom Rating Scale a | Budesonide Treatment | LC TRP Norm | LC TRP– |
---|---|---|---|
GSRS | before | 31.5 (6.0) | 31.0 (6.0) |
after | 14.0 (4.0) | 10.5 (3.0) *** | |
HAM-A | before | 19.5 (3.0) | 21.0 (4.0) |
after | 14.0 (5.0) | 11.0 (3.0) ** | |
HAM-B | before | 19.0 (7.0) | 18.0 (7.0) ** |
after | 16.0 (5.0) | 12.0 (2.2) *** |
Product a | Budesonide Treatment | LC TRP Norm | LC TRP– |
---|---|---|---|
TRP | before | 11.550 (2.00) | 11.300 (1.70) |
after | 11.300 (1.90) | 9.800 (1.00) *** | |
5-HIAA | before | 6.600 (1.00) | 6.300 (1.60) |
after | 5.650 (0.80) | 3.400 (0.70) *** | |
KYN | before | 0.630 (0.26) | 0.560 (0.15) |
after | 0.550 (0.28) | 0.515 (0.15) | |
KYNA | before | 2.560 (0.73) | 2.130 (0.64) ** |
after | 2.735 (0.65) | 3.165 (0.86) ** | |
QA | before | 7.240 (1.76) | 7.200 (1.93) |
after | 6.920 (1.85) | 3.970 (1.16) *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chojnacki, C.; Gąsiorowska, A.; Popławski, T.; Błońska, A.; Konrad, P.; Zajdler, R.; Chojnacki, J.; Blasiak, J. Reduced Intake of Dietary Tryptophan Improves Beneficial Action of Budesonide in Patients with Lymphocytic Colitis and Mood Disorders. Nutrients 2023, 15, 1674. https://doi.org/10.3390/nu15071674
Chojnacki C, Gąsiorowska A, Popławski T, Błońska A, Konrad P, Zajdler R, Chojnacki J, Blasiak J. Reduced Intake of Dietary Tryptophan Improves Beneficial Action of Budesonide in Patients with Lymphocytic Colitis and Mood Disorders. Nutrients. 2023; 15(7):1674. https://doi.org/10.3390/nu15071674
Chicago/Turabian StyleChojnacki, Cezary, Anita Gąsiorowska, Tomasz Popławski, Aleksandra Błońska, Paulina Konrad, Radosław Zajdler, Jan Chojnacki, and Janusz Blasiak. 2023. "Reduced Intake of Dietary Tryptophan Improves Beneficial Action of Budesonide in Patients with Lymphocytic Colitis and Mood Disorders" Nutrients 15, no. 7: 1674. https://doi.org/10.3390/nu15071674
APA StyleChojnacki, C., Gąsiorowska, A., Popławski, T., Błońska, A., Konrad, P., Zajdler, R., Chojnacki, J., & Blasiak, J. (2023). Reduced Intake of Dietary Tryptophan Improves Beneficial Action of Budesonide in Patients with Lymphocytic Colitis and Mood Disorders. Nutrients, 15(7), 1674. https://doi.org/10.3390/nu15071674