Nutritional Intake Differences in Combinations of Carbohydrate-Rich Foods in Pirapó, Republic of Paraguay
Abstract
:1. Introduction
2. Materials and Methods
2.1. One-Day Weighed Food Records
2.2. Food Frequency Questionnaire
2.3. Dish Combination Analysis
2.4. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. FFQ
3.3. BMI and Obesity-Related Factors
3.4. Food Combination Analysis
4. Discussion
- A.
- Combination of staple dish, main dish, and one portion of vegetablesi.e., boiled cassava, meat soup without pasta, and salad
- B.
- One mixed food and one portion of vegetablesGuiso (a dish containing rice, meat, and vegetables) and salad
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, N.D.; Patel, S.A.; Narayan, K.M.V. Obesity in Low-and Middle-Income Countries: Burden, Drivers, and Emerging Challenges. Annu. Rev. Public Health 2017, 7, 145–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiwani, S.S.; Carrillo-Larco, R.M.; Hernández-Vásquez, A.; Barrientos-Gutiérrez, T.; Basto-Abreu, A.; Gutierrez, L.; Irazola, V.; Nieto-Martínez, R.; Nunes, B.P.; Parra, D.C.; et al. The Shift of Obesity Burden by Socioeconomic Status between 1998 and 2017 in Latin America and the Caribbean: A Cross-Sectional Series Study. Lancet. Glob. Health 2019, 7, e1644–e1654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bixby, H.; Bentham, J.; Zhou, B.; di Cesare, M.; Paciorek, C.J.; Bennett, J.E.; Taddei, C.; Stevens, G.A.; Rodriguez-Martinez, A.; Carrillo-Larco, R.M.; et al. Rising Rural Body-Mass Index Is the Main Driver of the Global Obesity Epidemic in Adults. Nature 2019, 569, 260–264. [Google Scholar] [CrossRef] [Green Version]
- Halpern, B.; Louzada, M.L.D.C.; Aschner, P.; Gerchman, F.; Brajkovich, I.; Faria-Neto, J.R.; Polanco, F.E.; Montero, J.; Juliá, S.M.M.; Lotufo, P.A.; et al. Obesity and COVID-19 in Latin America: A Tragedy of Two Pandemics—Official Document of the Latin American Federation of Obesity Societies. Obes. Rev. 2021, 22, e13165. [Google Scholar] [CrossRef]
- Situación Nutricional en la Población de Embarazadas en el Paraguay. Available online: https://www.inan.gov.py/site/?p=3441 (accessed on 4 January 2023).
- Cañete, F.; Fretes, G.; Sequera, V.G.; Turnes, C.; Santacruz, E.; Paiva, T.; Benitez, G. Epidemiología de La Obesidad En El Paraguay. An. Fac. Cienc. Méd. 2016, 49, 17–26. [Google Scholar] [CrossRef] [Green Version]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2022.Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022; ISBN 978-92-5-136499-4. [Google Scholar]
- Palacios, C.; Magnus, M.; Arrieta, A.; Gallardo, H.; Tapia, R.; Espinal, C. Obesity in Latin America, a Scoping Review of Public Health Prevention Strategies and an Overview of Their Impact on Obesity Prevention. Public Health Nutr. 2021, 24, 5142–5155. [Google Scholar] [CrossRef]
- Global Health Estimates: Leading Causes of Death. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 20 January 2023).
- Lee, H.; Kim, J.E.; Amarilla, A.; Kang, Y.; Boram, S.; Nam, E.W. Social Determinants of Overweight and Obesity in Paraguayan Adults Using Quantile Regression. J. Public Health Res. 2021, 10, 2196. [Google Scholar] [CrossRef]
- Primera Encuesta Nacional de Factores de Riesgo de Enfermedades No Transmisibles En Población General. Available online: https://dvent.mspbs.gov.py/wp-content/uploads/2021/06/Encuesta-Nacional.pdf (accessed on 28 December 2022).
- OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030; OECD: Paris, France, 2021. [Google Scholar] [CrossRef]
- Paraguay Wheat Domestic Consumption by Year. Available online: https://www.indexmundi.com/agriculture/?country=py&commodity=wheat&graph=domestic-consumption (accessed on 4 January 2023).
- Vierci, G.E.; Ferro, E.A. Capacidad Antioxidante Total Vinculada a la Ingesta de Frutas y Verduras en Adultos Jóvenes de Asunción, Paraguay. Nutr. Hosp. 2019, 36, 118–124. [Google Scholar]
- Hall, J.N.; Moore, S.; Harper, S.B.; Lynch, J.W. Global Variability in Fruit and Vegetable Consumption. Am. J. Prev. Med. 2009, 36, 402–409. [Google Scholar] [CrossRef]
- Fisberg, M.; Kovalskys, I.; Gómez, G.; Rigotti, A.; Cortés, L.Y.; Herrera-Cuenca, M.; Yépez, M.C.; Pareja, R.G.; Guajardo, V.; Zimberg, I.Z.; et al. Latin American Study of Nutrition and Health (ELANS): Rationale and Study Design. BMC Public Health 2016, 16, 93. [Google Scholar] [CrossRef]
- Pérez-Ferrer, C.; Auchincloss, A.H.; de Menezes, M.C.; Kroker-Lobos, M.F.; Cardoso, L.D.O.; Barrientos-Gutierrez, T. The Food Environment in Latin America: A Systematic Review with a Focus on Environments Relevant to Obesity and Related Chronic Diseases. Public Health Nutr. 2019, 22, 3447–3464. [Google Scholar] [CrossRef] [PubMed]
- Paredes, F.G.; Ruiz Díaz, L.; González, N. Hábitos Saludables y Estado Nutricional en el Entorno Laboral. Rev. Chil. Nutr. 2018, 45, 119–127. [Google Scholar] [CrossRef]
- Galicia, L.; Grajeda, R.; de Romaña, D.L. Nutrition Situation in Latin America and the Caribbean: Current Scenario, Past Trends, and Data Gaps. Rev. Panam. Salud Publica 2016, 40, 104–113. [Google Scholar] [PubMed]
- Báscolo, E.; Houghton, N.; del Riego, A. Lógicas de Transformación de los Sistemas de Salud en América Latina y Resultados en Acceso y Cobertura de Salud [Types of Health Systems Reforms in Latin America and Results in Health Access and Coverage]. Pan Am. J. Public Health 2018, 42, e126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudo, N.; Caballero, Y. Nutritional Characteristics of Food with Wheat Flour Consumed in Pirapo, Paraguay. J. Japan Diet. Assoc. 2017, 60, 213–219. [Google Scholar]
- Tiwari, R.; Srivastava, D.; Gour, N. A Cross-Sectional Study to Determine Prevalence of Obesity in High Income Group Colonies of Gwalior City. Indian J. Community Med. 2009, 34, 218–222. [Google Scholar] [CrossRef]
- Sudo, N.; Sekiyama, M.; Maharjan, M.; Ohtsuka, R. Gender Differences in Dietary Intake among Adults of Hindu Communities in Lowland Nepal: Assessment of Portion Sizes and Food Consumption Frequencies. Eur. J. Clin. Nutr. 2006, 60, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Yanagisawa, A.; Sudo, N.; Amitani, Y.; Caballero, Y.; Sekiyama, M.; Mukamugema, C.; Matsuoka, T.; Imanishi, H.; Sasaki, T.; Matsuda, H. Development and Validation of a Data-Based Food Frequency Questionnaire for Adults in Eastern Rural Area of Rwanda. Nutr. Metab. Insights 2016, 9, 31–42. [Google Scholar] [CrossRef] [Green Version]
- McNutt, S.; Zimmerman, T.P.; Hull, S.G. Development of Food Composition Databases for Food Frequency Questionnaires (FFQ). J. Food Compos. Anal. 2008, 21, S20–S26. [Google Scholar] [CrossRef]
- Blanco-Metzler, A.; de Pablo, S.; Samman, N.; de Ariza, J.S.; Masson, L.; de Núñez, L.G.; de Menezes, E.W. Latinfoods Activities and Challenges during the Period of 2009–2012. Arch. Latinoam. Nutr. 2014, 64, 206–214. [Google Scholar]
- Murakami, K.; Livingstone, M.B.E.; Shinozaki, N.; Sugimoto, M.; Fujiwara, A.; Masayasu, S.; Sasaki, S. Food Combinations in Relation to the Quality of Overall Diet and Individual Meals in Japanese Adults: A Nationwide Study. Nutrients 2020, 12, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshiike, N.; Hayashi, F.; Takemi, Y.; Mizoguchi, K.; Seino, F. A New Food Guide in Japan: The Japanese Food Guide Spinning Top. Nutr. Rev. 2007, 65, 149–154. [Google Scholar] [CrossRef]
- Tsai, S.A.; Lv, N.; Xiao, L.; Ma, J. Gender Differences in Weight-Related Attitudes and Behaviors Among Overweight and Obese Adults in the United States. Am. J. Mens. Health 2016, 10, 389–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardle, J.; Haase, A.M.; Steptoe, A.; Nillapun, M.; Jonwutiwes, K.; Bellisle, F. Gender Differences in Food Choice: The Contribution of Health Beliefs and Dieting. Ann. Behav. Med. 2004, 27, 107–116. [Google Scholar] [CrossRef]
- Gadiraju, T.V.; Patel, Y.; Gaziano, J.M.; Djoussé, L. Fried Food Consumption and Cardiovascular Health: A Review of Current Evidence. Nutrients 2015, 7, 8424–8430. [Google Scholar] [CrossRef]
- Hall, J.E.; do Carmo, J.M.; da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity-Induced Hypertension: Interaction of Neurohumoral and Renal Mechanisms. Circ. Res. 2015, 116, 991–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayon-Orea, C.; Bes-Rastrollo, M.; Gea, A.; Zazpe, I.; Basterra-Gortari, F.J.; Martinez-Gonzalez, M.A. Reported Fried Food Consumption and the Incidence of Hypertension in a Mediterranean Cohort: The SUN (Seguimiento Universidad de Navarra) Project. Br. J. Nutr. 2014, 112, 984–991. [Google Scholar] [CrossRef] [Green Version]
- Soriguer, F.; Rojo-Martínez, G.; Dobarganes, M.C.; García Almeida, J.M.; Esteva, I.; Beltrán, M.; Ruiz de Adana, M.S.; Tinahones, F.; Gómez-Zumaquero, J.M.; García-Fuentes, E.; et al. Hypertension Is Related to the Degradation of Dietary Frying Oils. Am. J. Clin. Nutr. 2003, 78, 1092–1097. [Google Scholar] [CrossRef] [Green Version]
- Nour, M.; Lutze, S.A.; Grech, A.; Allman-Farinelli, M. The Relationship between Vegetable Intake and Weight Outcomes: A Systematic Review of Cohort Studies. Nutrients 2018, 10, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, M.F.F.; Hodson, L.; Bickerton, A.S.; Roberts, R.; Neville, M.; Karpe, F.; Frayn, K.N.; Fielding, B.A. Parallel Activation of de Novo Lipogenesis and Stearoyl-CoA Desaturase Activity after 3 d of High-Carbohydrate Feeding. Am. J. Clin. Nutr. 2008, 87, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Dou, B.; Pugh, J.E.; Lett, A.M.; Frost, G.S. The Impact of Starchy Food Structure on Postprandial Glycemic Response and Appetite: A Systematic Review with Meta-Analysis of Randomized Crossover Trials. Am. J. Clin. Nutr. 2021, 114, 472–487. [Google Scholar] [CrossRef]
- Berg, C.; Lappas, G.; Wolk, A.; Strandhagen, E.; Torén, K.; Rosengren, A.; Thelle, D.; Lissner, L. Eating Patterns and Portion Size Associated with Obesity in a Swedish Population. Appetite 2009, 52, 21–26. [Google Scholar] [CrossRef]
- Morínigo Martínez, M.; Samudio, M. Etapas del modelo conductual de los estilos de vida propuestos por las guías alimentarias del Paraguay en adultos. Mem. Inst. Investig. Cienc. Salud 2015, 13, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Bermudez, O.I.; Tucker, K.L. Trends in Dietary Patterns of Latin American Populations. Cad. Saude Publica 2003, 19 (Suppl. 1), S87–S99. [Google Scholar] [CrossRef]
- Moreira, P.; Santos, S.; Padrão, P.; Cordeiro, T.; Bessa, M.; Valente, H.; Barros, R.; Teixeira, V.; Mitchell, V.; Lopes, C.; et al. Food Patterns According to Sociodemographics, Physical Activity, Sleeping and Obesity in Portuguese Children. Int. J. Environ. Res. Public Health 2010, 7, 1121–11138. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Bermudez, O.I.; Tucker, K.L. Dietary Patterns of Hispanic Elders Are Associated with Acculturation and Obesity. J. Nutr. 2003, 133, 3651–3657. [Google Scholar] [CrossRef] [Green Version]
- Nakade, M.; Kibayashi, E.; Morooka, A. The Relationship between Eating Behavior and a Japanese Well-Balanced Diet among Young Adults Aged 20–39 Years. Nippon. Eiyo Shokuryo Gakkaishi 2021, 74, 265–271. [Google Scholar] [CrossRef]
- Murakami, K.; Shinozaki, N.; Kimoto, N.; Masayasu, S.; Sasaki, S. Relative Validity of Food Intake in Each Meal Type and Overall Food Intake Derived Using the Meal-Based Diet History Questionnaire against the 4-Day Weighed Dietary Record in Japanese Adults. Nutrients 2022, 14, 3193. [Google Scholar] [CrossRef]
- Oliveira, M.S.D.S.; Arceño, M.A.; Sato, P.D.M.; Scagliusi, F.B. Comparison of Government Recommendations for Healthy Eating Habits in Visual Representations of Food-Based Dietary Guidelines in Latin America. Cad. De Saude Publica 2019, 35, e00177418. [Google Scholar] [CrossRef]
- Durán-Agüero, S.; Ortiz, A.; Pérez-Armijo, P.; Vinueza-Veloz, M.F.; Ríos-Castillo, I.; Camacho-Lopez, S.; Cavagnari, B.M.; Nava-González, E.J.; Carpio-Arias, V.; Cordón-Arrivillaga, K.; et al. Quality of the Diet during the COVID-19 Pandemic in 11 Latin-American Countries. J. Health Popul. Nutr. 2022, 41, 33. [Google Scholar] [CrossRef]
- Materiales Educativos—INAN. Available online: https://www.inan.gov.py/site/?page_id=60 (accessed on 6 January 2023).
Male (n = 200) | Female (n = 233) | |
---|---|---|
Age *1 (year) | 42.4 ± 14.4 *2 | 38.7 ± 13.7 |
Height *1 (cm) | 169.9 ± 6.9 | 158.5 ± 5.8 |
Weight *1 (kg) | 76.1 ± 12.9 | 68.7 ± 13.2 |
BMI *1 (kg/m2) | 26.4 ± 4.3 | 27.4 ± 5.2 |
BMI < 25 | 77 (38.5%) *3 | 81 (34.8%) |
25 ≤ BMI < 30 | 80 (40.0%) | 81 (34.8%) |
BMI ≥ 30 | 43 (21.5%) | 71 (30.5%) |
Systolic blood pressure (mmHg) | 133.1 ± 20.6 | 127.0 ± 21.3 |
Diastolic blood pressure (mmHg) | 83.2 ± 14.0 | 80.1 ± 14.2 |
Hypertension | 76 (38.0%) | 69 (29.6%) |
Food or Dish | Males (n = 200) | Females (n = 233) | |||
---|---|---|---|---|---|
FFQ *1 | SD | FFQ | SD | ||
1 | Boiled cassava | 0.96 | 0.55 | 0.96 | 0.58 |
2 | Bread (pan, galleta) | 0.63 | 0.51 | 0.68 | 0.54 |
3 | Salad, dish with vegetable | 0.45 | 0.37 | 0.44 | 0.35 |
4 | Fried dough with wheat flour (reviro) | 0.46 | 0.36 | 0.42 | 0.34 |
5 | Rice, dish with rice (guiso) | 0.42 | 0.25 | 0.40 | 0.23 |
6 | Hard bread (coquito) | 0.36 | 0.31 | 0.42 | 0.42 |
7 | Meat soup with pasta (caldo de carne) | 0.35 | 0.24 | 0.33 | 0.24 |
8 | Meat spaghetti (tallarin, fideo con carne) | 0.26 | 0.22 | 0.26 | 0.22 |
9 | Fried tortilla from wheat flour | 0.23 | 0.20 | 0.24 | 0.20 |
10 | Meat dish (asado *2, milanesa *3, marinera *4) | 0.22 | 0.17 | 0.22 | 0.18 |
11 | Fried bread (pireca) | 0.16 | 0.15 | 0.17 | 0.15 |
12 | Bean soup (caldo de poroto, legumbre) | 0.17 | 0.17 | 0.16 | 0.16 |
13 | Fried dumpling with meat and boiled egg (empanada) | 0.15 | 0.12 | 0.15 | 0.12 |
14 | Sweet bread | 0.14 | 0.14 | 0.15 | 0.15 |
15 | Dish with cassava | 0.14 | 0.16 | 0.14 | 0.15 |
16 | Cornmeal dumpling soup (bori) | 0.13 | 0.11 | 0.13 | 0.11 |
17 | Corn bread with cheese and egg (sopa paraguaya) | 0.13 | 0.10 | 0.12 | 0.09 |
18 | Cheese bread with cassava starch (chipa, chipa soó) | 0.11 | 0.14 | 0.11 | 0.13 |
19 | Dish with corn grain (locro, choclo) | 0.10 | 0.11 | 0. 09 | 0.09 |
20 | Cheese pancake with cassava starch (mbeyu) | 0.09 | 0.11 | 0.11 | 0.22 |
21 | Pizza | 0.06 | 0.12 | 0.06 | 0.10 |
22 | Meatball soup (albondiga) | 0.06 | 0.07 | 0.05 | 0.06 |
23 | Sandwich | 0.05 | 0.13 | 0.06 | 0.13 |
24 | Doughnut (bollo, rosquilla) | 0.04 | 0.07 | 0.06 | 0.13 |
25 | Hot dog (pancho) | 0.03 | 0.06 | 0.04 | 0.07 |
26 | Hamburger | 0.03 | 0.06 | 0.03 | 0.07 |
27 | Cake (torta) | 0.02 | 0.07 | 0.03 | 0.07 |
28 | Cornmeal dish (polenta) | 0.02 | 0.06 | 0.03 | 0.07 |
29 | Pudding with wheat flour or bread (budín) | 0.02 | 0.05 | 0.02 | 0.05 |
30 | Ñoqui | 0.02 | 0.04 | 0.02 | 0.05 |
31 | Sweet dish with cornmeal (polenta dulce) | 0.01 | 0.04 | 0.01 | 0.04 |
32 | Lazaña | 0.01 | 0.02 | 0.01 | 0.03 |
Independent Variables | Unstandardized β | Standard Error | Standardized β | p |
---|---|---|---|---|
Intercept | 18.215 | 1.932 | <0.001 | |
Age | 0.079 | 0.021 | 0.267 | <0.001 |
Sandwich | 9.286 | 3.793 | 0.234 | 0.015 |
Hamburger | 20.263 | 7.318 | 0.218 | 0.006 |
Diastolic blood pressure | 0.052 | 0.022 | 0.168 | 0.017 |
Bread (pan, galleta) | 1.387 | 0.579 | 0.167 | 0.018 |
Pizza | −12.395 | 5.030 | −0.268 | 0.015 |
Fried bread (pireca) | −4.050 | 1.913 | −0.141 | 0.036 |
Independent Variables | Unstandardized β | Standard Error | Standardized β | p |
---|---|---|---|---|
Intercept | 19.594 | 1.998 | <0.001 | |
Systolic blood pressure | 0.083 | 0.015 | 0.337 | <0.001 |
Dish with cassava | −7.307 | 2.169 | −0.209 | <0.001 |
Rice, dish with rice (guiso) | −4.522 | 1.435 | −0.197 | 0.002 |
Independent Variables | Unstandardized β | Standard Error | Standardized β | p |
---|---|---|---|---|
Intercept | 40.148 | 7.255 | <0.001 | |
Diastolic blood pressure | 0.884 | 0.080 | 0.602 | <0.001 |
Age | 0.317 | 0.077 | 0.223 | <0.001 |
Total FFQ value of fried flour dishes | 5.927 | 2.024 | 0.154 | 0.004 |
Dish Combinations (n) | Mean Energy Intake (kcal) | |
---|---|---|
Males (n = 200) | Females (n = 233) | |
Breakfast (347) | 686 ± 394 | 563 ± 326 |
Reviro + mate tea with milk (cocido) (78) | 909 ± 248 (35) | 758 ± 263 (43) |
Bread + mate tea with milk (cocido) (73) | 648 ± 267 (30) | 537 ± 215 (43) |
Hard bread (coquito) + mate tea with milk (cocido) (60) | 567 ± 193 (25) | 569 ± 241 (35) |
Skip (49) | 0 (25) | 0 (24) |
Lunch (438) | 980 ± 379 | 780 ± 286 |
Boiled cassava + dish with rice, meat, and vegetable (guiso) (66) | 895 ± 250 (29) | 684 ± 211 (37) |
Boiled cassava + meat soup with pasta (50) | 789 ± 254 (21) | 708 ± 236 (29) |
Boiled cassava + meat dish (asado, milanesa, marinera) (23) | 737 ± 269 (13) | 677 ± 365 (10) |
Skip (2) | 0 (2) | 0 (0) |
Dinner (432) | 757 ± 416 | 563 ± 323 |
Bread + mate tea with milk (cocido) (41) | 615 ± 215 (16) | 519 ± 245 (25) |
Hard bread (coquito) + mate tea with milk (cocido) (28) | 645 ± 228 (7) | 615 ± 263 (21) |
Boiled cassava + tortilla (wheat flour) (24) | 1174 ± 378 (10) | 803 ± 286 (14) |
Skip (28) | 0 (11) | 0 (17) |
Total | 2423 ± 704 | 1909 ± 613 |
Dish Combination Types | ||||
---|---|---|---|---|
No Carbohydrate-Rich Dishes | Contained One Carbohydrate-Rich Dish | Contained More Than Two Carbohydrate-Rich Dishes | p Value * | |
Male | ||||
Number of meals (%) | 10 (1.8) | 306 (54.4) | 246 (43.8) | |
Energy | 557 ± 663 | 792 ± 345 | 961 ± 360 | <0.001 |
Lipid | 10.5 ± 12.8 | 26.9 ± 21.3 | 29.0 ± 17.6 | 0.197 |
Sodium | 170 ± 237 | 1180 ± 897 | 1786 ± 1246 | <0.001 |
Female | ||||
Number of meals (%) | 14 (2.1) | 373 (56.9) | 268 (40.9) | |
Energy | 204 ± 111 | 619 ± 281 | 778 ± 276 | <0.001 |
Lipid | 7.7 ± 7.0 | 19.1 ± 15.4 | 22.9 ± 13.2 | 0.001 |
Sodium | 108 ± 158 | 878 ± 728 | 1408 ± 796 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero, Y.; Matakawa, K.; Ushiwata, A.; Akatsuka, T.; Sudo, N. Nutritional Intake Differences in Combinations of Carbohydrate-Rich Foods in Pirapó, Republic of Paraguay. Nutrients 2023, 15, 1299. https://doi.org/10.3390/nu15051299
Caballero Y, Matakawa K, Ushiwata A, Akatsuka T, Sudo N. Nutritional Intake Differences in Combinations of Carbohydrate-Rich Foods in Pirapó, Republic of Paraguay. Nutrients. 2023; 15(5):1299. https://doi.org/10.3390/nu15051299
Chicago/Turabian StyleCaballero, Yuko, Konomi Matakawa, Ai Ushiwata, Tomoko Akatsuka, and Noriko Sudo. 2023. "Nutritional Intake Differences in Combinations of Carbohydrate-Rich Foods in Pirapó, Republic of Paraguay" Nutrients 15, no. 5: 1299. https://doi.org/10.3390/nu15051299
APA StyleCaballero, Y., Matakawa, K., Ushiwata, A., Akatsuka, T., & Sudo, N. (2023). Nutritional Intake Differences in Combinations of Carbohydrate-Rich Foods in Pirapó, Republic of Paraguay. Nutrients, 15(5), 1299. https://doi.org/10.3390/nu15051299