Dietary Protein Intake and Physical Function in Māori and Non-Māori Adults of Advanced Age in New Zealand: LiLACS NZ
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life and Living in Advanced Age: A Cohort Study in New Zealand (LiLACS-NZ)
2.2. Dietary Assessment: Multiple-Pass 24-H Recall (MPR)
Selection of Nutrients
2.3. Health and Well-Being Questionnaire and Physical Assessment
2.4. Statistical Analysis
3. Results
3.1. Participant Characteristics, Physical Function and Nutrient Intake
3.1.1. Māori Participants
3.1.2. Non-Māori Participants
3.1.3. Relationship between Protein Intake in 2011 and Physical Function Measures in 2021
Men, n = 5 | Women, n = 18 | ||||||
---|---|---|---|---|---|---|---|
Age, years (mean ± SD) | 93.5 ± 3.8 | 92.0 ± 2.4 | |||||
Education, n (%) | Primary or no school | 2 (40.0) | 3 (16.7) | ||||
Secondary school, no qualification | 1 (20.0) | 9 (50.0) | |||||
Secondary school, qualification | 2 (40.0) | 4 (22.2) | |||||
Trade/tertiary qualification | 0 (0.0) | 2 (11.1) | |||||
Marital status, n (%) | Never married | 1 (33.3) | 2 (18.2) | ||||
Married | 2 (66.7) | 6 (54.5) | |||||
Widow | 0 (0.0) | 1 (9.1) | |||||
Divorced | 0 (0.0) | 2 (18.2) | |||||
NZ deprivation index, n (%) a | 1–3 (low) | 2 (40.0) | 2 (11.1) | ||||
4–7 (medium) | 1 (20.0) | 5 (27.8) | |||||
8 and above (high) | 2 (40.0) | 11 (61.1) | |||||
Who do you live with? n (%) | Alone | 0 (0.0) | 8 (44.4) | ||||
With others | 5 (100.0) | 10 (55.6) | |||||
Where do you live? n (%) | Private home | 4 (100.0) | 12 (70.6) | ||||
Retirement village | 0 (0.0) | 2 (11.8) | |||||
Rest home | 0 (0.0) | 3 (17.6) | |||||
Other | 0 (0.0) | 0 (0.0) | |||||
2011 | 2021 | p-Value | 2011 | 2021 | p-Value | ||
BMI (Kg/m2), mean ± SD | 28.9 ± 5.4 | 29.0 ± 4.7 | 0.655 | 28.0 ± 3.4 | 24.5 ± 5.0 | 0.161 | |
Height (m), mean ± SD | 1.65 ± 0.01 | 1.61 ± 0.1 | 0.180 | 1.56 ± 0.1 | 1.54 ± 0.1 | 0.017 * | |
Weight (Kg), mean ± SD | 78.0 ± 13.4 | 70.9 ± 8.9 | 0.285 | 67.7 ± 7.9 | 58.1 ± 9.1 | 0.002 * | |
Muscle mass (Kg), mean ± SD | 52.4 ± 3.4 | 54.9 ± 2.5 | 0.285 | 39.1 ± 3.0 | 35.9 ± 2.4 | 0.213 | |
Fat mass (%), mean ± SD | 28.1 ± 9.5 | 19.7 ± 7.8 | 0.109 | 38.2 ± 4.6 | 33.9 ± 5.7 | 0.025 * | |
Bone mass (Kg), mean ± SD | 2.8 ± 0.2 | 2.5 ± 0.2 | 0.276 | 2.1 ± 0.2 | 2.0 ± 0.2 | 0.048 * | |
Systolic BP standing (mmHg), mean ± SD | 147 ± 11 | 161 ± 12 | 0.285 | 150 ± 19 | 154 ± 13 | 0.398 | |
Systolic BP sitting (mmHg), mean ± SD | 151 ± 22 | 160 ± 28 | 0.715 | 148 ± 14 | 153 ± 17 | 0.477 | |
Diastolic BP standing (mmHg), mean ± SD | 85 ± 17 | 80 ± 9 | 0.109 | 92 ± 11 | 88 ± 10 | 0.018 * | |
Diastolic BP sitting (mmHg), mean ± SD | 77 ± 7 | 72 ± 12 | 0.715 | 83 ± 10 | 85 ± 9 | 0.929 | |
NEADL score, median (IQR) | 17.5 (16.0–18.0) | 16.5 (14.0–19.0) | 1.000 | 19.5 (18.0–21.0) | 15.0 (8.0–20.0) | <0.001 * | |
SPPB score, mean ± SD | 9.8 ± 1.7 | 4.5 ± 5.5 | 0.285 | 9.2 ± 3.4 | 6.8 ± 3.6 | 0.006 * | |
Grip strength (Kg), mean ± SD | 33.0 ± 5.8 | 22.4 ± 6.1 | 0.109 | 21.4 ± 3.3 | 16.7 ± 4.1 | 0.004 * | |
Total PASE score, median (IQR) | 145 (107–193) | 32 (0–185) | 0.285 | 133 (83–167) | 70 (18-93) | 0.013 * | |
Energy intake (kcal), mean ± SD | 1874 ± 705 | 1054 ± 515 | 0.05 * | 1483 ± 331 | 1337 ± 473 | 0.026 * | |
Protein intake (g), mean ± SD | 81.2 ± 27.5 | 40.8 ± 17.62 | 0.043 * | 56.0 ± 16.5 | 51.7 ± 22.3 | 0.096 | |
Protein intake (g/Kg BW/day), mean ± SD | 1.09 ± 0.44 | 0.69 ± 0.07 | 0.109 | 0.86 ± 0.26 | 0.86 ± 0.36 | 0.859 | |
Carbohydrate intake (g), mean ± SD | 194.7 ± 90.4 | 132.5 ± 76.5 | 0.138 | 166.2 ± 46.9 | 166.9 ± 67.6 | 0.433 | |
Fat intake (g), mean ± SD | 86.0 ± 37.6 | 40.3 ± 18.8 | 0.043 * | 63.9 ± 16.0 | 48.1 ± 17.3 | 0.009 * | |
Saturated fat intake (g), mean ± SD | 34.7 ± 15.2 | 16.1 ± 9.6 | 0.080 | 26.6 ± 8.3 | 21.7 ± 9.9 | 0.109 | |
Cholesterol intake (g), mean ± SD | 282.4 ± 171.9 | 178.3 ± 171.4 | 0.043 * | 221.1 ± 110.6 | 127.9 ± 64.4 | 0.016 * | |
Percent energy intake from protein (%), mean ± SD
| 17.7 ± 3.3 4 (80.0%) | 15.9 ± 4.4 3 (60.0%) | 0.686 1.000 | 15.2 ± 3.5 9 (64.3%) | 15.5 ± 4.8 5 (35.7%) | 0.826 0.219 | |
Percent energy intake from carbohydrate (%), mean ± SD
| 41.1 ± 12.4 2 (40%) | 48.6 ± 5.1 3 (60%) | 0.225 1.000 | 44.7 ± 6.1 7 (15%) | 50.3 ± 9.6 8 (57.1%) | 0.022 * 1.000 | |
Percent energy intake from fat (%), mean ± SD
| 41.7 ± 13.3 2 (40%) | 35.7 ± 5.5 2 (40%) | 0.225 1.000 | 39.0 ± 5.9 4 (28.6%) | 32.7 ± 8.4 7 (50.0%) | 0.056 0.453 |
Men, n = 26 | Women, n = 32 | ||||||
---|---|---|---|---|---|---|---|
Age, years (mean ± SD) | 95.2 ± 0.4 | 95.3 ± 0.4 | |||||
Education, n (%) | Primary or no school | 3 (11.5) | 1 (3.1) | ||||
Secondary school, no qualification | 9 (34.6) | 11 (34.4) | |||||
Secondary school, qualification | 7 (26.9) | 10 (31.3) | |||||
Trade/Tertiary qualification | 7 (26.9) | 10 (31.3) | |||||
Marital status, n (%) | Never married | 0 (0.0) | 0 (0.0) | ||||
Married | 6 (66.7) | 1 (12.5) | |||||
Widow | 3 (33.3) | 5 (62.5) | |||||
Divorced | 0 (0.0) | 2 (25.0) | |||||
NZ deprivation index, n (%) a | 1–3 (low) | 8 (30.8) | 5 (15.6) | ||||
4–7 (medium) | 11 (42.3) | 11 (34.4) | |||||
8 and above (high) | 7 (26.9) | 16 (50.0) | |||||
Who do you live with? n (%) | Alone | 8 (30.8) | 14 (43.8) | ||||
With others | 18 (69.2) | 18 (56.3) | |||||
Where do you live? n (%) | Private home | 12 (52.2) | 13 (41.9) | ||||
Retirement village | 8 (34.8) | 6 (19.4) | |||||
Rest home | 3 (13.0) | 12 (38.7) | |||||
Other | 0 (0.0) | 0 (0.0) | |||||
2011 | 2021 | p-Value | 2011 | 2021 | p-Value | ||
BMI (Kg/m2), mean ± SD | 26.4 ± 3.6 | 24.7 ± 4.6 | 0.013 * | 27.1 ± 3.9 | 26.0 ± 3.3 | 0.398 | |
Height (m), mean ± SD | 1.68 ± 0.1 | 1.64 ± 0.1 | <0.001 * | 1.56 ± 0.1 | 1.52 ± 0.1 | <0.001 * | |
Weight (Kg), mean ± SD | 74.2 ± 9.5 | 65.8 ± 11.4 | 0.001 * | 65.8 ± 9.3 | 62.0 ± 9.4 | 0.002 * | |
Muscle mass (Kg), mean ± SD | 50.96 ± 4.7 | 45.71 ± 3.4 | 0.034 * | 38.03 ± 3.9 | 36.81 ± 3.4 | 0.266 | |
Fat mass (%), mean ± SD | 27.39 ± 6.5 | 24.97 ± 10.0 | 0.504 | 37.65 ± 7.2 | 35.23 ± 8.7 | 0.085 * | |
Bone mass (Kg), mean ± SD | 2.71 ± 0.2 | 2.46 ± 0.2 | 0.003 * | 2.06 ± 0.27 | 1.98 ± 0.2 | 0.005 * | |
Systolic BP standing (mmHg), mean ± SD | 147 ± 19 | 142 ± 29 | 0.510 | 152 ± 22 | 148 ± 17 | 0.717 | |
Systolic BP sitting (mmHg), mean ± SD | 147 ± 20 | 139 ± 24 | 0.083 | 147 ± 21 | 144 ± 26 | 0.728 | |
Diastolic BP standing (mmHg), mean ± SD | 83 ± 10 | 74 ± 16 | <0.001 * | 87 ± 15 | 83 ± 1 | <0.001 * | |
Diastolic BP sitting (mmHg), mean ± SD | 79 ± 11 | 70 ± 13 | 0.011 * | 77 ± 12 | 78 ± 15 | 0.687 | |
NEADL score wave 7, median (IQR) | 18.0 (15.0–19.0) | 12.0 (8.0–16.0) | <0.001 * | 20.0 (19.0–21.0) | 10.0 (6.0–16.0) | <0.001 * | |
SPPB score wave 7, mean ± SD | 10.4 ± 1.5 | 5.1 ± 3.4 | <0.001 * | 8.5 ± 2.5 | 4.7 ± 3.5 | <0.001 * | |
Grip strength (Kg), mean ± SD | 33.2 ± 5.8 | 24.4 ± 6.2 | <0.001 * | 17.8 ± 4.2 | 15.0 ± 3.61 | <0.001 * | |
Total PASE score, median (IQR) | 116 (86–151) | 27 (0–67) | <0.001 * | 88 (55–142) | 28 (9–83) | <0.001 * | |
Energy (kcal), mean ± SD | 2040 ± 636 | 1581 ± 464 | 0.003 * | 1637 ± 418 | 1478 ± 475 | 0.086 | |
Protein (g), mean ± SD | 80.3 ± 20.7 | 61.2 ± 27.4 | 0.006 * | 66.7 ± 18.6 | 51.8 ± 15.6 | 0.001 * | |
Protein (g/Kg BW/day), mean ± SD | 1.08 ± 0.29 | 0.94 ± 0.38 | 0.295 | 1.00 ± 0.29 | 0.84 ± 0.26 | 0.010 * | |
Carbohydrate (g), mean ± SD | 212.9 ± 61.5 | 187.2 ± 66.1 | 0.025 * | 175.2 ± 44.6 | 180.7 ± 66.4 | 0.393 | |
Fat (g), mean ± SD | 86.2 ± 33.3 | 61.5 ± 29.9 | 0.004 * | 71.6 ± 27.2 | 59.3 ± 30.9 | 0.106 | |
Saturated fat (g), mean ± SD | 35.5 ± 16.3 | 26.1 ± 14.2 | 0.023 * | 28.3 ± 14.0 | 26.4 ± 13.5 | 0.572 | |
Cholesterol (mg), mean ± SD | 302.4 ± 169.0 | 222.2 ± 128.5 | 0.062 | 249.3 ± 127.9 | 239.9 ± 170.9 | 0.428 | |
Percent energy intake from protein (%), mean ± SD
| 16.1 ± 2.7 16 (61.5%) | 15.9 ± 5.9 14 (53.8%) | 0.849 0.791 | 16.4 ± 3.1 20 (66.7%) | 14.2 ± 2.8 11 (36.7%) | 0.001 * 0.035 * | |
Percent energy intake from carbohydrate (%), mean ± SD
| 42.9 ± 8.9 7 (26.9%) | 47.6 ± 10.5 12 (46.2%) | 0.038 * 0.227 | 43.5 ± 7.6 14 (46.7%) | 49.0 ± 10.8 18 (60.0%) | 0.037 * 0.424 | |
Percent energy intake from fat (%), mean ± SD
| 37.4 ± 6.3 7 (26.9%) | 34.0 ± 9.9 14 (53.8%) | 0.052 0.118 | 38.6 ± 7.1 11 (36.7%) | 35.6 ± 11.0 13 (43.3%) | 0.271 0.804 |
Variables | B (95% CI), p-Value |
---|---|
2011 Protein intake (g/kg BW/day) # | 13.59 (6.67–20.51), <0.001 * |
2011 Energy intake (kcal/day) # | −0.009 (−0.015–−0.003), 0.004 * |
Age, years | −0.32 (−0.87–0.23), 0.253 |
Gender (ref: Women) | 0.49 (−2.77–3.76), 0.767 |
Ethnicity (ref: Māori) | −1.43 (−9.49–6.64), 0.729 |
NZ deprivation index a
| 0.02 (−2.31–2.35), 0.988 −2.01 (−3.80–−0.22), 0.028 * |
Current living arrangement # Who do you live with? (ref: with others) | 2.83 (0.89–4.77), 0.004 * |
Current housing situation # Where do you live?
| 2.76 (0.17–5.35), 0.037 * 3.82 (0.72–6.91), 0.016 * |
Current # PASE b score | 0.04 (0.03–0.05), <0.001 * |
Current # Fat mass (%) | 0.05 (−0.06–0.15), 0.385 |
Current # Grip strength (kg) | 0.16 (−0.06–0.37), 0.151 |
Variables | B (95% CI), p-Value |
---|---|
2011 Protein intake (g/kg BW/day) # | −0.030 (−6.858–6.798), 0.993 |
2011 Energy intake (kcal/day) # | −0.001 (−0.005–0.003), 0.597 |
Age, years | 0.207 (−0.281–0.694), 0.406 |
Gender (ref: Women) | −4.675 (−8.324–−1.027), 0.012 * |
Ethnicity (ref: Māori) | −5.841 (−12.703–1.021), 0.095 |
Education status (ref: tertiary qualification)
| −1.154 (−6.238–3.931), 0.657 −1.311 (−4.188–1.565), 0.371 1.338 (−1.274–3.950), 0.315 1.187 (−2.176–4.550), 0.489 |
NZ deprivation index (ref: High) a
| −1.813 (−3.607–−0.018), 0.048 * −0.703 (−2.406–1.000), 0.418 |
Current living arrangement# Who do you live with (ref: with others) | −0.551 (−2.478–1.376), 0.575 |
Current housing situation# Where do you live?
| 1.423 (−1.289–4.135), 0.304 0.945 (−1.873–3.763), 0.511 |
Current # PASE b score | 0.001 (−0.001–0.014), 0.828 |
Current # Fat mass (%) | −0.086 (−0.169–−0.003), 0.043 * |
Current # Grip strength (kg) | 0.308 (0.059–0.558), 0.015 * |
2011 SPPB score | 0.299 (−0.122–0.719), 0.164 |
4. Discussion
4.1. Macronutrient Intake
Protein Intake
4.2. Relationship between Protein Intake and Physical Function
4.3. Relationship between Socio-Demographic Characteristics, Physical Activity and Physical Function
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stats-NZ. National Population Projections: 2020(Base)–2073; Stats NZ: Wellington, New Zealand, 2020. [Google Scholar]
- Stats-NZ. Māori Population Estimates: At 30 June 2020 New Zealand: Stats NZ; 2020 [cited 2021 24/06/2021]. Available online: https://www.stats.govt.nz/information-releases/maori-population-estimates-at-30-june-2020 (accessed on 16 January 2023).
- Borglin, G.; Edberg, A.-K.; Hallberg, I.R. The experience of quality of life among older people. J. Aging Stud. 2005, 19, 201–220. [Google Scholar] [CrossRef]
- Gabriel, Z.; Bowling, A. Quality of life from the perspectives of older people. Ageing Soc. 2004, 24, 675–691. [Google Scholar] [CrossRef] [Green Version]
- Stephens, C.; Allen, J.; Keating, N.; Szabó, Á.; Alpass, F. Neighborhood environments and intrinsic capacity interact to affect the health-related quality of life of older people in New Zealand. Maturitas 2020, 139, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Deer, R.; Volpi, E. Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care. 2015, 18, 248–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Health. Health Loss in New Zealand 1990-2013: A report from the New Zealand Burden of Diseases, Injuries and Risk Factors Study; Ministry of Health: Wellington, New Zealand, 2016.
- Parnell, W.; Wilson, N.; Thomson, C.; Mackay, S.; Stefanogiannis, N. A Focus on Nutrition: Key Findings of the 2008/09 New Zealand Adult Nutrition Survey; University of Otago, Ministry of Health: Wellington, New Zealand, 2011.
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Lee, J.S.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B.; et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, C.J.; Milan, A.M.; Mitchell, S.M.; Zeng, N.; Ramzan, F.; Sharma, P.; Knowles, S.O.; Roy, N.C.; Sjödin, A.; Wagner, K.-H.; et al. The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men: A 10-wk randomized controlled trial. Am. J. Clin. Nutr. 2017, 106, 1375–1383. [Google Scholar] [CrossRef] [Green Version]
- Crichton, M.; Craven, D.; Mackay, H.; Marx, W.; De Van Der Schueren, M.; Marshall, S. A systematic review, meta-analysis and meta-regression of the prevalence of protein-energy malnutrition: Associations with geographical region and sex. Age Ageing 2018, 48, 38–48. [Google Scholar] [CrossRef]
- Hengeveld, L.M.; Boer, J.M.A.; Gaudreau, P.; Heymans, M.W.; Jagger, C.; Mendonça, N.; Ocké, M.C.; Presse, N.; Sette, S.; Simonsick, E.M.; et al. Prevalence of protein intake below recommended in community-dwelling older adults: A meta-analysis across cohorts from the PROMISS consortium. J. Cachexia Sarcopenia Muscle 2020, 11, 1212–1222. [Google Scholar] [CrossRef]
- Saunders, J.; Smith, T. Malnutrition: Causes and consequences. Clin. Med. 2010, 10, 624–627. [Google Scholar] [CrossRef]
- Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Volpi, E.; Campbell, W.; Dwyer, J.; Johnson, M.; Jensen, G.; Morley, J.; Wolfe, R.R. Is the Optimal Level of Protein Intake for Older Adults Greater Than the Recommended Dietary Allowance? J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 677–681. [Google Scholar] [CrossRef] [Green Version]
- Landi, F.; Cruz-Jentoft, A.J.; Liperoti, R.; Russo, A.; Giovannini, S.; Tosato, M.; Capoluongo, E.D.; Bernabei, R.; Onder, G. Sarcopenia and mortality risk in frail older persons aged 80 years and older: Results from ilSIRENTE study. Age Ageing 2013, 42, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Arango-Lopera, V.E.; Arroyo, P.; Gutiérrez-Robledo, L.M.; Perez-Zepeda, M.U.; Cesari, M. Mortality as an adverse outcome of sarcopenia. J. Nutr. Health Aging 2013, 17, 259–262. [Google Scholar] [CrossRef]
- McLean, R.R.; Shardell, M.D.; Alley, D.E.; Cawthon, P.M.; Fragala, M.S.; Harris, T.B.; Kenny, A.M.; Peters, K.W.; Ferrucci, L.; Guralnik, J.M.; et al. Criteria for Clinically Relevant Weakness and Low Lean Mass and Their Longitudinal Association with Incident Mobility Impairment and Mortality: The Foundation for the National Institutes of Health (FNIH) Sarcopenia Project. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 576–583. [Google Scholar] [CrossRef]
- Wang, D.X.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle mass, strength, and physical performance predicting activities of daily living: A meta-analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 3–25. [Google Scholar] [CrossRef] [Green Version]
- Haaf, D.T.; van Dongen, E.; Nuijten, M.; Eijsvogels, T.; de Groot, L.; Hopman, M. Protein Intake and Distribution in Relation to Physical Functioning and Quality of Life in Community-Dwelling Elderly People: Acknowledging the Role of Physical Activity. Nutrients 2018, 10, 506. [Google Scholar]
- New Zealand Productivity Commission. More Effective Social Services-Appendix E. New Zealand. 2015. Available online: https://www.productivity.govt.nz/assets/Documents/8981330814/Final-report-v2.pdf (accessed on 16 January 2023).
- Ministry of Health. Older People’s Health Chart Book 2006; Ministry of Health: Wellington, New Zealand, 2006.
- Teh, R.; Mendonça, N.; Muru-Lanning, M.; MacDonell, S.; Robinson, L.; Kerse, N. Dietary Protein Intake and Transition between Frailty States in Octogenarians Living in New Zealand. Nutrients 2021, 13, 2843. [Google Scholar] [CrossRef]
- Hayman, K.J.; Kerse, N.; Dyall, L.; Kepa, M.; The, R.; Wham, C.; Jatrana, S. Life and Living in Advanced Age: A Cohort Study in New Zealand -Te Puāwaitanga o Nga Tapuwae Kia Ora Tonu, LiLACS NZ: Study protocol. BMC Geriatr. 2012, 12, 33. [Google Scholar] [CrossRef] [Green Version]
- Wham, C.A.; Teh, R.; Moyes, S.; Dyall, L.; Kepa, M.; Hayman, K.; Kerse, N. Health and social factors associated with nutrition risk: Results from life and living in advanced age: A cohort study in New Zealand (LILACS NZ). J. Nutr. Health Aging 2015, 19, 637–645. [Google Scholar] [CrossRef]
- Pillay, D.; Wham, C.; Moyes, S.; Muru-Lanning, M.; The, R.; Kerse, N. Intakes, adequacy, and biomarker status of iron, folate, and vitamin b12 in māori and non-māori octogenarians: Life and living in advanced age: A cohort study in New Zealand (LiLACS NZ). Nutrients 2018, 10, 1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firebaugh, C.M.; Moyes, S.; Jatrana, S.; Rolleston, A.; Kerse, N. Physical Activity, Function, and Mortality in Advanced Age: A Longitudinal Follow-Up (LiLACS NZ). J. Aging Phys. Act. 2018, 26, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Wham, C.; The, R.; Moyes, S.; Rolleston, A.; Muru-Lanning, H.K.; Adamson, A.; Hayman, K. Macronutrient intake in advanced age: Te Puawaitanga o Nga Tapuwae Kia ora Tonu, Life and Living in Advanced Age: A Cohort Study in New Zealand (LiLACS NZ). Br. J. Nutr. 2016, 116, 1103–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wham, C.; Moyes, S.A.; Rolleston, A.; Adamson, A.; Kerse, N.; Teh, R. Association between dietary protein intake and change in grip strength over time among adults of advanced age: Life and Living in Advanced Age: A Cohort Study in New Zealand (LiLACS NZ). Australas. J. Ageing 2021, 40, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Wham, C.; Baggett, F.; Teh, R.; Moyes, S.; Kēpa, M.; Connolly, M.; Jatrana, S.; Kerse, N. Dietary protein intake may reduce hospitalisation due to infection in Māori of advanced age: LiLACS NZ. Aust. New Zealand J. Public Health 2015, 39, 390–395. [Google Scholar] [CrossRef]
- Bacon, C.J.; Kerse, N.; Hayman, K.J.; Moyes, S.A.; The, R.O.; Kepa, M.; Dyall, L. Vitamin D status of Maori and non-Maori octogenarians in New Zealand: A cohort study (LiLACS NZ). Asia Pac. J. Clin. Nutr. 2016, 25, 885–897. [Google Scholar]
- North, S.M.; Wham, C.A.; Teh, R.; Moyes, S.A.; Rolleston, A.; Kerse, N. High nutrition risk related to dietary intake is associated with an increased risk of hospitalisation and mortality for older Māori: LiLACS NZ. Aust. New Zealand J. Public Health 2018, 42, 375–381. [Google Scholar] [CrossRef]
- Teh, R.; Kerse, N.; Mendonca, N.; Menzies, O.; Hill, T.; Jagger, C. Dietary Protein and Transitions Between Frailty States and to Death in Advanced Age: LiLACS NZ. Innov. Aging 2020, 4, 239–240. [Google Scholar] [CrossRef]
- Ram, A.; Kerse, N.; Moyes, S.; Rolleston, A.; Wham, C. Protein Intake, Distribution and Food Sources in Adults of Advanced Age: Life and Living in Advanced Age: A Cohort Study in New Zealand (LiLACS NZ). Multidiscip. Digit. Publ. Inst. Proc. 2019, 37, 10. [Google Scholar] [CrossRef] [Green Version]
- Wham, C.; Maxted, E.; Dyall, L.; Teh, R.; Kerse, N. Korero te kai o te Rangatira: Nutritional wellbeing of Māori at the pinnacle of life. Nutr. Diet. 2012, 69, 213–216. [Google Scholar] [CrossRef]
- A, R. Protein Intake, Distribution, Sources, Adequacy and Determinants in Māori and Non-Māori Octogenarians: Life and Living in Advanced Age: A Cohort Study in New Zealand (LiLACS NZ); Massey University: Albany, New Zealand, 2019. [Google Scholar]
- Bennett, B. Investigation of Protein Intakes of Māori in Advanced Age; Massey University: Albany, New Zealand, 2013. [Google Scholar]
- Adamson, A.; Davies, K.; Wham, C.; Kepa, M.; Foster, E.; Jones, A.; Mathers, J.; Granic, A.; Teh, R.; Moyes, S.; et al. Assessment of Dietary Intake in Three Cohorts of Advanced Age in Two Countries: Methodology Challenges. J. Nutr. Health Aging 2023, 27, 59–66. [Google Scholar] [CrossRef]
- Bradley, J.; Simpson, E.; Poliakov, I.; Matthews, J.N.S.; Olivier, P.; Adamson, A.J.; Foster, E. Comparison of INTAKE24 (an Online 24-h Dietary Recall Tool) with Interviewer-Led 24-h Recall in 11–24 Year-Old. Nutrients 2016, 8, 358. [Google Scholar] [CrossRef] [Green Version]
- Dietary Intake Data Were Collected Using Intake24.org (NZ 2018): An Open Source Dietary Assessment Research Tool, Freely Available to Researchers, Maintained and Developed by the Nutrition Measurement Platform, MRC Epidemiology Unit, University of Cambridge, in collaboration with Open Lab, Newcastle University. Available online: https://www.mrc-epid.cam.ac.uk/research/measurement-platform/dietary-assessment/intake24/ (accessed on 16 January 2023).
- Tay, E.; Barnett, D.; Leilua, E.; Kerse, N.; Rowland, M.; Rolleston, A.; Waters, D.; Edlin, R.; Connolly, M.; Hale, L.; et al. The Diet Quality and Nutrition Inadequacy of Pre-Frail Older Adults in New Zealand. Nutrients 2021, 13, 2384. [Google Scholar] [CrossRef]
- Washburn, R.; McAuley, E.; Katula, J.; Mihalko, S.; Boileau, R. The physical activity scale for the elderly (PASE): Evidence for validity. J. Clin. Epi. 1999, 52, 643–651. [Google Scholar] [CrossRef]
- Essink-Bot, M.-L.; Krabbe, P.; Bonsel, G.J.; Aaronson, N.K. An Empirical Comparison of Four Generic Health Status Measures. Med. Care 1997, 35, 522–537. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Dyall, L.; Kēpa, M.; The, R.; Mules, R.; Moyes, S.A.; Wham, C.; Kerse, N. Cultural and social factors and quality of life of Māori in advanced age. Te puawaitanga o ngā tapuwae kia ora tonu–Life and living in advanced age: A cohort study in New Zealand (LiLACS NZ). N. Z. Med. J. 2014, 127, 62–79. [Google Scholar]
- Bennett, B.; Wham, C.; Teh, R.; Moyes, S.; Kepa, M.; Maxted, E.; Kerse, N. Protein intake by Māori of advanced age. MAI J. A New Zealand J. Indig. Sch. 2017, 6, 99–115. [Google Scholar] [CrossRef] [Green Version]
- National Health and Medical Research Council; Australian Government Department of Health and Ageing; New Zealand Ministry of Health. Nutrient Reference Values for Australia and New Zealand; National Health and Medical Research Council: Canberra, Australia, 2006.
- Fulgoni, V.L., III. Current protein intake in America: Analysis of the National Health and Nutrition Examination Survey, 2003–2004. Am. J. Clin. Nutr. 2008, 87, 1554S–1557S. [Google Scholar] [CrossRef] [Green Version]
- van Kuijk, M.; Smith, M.B.; Ferguson, C.A.; Kerse, N.M.; The, R.; Gribben, B.; Thomson, W.M. Dentition and nutritional status of aged New Zealanders living in aged residential care. Oral Dis. 2021, 27, 370–377. [Google Scholar] [CrossRef]
- Morais, J.A.; Chevalier, S.; Gougeon, R. Protein turnover and requirements in the healthy and frail elderly. J. Nutr. Health Aging 2006, 10, 272–283. [Google Scholar] [PubMed]
- Mendonça, N.; Hill, T.R.; Granic, A.; Davies, K.; Collerton, J.; Mathers, J.C.; Siervo, M.; Wrieden, W.L.; Seal, C.J.; Kirkwood, T.B.L.; et al. Macronutrient intake and food sources in the very old: Analysis of the Newcastle 85+ Study. Br. J. Nutr. 2016, 115, 2170–2180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The Role of the Anabolic Properties of Plant-versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorissen, S.H.M.; Witard, O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc. 2017, 77, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Ferrucci, L.; Simonsick, E.M.; Salive, M.E.; Wallace, R.B. Lower-Extremity Function in Persons over the Age of 70 Years as a Predictor of Subsequent Disability. N. Engl. J. Med. 1995, 332, 556–562. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Cohen, S.A.; Greaney, M.L.; Earp, J.E.; Delmonico, M.J. Longitudinal Sex-Specific Physical Function Trends by Age, Race/Ethnicity, and Weight Status. J. Am. Geriatr. Soc. 2020, 68, 2270–2278. [Google Scholar] [CrossRef]
- Granic, A.; Mendonça, N.; Sayer, A.A.; Hill, T.R.; Davies, K.; Adamson, A.; Siervo, M.; Mathers, J.C.; Jagger, C. Low protein intake, muscle strength and physical performance in the very old: The Newcastle 85+ Study. Clin. Nutr. 2017, 37, 2260–2270. [Google Scholar] [CrossRef] [Green Version]
- Rozzini, R.; Frisoni, G.B.; Bianchetti, A.; Zanetti, O.; Trabucchi, M. Physical Performance Test and Activities of Daily Living Scales in the Assessment of Health Status in Elderly People. J. Am. Geriatr. Soc. 1993, 41, 1109–1113. [Google Scholar] [CrossRef]
- Reuben, D.B.; Siu, A.L.; Kimpau, S. The Predictive Validity of Self-Report and Performance-based Measures of Function and Health. J. Gerontol. 1992, 47, M106–M110. [Google Scholar] [CrossRef]
- Manini, T.M.; Beavers, D.P.; Pahor, M.; Guralnik, J.M.; Spring, B.; Church, T.S.; King, A.C.; Folta, S.C.; Glynn, N.W.; Marsh, A.P.; et al. Effect of Physical Activity on Self-Reported Disability in Older Adults: Results from the LIFE Study. J. Am. Geriatr. Soc. 2017, 65, 980–988. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zúñiga, C.; Arai, H.; Boirie, Y.; Chen, L.-K.; Fielding, R.A.; Martin, F.C.; Michel, J.-P.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef]
- Chale, A.; Cloutier, G.; Hau, C.; Phillips, E.; Dallal, G.; Fielding, R. Efficacy of whey protein supplementation on resistance exercise-induced changes in lean mass, muscle strength, and physical function in mobility-limited older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2013, 68, 682–690. [Google Scholar] [CrossRef] [Green Version]
- McMaughan, D.J.; Oloruntoba, O.; Smith, M.L. Socioeconomic Status and Access to Healthcare: Interrelated Drivers for Healthy Aging. Front. Public Health 2020, 8, 231. [Google Scholar] [CrossRef]
- Kwon, D.H.; Park, H.A.; Cho, Y.G.; Kim, K.W.; Kim, N.H. Different Associations of Socioeconomic Status on Protein Intake in the Korean Elderly Population: A Cross-Sectional Analysis of the Korea National Health and Nutrition Examination Survey. Nutrients 2019, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Kerse, N.; Teh, R.; Moyes, S.A.; Broad, J.; Rolleston, A.; Gott, M.; Kepa, M.; Wham, C.; Hayman, K.; Jatrana, S.; et al. Cohort Profile: Te Puawaitanga o Nga Tapuwae Kia Ora Tonu, Life and Living in Advanced Age: A Cohort Study in New Zealand (LiLACS NZ). Int. J. Epidemiol. 2015, 44, 1823–1832. [Google Scholar] [CrossRef] [Green Version]
- The, R.; Kerse, N.; Kepa, M.; Doughty, R.N.; Moyes, S.; Wiles, J.; Dyall, L. Self-rated health, health related behaviours and medical conditions of Māori and non-Māori in advanced age: LiLACS NZ. N. Z. Med. J. 2014, 127, 13–29. [Google Scholar]
- Methodology Report for the 2008/09 New Zealand Adult Nutrition Survey; University of Otago, Ministry of Health: Wellington, New Zealand, 2011.
- Thompson, F.E.; Byers, T. Dietary assessment resource manual. J. Nutr. 1994, 124, s2245–s2317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lingman, M.; Kerse, N.; Muru-Lanning, M.; Teh, R. Dietary Protein Intake and Physical Function in Māori and Non-Māori Adults of Advanced Age in New Zealand: LiLACS NZ. Nutrients 2023, 15, 1664. https://doi.org/10.3390/nu15071664
Lingman M, Kerse N, Muru-Lanning M, Teh R. Dietary Protein Intake and Physical Function in Māori and Non-Māori Adults of Advanced Age in New Zealand: LiLACS NZ. Nutrients. 2023; 15(7):1664. https://doi.org/10.3390/nu15071664
Chicago/Turabian StyleLingman, Maia, Ngaire Kerse, Marama Muru-Lanning, and Ruth Teh. 2023. "Dietary Protein Intake and Physical Function in Māori and Non-Māori Adults of Advanced Age in New Zealand: LiLACS NZ" Nutrients 15, no. 7: 1664. https://doi.org/10.3390/nu15071664
APA StyleLingman, M., Kerse, N., Muru-Lanning, M., & Teh, R. (2023). Dietary Protein Intake and Physical Function in Māori and Non-Māori Adults of Advanced Age in New Zealand: LiLACS NZ. Nutrients, 15(7), 1664. https://doi.org/10.3390/nu15071664