The Protective Effect of Walnut Oligopeptides against Indomethacin-Induced Gastric Ulcer in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Identification of WOPs
2.2. Chemicals and Reagents
2.3. Animals and Experimental Design
2.4. Indomethacin-Induced Gastric Ulcer
2.5. Evaluation of Gastric Mucosal Injury
2.6. Transmission Electron Micrograph Analysis of Gastric Injury
2.7. Biochemical Assay of Serum and Gastric Tissues
2.8. Expression of COX-1 and COX-2 mRNA by RT-PCR
2.9. Untargeted Metabolomics
2.10. Statistical Analysis
3. Results
3.1. Body Weight and Food Intake
3.2. Effect of WOPs on Macroscopic Gastric Mucosal Injury
3.3. Transmission Electron Micrograph Images of Gastric Injuries
3.4. Effect of WOPs on the PGE2 Contents
3.5. Effects of WOPs on the NO and MPO Levels
3.6. Effect of WOPs on Indomethacin-Induced Oxidative Stress
3.7. Effect of WOPs on the Release of Inflammatory Cytokines
3.8. Effect of WOPs on mRNA Expression of COX-1 and COX-2 in Gastric Tissue
3.9. Effect of WOPs on Plasma Metabolism in Rats
3.9.1. Screening for Differential Metabolites
3.9.2. Differential Metabolite Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bosch, D.J.; Nieuwenhuijs-Moeke, G.J.; van Meurs, M.; Abdulahad, W.H.; Struys, M. Immune Modulatory Effects of Nonsteroidal Anti-inflammatory Drugs in the Perioperative Period and Their Consequence on Postoperative Outcome. Anesthesiology 2022, 136, 843–860. [Google Scholar] [CrossRef] [PubMed]
- Barut, E.N.; Engin, S.; Saygın, İ.; Kaya-Yasar, Y.; Arici, S.; Sezen, S.F. Alpha-lipoic acid: A promising adjuvant for nonsteroidal anti-inflammatory drugs therapy with improved efficacy and gastroprotection. Drug Dev. Res. 2021, 82, 844–851. [Google Scholar] [CrossRef] [PubMed]
- García Rodríguez, L.A.; Lanas, A.; Soriano-Gabarró, M.; Vora, P.; Soriano, L.C. Effect of Proton Pump Inhibitors on Risks of Upper and Lower Gastrointestinal Bleeding among Users of Low-Dose Aspirin: A Population-Based Observational Study. J. Clin. Med. 2020, 9, 928. [Google Scholar] [CrossRef] [Green Version]
- Laine, L.; Takeuchi, K.; Tarnawski, A. Gastric mucosal defense and cytoprotection: Bench to bedside. Gastroenterology 2008, 135, 41–60. [Google Scholar] [CrossRef] [PubMed]
- Bjarnason, I.; Scarpignato, C.; Holmgren, E.; Olszewski, M.; Rainsford, K.D.; Lanas, A. Mechanisms of Damage to the Gastrointestinal Tract from Nonsteroidal Anti-Inflammatory Drugs. Gastroenterology 2018, 154, 500–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomita, T.; Sadakata, H.; Tamura, M.; Matsui, H. Indomethacin-induced generation of reactive oxygen species leads to epithelial cell injury before the formation of intestinal lesions in mice. J. Physiol. Pharmacol. 2014, 65, 435–440. [Google Scholar]
- Teixeira, D.F.; Santos, A.M.; Oliveira, A.M.S.; Nascimento Junior, J.A.C.; Frank, L.A.; Santana Souza, M.T.D.; Camargo, E.A.; Serafini, M.R. Pharmaceuticals agents for preventing NSAID-induced gastric ulcers: A patent review. Expert Rev. Clin. Pharmacol. 2021, 14, 677–686. [Google Scholar] [CrossRef]
- Venerito, M.; Wex, T.; Malfertheiner, P. Nonsteroidal Anti-Inflammatory Drug-Induced Gastroduodenal Bleeding: Risk Factors and Prevention Strategies. Pharmaceuticals 2010, 3, 2225–2237. [Google Scholar] [CrossRef] [Green Version]
- Boghossian, T.A.; Rashid, F.J.; Thompson, W.; Welch, V.; Moayyedi, P.; Rojas-Fernandez, C.; Pottie, K.; Farrell, B. Deprescribing versus continuation of chronic proton pump inhibitor use in adults. Cochrane Database Syst. Rev. 2017, 3, Cd011969. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef] [Green Version]
- Castro, G.A.; Carvalho, J.E.; Tinti, S.V.; Possenti, A.; Sgarbieri, V.C. Anti-ulcerogenic effect of a whey protein isolate and collagen hydrolysates against ethanol ulcerative lesions on oral administration to rats. J. Med. Food 2010, 13, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Kan, J.; Hood, M.; Burns, C.; Scholten, J.; Chuang, J.; Tian, F.; Pan, X.; Du, J.; Gui, M. A Novel Combination of Wheat Peptides and Fucoidan Attenuates Ethanol-Induced Gastric Mucosal Damage through Anti-Oxidant, Anti-Inflammatory, and Pro-Survival Mechanisms. Nutrients 2017, 9, 978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, H.; Wang, Z.; Hou, H.; Zhang, Z.; Li, B. Protective Effect of Cod (Gadus macrocephalus) Skin Collagen Peptides on Acetic Acid-Induced Gastric Ulcer in Rats. J. Food Sci. 2016, 81, H1807–H1815. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wu, L.; Du, Q.; Ren, J.W.; Chen, Q.H.; Li, D.; Mao, R.X.; Liu, X.R.; Li, Y. Small Molecule Oligopeptides Isolated from Walnut (Juglans regia L.) and Their Anti-Fatigue Effects in Mice. Molecules 2018, 24, 45. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Hao, Y.T.; Zhu, N.; Liu, X.R.; Kang, J.W.; Mao, R.X.; Hou, C.; Li, Y. The Gastroprotective Effect of Small Molecule Oligopeptides Isolated from Walnut (Juglans regia L.) against Ethanol-Induced Gastric Mucosal Injury in Rats. Nutrients 2020, 12, 1138. [Google Scholar] [CrossRef]
- Du, Q.; Wu, L.; Fan, R.; Hao, Y.; Liu, X.; Mao, R.; Liu, R.; Li, Y. Walnut Oligopeptide Delayed Improved Aging-Related Learning and Memory Impairment in SAMP8 Mice. Nutrients 2022, 14, 5059. [Google Scholar] [CrossRef]
- Zhu, N.; Liu, R.; He, L.X.; Mao, R.X.; Liu, X.R.; Zhang, T.; Hao, Y.T.; Fan, R.; Xu, M.H.; Li, Y. Radioprotective Effect of Walnut Oligopeptides Against Gamma Radiation-Induced Splenocyte Apoptosis and Intestinal Injury in Mice. Molecules 2019, 24, 1582. [Google Scholar] [CrossRef] [Green Version]
- Boelsterli, U.A.; Redinbo, M.R.; Saitta, K.S. Multiple NSAID-induced hits injure the small intestine: Underlying mechanisms and novel strategies. Toxicol. Sci. 2013, 131, 654–667. [Google Scholar] [CrossRef]
- Saeed AL-Wajeeh, N.; Halabi, M.F.; Hajrezaie, M.; MDhiyaaldeen, S.; Abdulaziz Bardi, D.; MSalama, S.; Rouhollahi, E.; Karimian, H.; Abdolmalaki, R.; Azizan, A.H.S.; et al. The Gastroprotective Effect of Vitex pubescens Leaf Extract against Ethanol-Provoked Gastric Mucosal Damage in Sprague-Dawley Rats. PLoS ONE 2016, 11, e0157431. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, H.; Mei, N.; Ma, C.; Lou, Z.; Lv, W.; He, G. Protective effects of polysaccharide from Dendrobium nobile against ethanol-induced gastric damage in rats. Int. J. Biol. Macromol. 2018, 107 Pt A, 230–235. [Google Scholar] [CrossRef]
- Motawi, T.K.; Abd Elgawad, H.M.; Shahin, N.N. Gastroprotective effect of leptin in indomethacin-induced gastric injury. J. Biomed. Sci. 2008, 15, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Bindu, S.; Pal, C.; Dey, S.; Goyal, M.; Alam, A.; Iqbal, M.S.; Dutta, S.; Sarkar, S.; Kumar, R.; Maity, P. Translocation of heme oxygenase-1 to mitochondria is a novel cytoprotective mechanism against non-steroidal anti-inflammatory drug-induced mitochondrial oxidative stress, apoptosis, and gastric mucosal injury. J. Biol. Chem. 2011, 286, 39387–39402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maity, P.; Bindu, S.; Dey, S.; Goyal, M.; Alam, A.; Pal, C.; Mitra, K.; Bandyopadhyay, U. Indomethacin, a non-steroidal anti-inflammatory drug, develops gastropathy by inducing reactive oxygen species-mediated mitochondrial pathology and associated apoptosis in gastric mucosa: A novel role of mitochondrial aconitase oxidation. J. Biol. Chem. 2009, 284, 3058–3068. [Google Scholar] [CrossRef] [Green Version]
- El-Maraghy, S.A.; Rizk, S.M.; Shahin, N.N. Gastroprotective effect of crocin in ethanol-induced gastric injury in rats. Chem. Biol. Interact. 2015, 229, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Raish, M.; Ahmad, A.; Ansari, M.A.; Alkharfy, K.M.; Aljenoobi, F.I.; Jan, B.L.; Al-Mohizea, A.M.; Khan, A.; Ali, N. Momordica charantia polysaccharides ameliorate oxidative stress, inflammation, and apoptosis in ethanol-induced gastritis in mucosa through NF-kB signaling pathway inhibition. Int. J. Biol. Macromol. 2018, 111, 193–199. [Google Scholar] [CrossRef]
- Shahin, N.N.; Abdelkader, N.F.; Safar, M.M. A Novel Role of Irbesartan in Gastroprotection against Indomethacin-Induced Gastric Injury in Rats: Targeting DDAH/ADMA and EGFR/ERK Signaling. Sci. Rep. 2018, 8, 4280. [Google Scholar] [CrossRef] [Green Version]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef] [Green Version]
- Golbabapour, S.; Hajrezaie, M.; Hassandarvish, P.; Majid, N.A.; Hadi, A.H.; Nordin, N.; Abdulla, M.A. Acute toxicity and gastroprotective role of M. pruriens in ethanol-induced gastric mucosal injuries in rats. Biomed. Res. Int. 2013, 2013, 974185. [Google Scholar] [CrossRef] [Green Version]
- Akahoshi, T.; Tanigawa, T.; Sarfeh, I.J.; Chiou, S.K.; Hashizume, M.; Maehara, Y.; Jones, M.K. Selective cyclooxygenase (COX) inhibition causes damage to portal hypertensive gastric mucosa: Roles of nitric oxide and NF-kappaB. FASEB J. 2005, 19, 1163–1165. [Google Scholar] [CrossRef]
- Robert, A.; Nezamis, J.E.; Lancaster, C.; Hanchar, A.J. Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl and thermal injury. Gastroenterology 1979, 77, 433–440. [Google Scholar] [CrossRef]
- Hwang, I.Y.; Jeong, C.S. Gastroprotective Activities of Sennoside A and Sennoside B via the Up-Regulation of Prostaglandin E2 and the Inhibition of H(+)/K(+)-ATPase. Biomol. Ther. 2015, 23, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Triste, N.E.; Gonzalez-Garcia, M.P.; Jimenez-Andrade, J.M.; Castaneda-Hernandez, G.; Chavez-Pina, A.E. Pharmacological evidence for the participation of NO-cGMP-KATP pathway in the gastric protective effect of curcumin against indomethacin-induced gastric injury in the rat. Eur. J. Pharmacol. 2014, 730, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Lucetti, L.T.; Silva, R.O.; Santana, A.P.; de Melo Tavares, B.; Vale, M.L.; Soares, P.M.; de Lima Junior, F.J.; Magalhaes, P.J.; de Queiroz Cunha, F.; de Albuquerque Ribeiro, R. Nitric Oxide and Hydrogen Sulfide Interact When Modulating Gastric Physiological Functions in Rodents. Dig. Dis. Sci. 2017, 62, 93–104. [Google Scholar] [CrossRef]
- Wallace, J.L.; Ianaro, A.; de Nucci, G. Gaseous Mediators in Gastrointestinal Mucosal Defense and Injury. Dig. Dis. Sci. 2017, 62, 2223–2230. [Google Scholar] [CrossRef] [Green Version]
- Hegab, I.I.; Nagi Abd-Ellatif, R.; Sadek, M.T. The Gastrprotective Effect of N- acetylcysteine and Genistein in Indomethacin-Induced Gastric Injury in Rats. Can. J. Physiol. Pharmacol. 2018, 96, 1161–1170. [Google Scholar] [CrossRef]
- Boyacioglu, M.; Kum, C.; Sekkin, S.; Yalinkilinc, H.S.; Avci, H.; Epikmen, E.T.; Karademir, U. The effects of lycopene on DNA damage and oxidative stress on indomethacin-induced gastric ulcer in rats. Clin. Nutr. 2016, 35, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, A.; Hoa, N.; Jones, M.K.; Tarnawski, A.S. NSAID-induced injury of gastric epithelial cells is reversible: Roles of mitochondria, AMP kinase, NGF, and PGE(2). Am. J. Physiol. Gastrointest Liver Physiol. 2019, 317, G862–G871. [Google Scholar] [CrossRef]
- Kolgazi, M.; Cantali-Ozturk, C.; Deniz, R.; Ozdemir-Kumral, Z.N.; Yuksel, M.; Sirvanci, S.; Yegen, B.C. Nesfatin-1 alleviates gastric damage via direct antioxidant mechanisms. J. Surg. Res. 2015, 193, 111–118. [Google Scholar] [CrossRef]
- Zhu, N.; Liu, R.; Xu, M.H.; Li, Y. Neuroprotective Actions of Different Exogenous Nucleotides in H(2)O(2)-Induced Cell Death in PC-12 Cells. Molecules 2023, 28, 1226. [Google Scholar] [CrossRef]
- Wang, X.; Liu, R.; Wei, C.; Xu, M.; Li, Y. Exogenous Nucleotides Improved the Oxidative Stress and Sirt-1 Protein Level of Brown Adipose Tissue on Senescence-Accelerated Mouse Prone-8 (SAMP8) Mice. Nutrients 2022, 14, 2796. [Google Scholar] [CrossRef]
- Peskar, B.M. Role of cyclooxygenase isoforms in gastric mucosal defence. J. Physiol. Paris 2001, 95, 3–9. [Google Scholar] [PubMed]
- Fornai, M.; Natale, G.; Colucci, R.; Tuccori, M.; Carazzina, G.; Antonioli, L.; Baldi, S.; Lubrano, V.; Abramo, A.; Blandizzi, C. Mechanisms of protection by pantoprazole against NSAID-induced gastric mucosal damage. Naunyn Schmiedebergs Arch. Pharmacol. 2005, 372, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Z.; Liu, Y.H.; Liang, J.L.; Huang, Q.H.; Dou, Y.X.; Nie, J.; Zhuo, J.Y.; Wu, X.; Chen, J.N.; Su, Z.R. Protective role of beta-patchoulene from Pogostemon cablin against indomethacin-induced gastric ulcer in rats: Involvement of anti-inflammation and angiogenesis. Phytomedicine 2018, 39, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef] [PubMed]
Groups | Number | Body Weight (g) | Food Intake (G) | Food Utilization (%) | |
---|---|---|---|---|---|
Initial | Final | ||||
Normal | 10 | 221.00 ± 12.83 | 399.25 ± 18.21 | 650.00 ± 63.51 | 27.54 ± 4.34 |
Model | 10 | 217.67 ± 8.23 | 387.33 ± 26.31 | 665.31 ± 49.19 | 25.74 ± 5.44 |
Omeprazole | 10 | 210.58 ± 14.00 | 379.50 ± 41.84 | 651.00 ± 59.62 | 25.90 ± 6.77 |
WOPs 0.22 g/kg | 10 | 214.78 ± 12.94 | 382.11 ± 27.54 | 665.25 ± 69.42 | 25.28 ± 3.62 |
WOPs 0.44 g/kg | 10 | 212.62 ± 12.05 | 394.23 ± 37.72 | 681.19 ± 43.83 | 26.61 ± 4.57 |
WOPs 0.88 g/kg | 10 | 215.73 ± 9.17 | 379.73 ± 32.63 | 678.84 ± 21.29 | 24.15 ± 4.79 |
Mode | Group | A | R2Y(cum) | Q2(cum) | R2 | Q2 |
---|---|---|---|---|---|---|
Positive | WOPs-H vs. Model | 3 | 1 | 0.77 | (0.0, 0.94) | (0.0, −0.74) |
Positive | WOPs-H vs. Omeprazole | 3 | 1 | 0.83 | (0.0, 0.95) | (0.0, −0.90) |
Negative | WOPs-H vs. Model | 3 | 1 | 0.67 | (0.0, 0.93) | (0.0, −0.77) |
Negative | WOPs-H vs. Omeprazole | 3 | 1 | 0.86 | (0.0, 0.94) | (0.0, −0.99) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Zhu, N.; Hao, Y.; Liu, X.; Kang, J.; Mao, R.; Yu, X.; Li, Y. The Protective Effect of Walnut Oligopeptides against Indomethacin-Induced Gastric Ulcer in Rats. Nutrients 2023, 15, 1675. https://doi.org/10.3390/nu15071675
Liu R, Zhu N, Hao Y, Liu X, Kang J, Mao R, Yu X, Li Y. The Protective Effect of Walnut Oligopeptides against Indomethacin-Induced Gastric Ulcer in Rats. Nutrients. 2023; 15(7):1675. https://doi.org/10.3390/nu15071675
Chicago/Turabian StyleLiu, Rui, Na Zhu, Yuntao Hao, Xinran Liu, Jiawei Kang, Ruixue Mao, Xiaochen Yu, and Yong Li. 2023. "The Protective Effect of Walnut Oligopeptides against Indomethacin-Induced Gastric Ulcer in Rats" Nutrients 15, no. 7: 1675. https://doi.org/10.3390/nu15071675
APA StyleLiu, R., Zhu, N., Hao, Y., Liu, X., Kang, J., Mao, R., Yu, X., & Li, Y. (2023). The Protective Effect of Walnut Oligopeptides against Indomethacin-Induced Gastric Ulcer in Rats. Nutrients, 15(7), 1675. https://doi.org/10.3390/nu15071675