Highly Processed Food Consumption and Its Association with Anthropometric, Sociodemographic, and Behavioral Characteristics in a Nationwide Sample of 2742 Japanese Adults: An Analysis Based on 8-Day Weighed Dietary Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Procedure
2.2. Analytic Sample
2.3. Dietary Assessment
2.4. Classification of Foods Based on the Degree of Food Processing
2.5. Assessment of Basic Characteristics
2.6. Data Analysis
3. Results
4. Discussion
4.1. Main Findings
4.2. Scenarios of HPF Consumption
4.3. Contribution of HPFs
4.4. Participant Characteristics Related to HPF Consumption
4.5. Social Implications
4.6. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poti, J.M.; Mendez, M.A.; Ng, S.W.; Popkin, B.M. Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am. J. Clin. Nutr. 2015, 101, 1251–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Giovannucci, E.L. Ultra-processed foods and health: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2022, 1–13, online ahead of print. [Google Scholar] [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of ultra-processed foods and health status: A systematic review and meta-analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gomez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed food and chronic noncommunicable diseases: A systematic review and meta-analysis of 43 observational studies. Obes. Rev. 2021, 22, e13146. [Google Scholar] [CrossRef]
- Taneri, P.E.; Wehrli, F.; Roa-Diaz, Z.M.; Itodo, O.A.; Salvador, D.; Raeisi-Dehkordi, H.; Bally, L.; Minder, B.; Kiefte-de Jong, J.C.; Laine, J.E.; et al. Association between ultra-processed food intake and all-cause mortality: A systematic review and meta-analysis. Am. J. Epidemiol. 2022, 191, 1323–1335. [Google Scholar] [CrossRef]
- Ministry of Health of Brazil. Dietary Guidelines for the Brazilian Population. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/dietary_guidelines_brazilian_population.pdf (accessed on 31 January 2023).
- Health Canada. Canada’s Dietary Guidelines for Health Professionals and Policy Makers. 2019. Available online: https://food-guide.canada.ca/sites/default/files/artifact-pdf/CDG-EN-2018.pdf (accessed on 31 January 2023).
- Ministry of Health. Eating and Activity Guidelines for New Zealand Adults: Updated 2020; Ministry of Health: Wellington, New Zealand, 2020. Available online: https://www.health.govt.nz/system/files/documents/publications/eating-activity-guidelines-new-zealand-adults-updated-2020-oct22.pdf (accessed on 31 January 2023).
- The Israeli Ministry of Health. Nutritional Recommendations. Available online: https://www.health.gov.il/PublicationsFiles/dietary%20guidelines%20EN.pdf (accessed on 31 January 2023).
- Magalhães, V.; Severo, M.; Correia, D.; Torres, D.; Costa de Miranda, R.; Rauber, F.; Levy, R.; Rodrigues, S.; Lopes, C. Associated factors to the consumption of ultra-processed foods and its relation with dietary sources in Portugal. J. Nutr. Sci. 2021, 10, e89. [Google Scholar] [CrossRef]
- Ashraf, R.; Duncan, A.M.; Darlington, G.; Buchholz, A.C.; Haines, J.; Ma, D.W.L. The degree of food processing is associated with anthropometric measures of obesity in Canadian families with preschool-aged children. Front. Nutr. 2022, 9, 1005227. [Google Scholar] [CrossRef]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; da Costa Louzada, M.L.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed food consumption and obesity in the Australian adult population. Nutr. Diabetes 2020, 10, 39. [Google Scholar] [CrossRef]
- Julia, C.; Martinez, L.; Alles, B.; Touvier, M.; Hercberg, S.; Mejean, C.; Kesse-Guyot, E. Contribution of ultra-processed foods in the diet of adults from the French NutriNet-Sante study. Public Health Nutr. 2018, 21, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Djupegot, I.L.; Nenseth, C.B.; Bere, E.; Bjornara, H.B.T.; Helland, S.H.; Overby, N.C.; Torstveit, M.K.; Stea, T.H. The association between time scarcity, sociodemographic correlates and consumption of ultra-processed foods among parents in Norway: A cross-sectional study. BMC Public Health 2017, 17, 447. [Google Scholar] [CrossRef]
- Rauber, F.; Steele, E.M.; Louzada, M.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-processed food consumption and indicators of obesity in the United Kingdom population (2008–2016). PLoS ONE 2020, 15, e0232676. [Google Scholar] [CrossRef] [PubMed]
- Canhada, S.L.; Luft, V.C.; Giatti, L.; Duncan, B.B.; Chor, D.; Fonseca, M.; Matos, S.M.A.; Molina, M.; Barreto, S.M.; Levy, R.B.; et al. Ultra-processed foods, incident overweight and obesity, and longitudinal changes in weight and waist circumference: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 2020, 23, 1076–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, D.C.G.; Fiates, G.M.R.; Botelho, A.M.; Vieira, F.G.K.; Medeiros, K.J.; Willecke, R.G.; Longo, G.Z. Food consumption according to degree of food processing, behavioral variables, and sociodemographic factors: Findings from a population-based study in Brazil. Nutrition 2022, 93, 111505. [Google Scholar] [CrossRef]
- Shim, J.S.; Shim, S.Y.; Cha, H.J.; Kim, J.; Kim, H.C. Socioeconomic Characteristics and Trends in the Consumption of Ultra-Processed Foods in Korea from 2010 to 2018. Nutrients 2021, 13, 1120. [Google Scholar] [CrossRef]
- Ruggiero, E.; Esposito, S.; Costanzo, S.; Di Castelnuovo, A.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L.; Bonaccio, M.; Investigators, I.S. Ultra-processed food consumption and its correlates among Italian children, adolescents and adults from the Italian Nutrition & Health Survey (INHES) cohort study. Public Health Nutr. 2021, 24, 6258–6271. [Google Scholar] [CrossRef]
- Cediel, G.; Reyes, M.; da Costa Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A.; Corvalan, C.; Uauy, R. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018, 21, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Baraldi, L.G.; Martinez Steele, E.; Canella, D.S.; Monteiro, C.A. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open 2018, 8, e020574. [Google Scholar] [CrossRef] [Green Version]
- Marron-Ponce, J.A.; Sanchez-Pimienta, T.G.; Louzada, M.; Batis, C. Energy contribution of NOVA food groups and sociodemographic determinants of ultra-processed food consumption in the Mexican population. Public Health Nutr. 2018, 21, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batal, M.; Johnson-Down, L.; Moubarac, J.C.; Ing, A.; Fediuk, K.; Sadik, T.; Chan, H.M.; Willows, N. Sociodemographic associations of the dietary proportion of ultra-processed foods in First Nations peoples in the Canadian provinces of British Columbia, Manitoba, Alberta and Ontario. Int J. Food Sci. Nutr. 2018, 69, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Marchese, L.; Livingstone, K.M.; Woods, J.L.; Wingrove, K.; Machado, P. Ultra-processed food consumption, socio-demographics and diet quality in Australian adults. Public Health Nutr. 2022, 25, 94–104. [Google Scholar] [CrossRef]
- Adams, J.; White, M. Characterisation of UK diets according to degree of food processing and associations with socio-demographics and obesity: Cross-sectional analysis of UK National Diet and Nutrition Survey (2008-12). Int. J. Behav. Nutr. Phys. Act 2015, 12, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huybrechts, I.; Rauber, F.; Nicolas, G.; Casagrande, C.; Kliemann, N.; Wedekind, R.; Biessy, C.; Scalbert, A.; Touvier, M.; Aleksandrova, K.; et al. Characterization of the degree of food processing in the European Prospective Investigation into Cancer and Nutrition: Application of the Nova classification and validation using selected biomarkers of food processing. Front. Nutr. 2022, 9, 1035580. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Koiwai, K.; Takemi, Y.; Hayashi, F.; Ogata, H.; Matsumoto, S.; Ozawa, K.; Machado, P.P.; Monteiro, C.A. Consumption of ultra-processed foods decreases the quality of the overall diet of middle-aged Japanese adults. Public Health Nutr. 2019, 22, 2999–3008. [Google Scholar] [CrossRef] [PubMed]
- Koiwai, K.; Takemi, Y.; Hayashi, F.; Ogata, H.; Sakaguchi, K.; Akaiwa, Y.; Shimada, M.; Kawabata, T.; Nakamura, M. Consumption of ultra-processed foods and relationship between nutrient intake and obesity among participants undergoing specific health checkups provided by National Health Insurance. Nijon Koshu Eisei Zasshi 2021, 68, 105–117. (In Japanese) [Google Scholar] [CrossRef]
- Ministry of Agriculture, Forestry and Fisheries. Summary of the Annual Report on Food, Agriculture and Rural Areas in Japan. Available online: https://www.maff.go.jp/j/wpaper/w_maff/r2/pdf/zentaiban.pdf (accessed on 31 January 2023). (In Japanese).
- Murakami, K.; Livingstone, M.B.E.; Sasaki, S. Thirteen-year trends in dietary patterns among Japanese adults in the National Health and Nutrition Survey 2003–2015: Continuous Westernization of the Japanese diet. Nutrients 2018, 10, 994. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Livingstone, M.B.E.; Sasaki, S. Establishment of a meal coding system for the characterization of meal-based dietary patterns in Japan. J. Nutr. 2017, 147, 2093–2101. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Livingstone, M.B.E.; Fujiwara, A.; Sasaki, S. Application of the Healthy Eating Index-2015 and the Nutrient-Rich Food Index 9.3 for assessing overall diet quality in the Japanese context: Different nutritional concerns from the US. PLoS ONE 2020, 15, e0228318. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Livingstone, M.B.E.; Masayasu, S.; Sasaki, S. Eating patterns in a nationwide sample of Japanese aged 1-79 years from MINNADE study: Eating frequency, clock time for eating, time spent on eating and variability of eating patterns. Public Health Nutr. 2021, 25, 1515–1527. [Google Scholar] [CrossRef]
- Statistics Bureau & Ministry of Internal Affairs and Communications. Population and Households of Japan 2015. 2015. Available online: https://www.stat.go.jp/english/data/kokusei/2015/poj/mokuji.html (accessed on 31 January 2023). (In Japanese).
- Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Standard Tables of Food Composition in Japan—2020—(Eighth Revised Version); Official Gazette Co-Operation of Japan: Tokyo, Japan, 2020. (In Japanese) [Google Scholar]
- Vergeer, L.; Veira, P.; Bernstein, J.T.; Weippert, M.; L’Abbe, M.R. The calorie and nutrient density of more-versus less-processed packaged food and beverage products in the Canadian food supply. Nutrients 2019, 11, 2782. [Google Scholar] [CrossRef] [Green Version]
- Bleiweiss-Sande, R.; Chui, K.; Evans, E.W.; Goldberg, J.; Amin, S.; Sacheck, J. Robustness of food processing classification systems. Nutrients 2019, 11, 1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization of the United Nations. Guidelines on the Collection of Information on Food Processing through Food Consumption Surveys. Available online: https://www.fao.org/3/i4690e/i4690e.pdf (accessed on 31 January 2023).
- Gibney, M.J. Ultra-processed foods: Definitions and policy issues. Curr. Dev. Nutr. 2019, 3, nzy077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, E.M.; O’Connor, L.E.; Juul, F.; Khandpur, N.; Galastri Baraldi, L.; Monteiro, C.A.; Parekh, N.; Herrick, K.A. Identifying and estimating ultraprocessed food intake in the US NHANES according to the Nova classification system of food processing. J. Nutr. 2022, 153, 225–241, in press. [Google Scholar] [CrossRef]
- Bleiweiss-Sande, R.; Bailey, C.P.; Sacheck, J.; Goldberg, J.P. Addressing challenges with the categorization of foods processed at home: A pilot methodology to inform consumer-facing guidance. Nutrients 2020, 12, 2373. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of physical activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Herrmann, S.D.; Meckes, N.; Bassett Jr, D.R.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. The Compendium of Physical Activities Tracking Guide. Healthy Lifestyles Research Center, College of Nursing & Health Innovation, Arizona State University. Available online: https://sites.google.com/site/compendiumofphysicalactivities/ (accessed on 7 June 2022).
- Minobe, N.; Murakami, K.; Kobayashi, S.; Suga, H.; Sasaki, S.; Three-generation Study of Women on Diets and Health Study Group. Higher dietary glycemic index, but not glycemic load, is associated with a lower prevalence of depressive symptoms in a cross-sectional study of young and middle-aged Japanese women. Eur. J. Nutr. 2018, 57, 2261–2273. [Google Scholar] [CrossRef]
- Kobayashi, S.; Asakura, K.; Suga, H.; Sasaki, S. Cohabitational effect of grandparents on dietary intake among young Japanese women and their mothers living together. A multicenter cross-sectional study. Appetite 2015, 91, 287–297. [Google Scholar] [CrossRef]
- Salome, M.; Arrazat, L.; Wang, J.; Dufour, A.; Dubuisson, C.; Volatier, J.L.; Huneau, J.F.; Mariotti, F. Contrary to ultra-processed foods, the consumption of unprocessed or minimally processed foods is associated with favorable patterns of protein intake, diet quality and lower cardiometabolic risk in French adults (INCA3). Eur. J. Nutr. 2021, 60, 4055–4067. [Google Scholar] [CrossRef]
- Calixto Andrade, G.; Julia, C.; Deschamps, V.; Srour, B.; Hercberg, S.; Kesse-Guyot, E.; Alles, B.; Chazelas, E.; Deschasaux, M.; Touvier, M.; et al. Consumption of ultra-processed food and its association with sociodemographic characteristics and diet quality in a representative sample of French adults. Nutrients 2021, 13, 682. [Google Scholar] [CrossRef]
- Shim, J.S.; Shim, S.Y.; Cha, H.J.; Kim, J.; Kim, H.C. Association between uultra-processed food consumption and dietary intake and diet quality in Korean adults. J. Acad. Nutr. Diet 2022, 122, 583–594. [Google Scholar] [CrossRef]
- Slimani, N.; Deharveng, G.; Southgate, D.A.; Biessy, C.; Chajes, V.; van Bakel, M.M.; Boutron-Ruault, M.C.; McTaggart, A.; Grioni, S.; Verkaik-Kloosterman, J.; et al. Contribution of highly industrially processed foods to the nutrient intakes and patterns of middle-aged populations in the European Prospective Investigation into Cancer and Nutrition study. Eur. J. Clin. Nutr. 2009, 63 (Suppl. 4), S206–S225. [Google Scholar] [CrossRef] [PubMed]
- Forde, C.G.; Mars, M.; de Graaf, K. Ultra-processing or oral processing? A role for energy density and eating rate in moderating energy intake from processed foods. Curr. Dev. Nutr. 2020, 4, nzaa019. [Google Scholar] [CrossRef] [Green Version]
- Murakami, K.; Shinozaki, N.; Yuan, X.; Tajima, R.; Matsumoto, M.; Masayasu, S.; Sasaki, S. Food choice values and food literacy in a nationwide sample of Japanese adults: Associations with sex, age, and body mass index. Nutrients 2022, 14, 1899. [Google Scholar] [CrossRef]
- Almeida, L.B.; Scagliusi, F.B.; Duran, A.C.; Jaime, P.C. Barriers to and facilitators of ultra-processed food consumption: Perceptions of Brazilian adults. Public Health Nutr. 2018, 21, 68–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grzymislawska, M.; Puch, E.A.; Zawada, A.; Grzymislawski, M. Do nutritional behaviors depend on biological sex and cultural gender? Adv. Clin. Exp. Med. 2020, 29, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coyle, D.H.; Huang, L.; Shahid, M.; Gaines, A.; Di Tanna, G.L.; Louie, J.C.Y.; Pan, X.; Marklund, M.; Neal, B.; Wu, J.H.Y. Socio-economic difference in purchases of ultra-processed foods in Australia: An analysis of a nationally representative household grocery purchasing panel. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 148. [Google Scholar] [CrossRef] [PubMed]
- Tak, M.; Law, C.; Green, R.; Shankar, B.; Cornelsen, L. Processed foods purchase profiles in urban India in 2013 and 2016: A cluster and multivariate analysis. BMJ Open 2022, 12, e062254. [Google Scholar] [CrossRef]
- Vandevijvere, S.; Pedroni, C.; De Ridder, K.; Castetbon, K. The cost of diets according to their caloric sshare of ultraprocessed and minimally processed foods in Belgium. Nutrients 2020, 12, 2787. [Google Scholar] [CrossRef]
- Moubarac, J.C.; Claro, R.M.; Baraldi, L.G.; Levy, R.B.; Martins, A.P.; Cannon, G.; Monteiro, C.A. International differences in cost and consumption of ready-to-consume food and drink products: United Kingdom and Brazil, 2008-2009. Glob. Public Health 2013, 8, 845–856. [Google Scholar] [CrossRef]
- Tokudome, Y.; Imaeda, N.; Nagaya, T.; Ikeda, M.; Fujiwara, N.; Sato, J.; Kuriki, K.; Kikuchi, S.; Maki, S.; Tokudome, S. Daily, weekly, seasonal, within- and between-individual variation in nutrient intake according to four season consecutive 7 day weighed diet records in Japanese female dietitians. J. Epidemiol. 2002, 12, 85–92. [Google Scholar] [CrossRef] [Green Version]
- de Araujo, T.P.; de Moraes, M.M.; Afonso, C.; Santos, C.; Rodrigues, S.S.P. Food processing: Comparison of different food classification systems. Nutrients 2022, 14, 729. [Google Scholar] [CrossRef]
- Martinez-Perez, C.; San-Cristobal, R.; Guallar-Castillon, P.; Martinez-Gonzalez, M.A.; Salas-Salvado, J.; Corella, D.; Castaner, O.; Martinez, J.A.; Alonso-Gomez, A.M.; Warnberg, J.; et al. Use of different food classification systems to assess the association between ultra-processed food consumption and cardiometabolic health in an elderly population with metabolic syndrome (PREDIMED-Plus Cohort). Nutrients 2021, 13, 2471. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Blanco, L.; de la Pascual, V.; Berasaluce, A.; Moreno-Galarraga, L.; Martinez-Gonzalez, M.A.; Martin-Calvo, N. Individual and family predictors of ultra-processed food consumption in Spanish children. The SENDO project. Public Health Nutr. 2022, 1–22, online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Brunner, T.A.; van der Horst, K.; Siegrist, M. Convenience food products. Drivers for consumption. Appetite 2010, 55, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing current criticism regarding the value of self-report dietary data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef] [Green Version]
Variable | Values 1 | ||
---|---|---|---|
Age (y) | 48.4 | ± | 17.6 |
Female (n, %) | 1392 | (50.8) | |
Body height (cm) | 162.7 | ± | 9.0 |
Body weight (kg) | 61.1 | ± | 12.1 |
Body mass index (kg/m2) | 23.0 | ± | 3.5 |
Annual household income, n (%) | |||
<4 million Japanese yen | 970 | (35.4) | |
≥4 to <7 million Japanese yen | 926 | (33.8) | |
≥7 million Japanese yen | 846 | (30.9) | |
Educational level, n (%) | |||
Junior high school or high school | 1092 | (39.8) | |
Junior college or technical school | 819 | (29.9) | |
University or higher | 831 | (30.3) | |
Employment status, n (%) | |||
Unemployed (including students) | 622 | (22.7) | |
Part-time job | 336 | (12.3) | |
Full-time job | 1784 | (65.1) | |
Smoking status, n (%) | |||
Current smoker | 452 | (16.5) | |
Past smoker | 607 | (22.1) | |
Never smoker | 1683 | (61.4) | |
Physical activity level (MET × h) | 39.2 | ± | 5.9 |
Energy intake (kJ) | 8391 | ± | 1931 |
Consumption of foods classified by level of food processing (g/day): low-estimate scenario | |||
Unprocessed or minimally processed food | 1080 | ± | 435 |
Basic processed food | 1066 | ± | 400 |
Moderately processed food | 131 | ± | 68 |
Highly processed food | 447 | ± | 303 |
Consumption of foods classified by level of food processing (g/day): high-estimate scenario | |||
Unprocessed or minimally processed food | 895 | ± | 421 |
Basic processed food | 887 | ± | 363 |
Moderately processed food | 96 | ± | 62 |
Highly processed food | 845 | ± | 493 |
Energy intake from foods classified by level of food processing (kJ/day): low-estimate scenario | |||
Unprocessed or minimally processed food | 2155 | ± | 795 |
Basic processed food | 3096 | ± | 997 |
Moderately processed food | 783 | ± | 368 |
Highly processed food | 2357 | ± | 1048 |
Energy intake from foods classified by level of food processing (kJ/day): high-estimate scenario | |||
Unprocessed or minimally processed food | 1742 | ± | 843 |
Basic processed food | 2526 | ± | 983 |
Moderately processed food | 575 | ± | 346 |
Highly processed food | 3547 | ± | 1522 |
Low-Estimate Scenario 2 | High-Estimate Scenario 2 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
g/day | % of Grams | kJ/day | % of Energy | g/day | % of Grams | kJ/day | % of Energy | |||||||||
Food Group | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
Cereals and starchy foods | 62.2 | 46.1 | 17.0 | 12.7 | 622 | 102 | 26.6 | 14.8 | 145.9 | 92.5 | 19.4 | 10.8 | 1151 | 159 | 32.2 | 12.8 |
Fruits, vegetables, and pulses | 7.7 | 26.5 | 2.0 | 6.6 | 25 | 18 | 1.2 | 3.7 | 70.2 | 69.5 | 8.1 | 7.5 | 156 | 37 | 4.3 | 4.3 |
Meat, fish, and eggs | 26.7 | 21.4 | 7.6 | 6.9 | 280 | 63 | 12.3 | 10.4 | 66.6 | 46.5 | 8.6 | 5.5 | 603 | 110 | 16.4 | 9.4 |
Dairy products | 15.2 | 27.5 | 3.9 | 6.0 | 114 | 32 | 4.9 | 5.5 | 22.5 | 34.6 | 3.0 | 4.2 | 140 | 36 | 4.1 | 4.2 |
Confectioneries | 33.1 | 29.1 | 9.4 | 8.9 | 455 | 96 | 19.2 | 14.4 | 33.2 | 29.1 | 5.4 | 6.1 | 456 | 96 | 13.8 | 11.6 |
Alcoholic beverages | 127.5 | 253.4 | 17.6 | 24.9 | 340 | 155 | 11.6 | 17.8 | 127.5 | 253.4 | 11.9 | 18.9 | 340 | 155 | 8.5 | 14.2 |
Non-alcoholic beverages | 66.5 | 118.3 | 12.7 | 16.8 | 100 | 43 | 4.0 | 6.7 | 262.6 | 289.2 | 26.1 | 19.0 | 114 | 44 | 3.0 | 4.4 |
Fats and oils | 8.8 | 6.4 | 2.6 | 2.5 | 189 | 34 | 8.5 | 6.0 | 11.9 | 7.4 | 1.8 | 1.6 | 306 | 46 | 8.8 | 4.8 |
Seasonings and spices | 99.0 | 63.7 | 27.2 | 17.1 | 232 | 23 | 11.7 | 7.3 | 103.3 | 64.4 | 15.6 | 11.9 | 279 | 27 | 8.9 | 4.7 |
Pickles | 0.2 | 0.8 | 0.1 | 0.3 | 1 | 1 | 0.1 | 0.3 | 1.1 | 2.1 | 0.1 | 0.3 | 4 | 2 | 0.1 | 0.2 |
Low-Estimate Scenario 1 | High-Estimate Scenario 1 | |||||||
---|---|---|---|---|---|---|---|---|
Intake | Contribution (%) | Intake | Contribution (%) | |||||
Variable | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
Energy (kJ/day) | 2357 | 1048 | 27.9 | 9.5 | 3547 | 1522 | 42.4 | 15.0 |
Protein (g/day) | 15.0 | 6.1 | 20.7 | 7.9 | 26.8 | 12.3 | 37.2 | 16.4 |
Total fat (g/day) | 19.5 | 9.7 | 29.4 | 11.5 | 29.8 | 14.9 | 45.1 | 17.9 |
Saturated fatty acid (g/day) | 6.25 | 3.41 | 32.5 | 13.3 | 8.89 | 4.65 | 46.7 | 18.1 |
Monounsaturated fatty acid (g/day) | 7.50 | 4.00 | 29.7 | 12.2 | 11.55 | 6.19 | 45.8 | 18.7 |
Polyunsaturated fatty acid (g/day) | 3.74 | 1.97 | 28.6 | 11.9 | 5.83 | 2.97 | 45.0 | 18.9 |
n-3 polyunsaturated fatty acid (g/day) | 0.42 | 0.29 | 22.0 | 14.3 | 0.76 | 0.51 | 39.4 | 23.2 |
n-6 polyunsaturated fatty acid (g/day) | 3.14 | 1.65 | 29.8 | 12.1 | 4.83 | 2.45 | 46.2 | 18.6 |
Cholesterol (mg/day) | 45 | 30 | 14.5 | 9.6 | 110 | 74 | 34.7 | 20.9 |
Carbohydrate (g/day) | 65.6 | 29.2 | 25.3 | 9.6 | 101.9 | 44.9 | 39.4 | 15.1 |
Total dietary fiber (g/day) | 2.8 | 1.5 | 14.6 | 8.2 | 6.1 | 3.1 | 31.9 | 17.0 |
Sodium (mg/day) | 2361 | 708 | 58.9 | 9.5 | 2778 | 800 | 69.7 | 12.0 |
Potassium (mg/day) | 392 | 161 | 16.2 | 7.4 | 769 | 387 | 32.0 | 16.9 |
Calcium (mg/day) | 109 | 58 | 22.9 | 11.9 | 168 | 82 | 35.9 | 18.1 |
Magnesium (mg/day) | 51 | 20 | 20.0 | 7.6 | 89 | 40 | 35.2 | 16.1 |
Phosphorus (mg/day) | 225 | 87 | 21.9 | 8.0 | 375 | 163 | 36.9 | 16.0 |
Iron (mg/day) | 1.5 | 0.6 | 19.7 | 7.5 | 2.7 | 1.3 | 36.2 | 16.9 |
Zinc (mg/day) | 1.3 | 0.5 | 15.0 | 6.1 | 2.7 | 1.4 | 31.9 | 15.9 |
Copper (mg/day) | 0.16 | 0.07 | 14.3 | 6.7 | 0.33 | 0.16 | 30.2 | 15.6 |
Manganese (mg/day) | 0.49 | 0.20 | 13.9 | 6.1 | 1.03 | 0.56 | 28.8 | 14.2 |
Vitamin A 2 (µg/day) | 37 | 25 | 8.0 | 6.2 | 149 | 172 | 29.5 | 21.6 |
Vitamin D (µg/day) | 0.5 | 0.5 | 9.3 | 10.4 | 1.7 | 1.7 | 29.4 | 24.7 |
α-Tocopherol (mg/day) | 2.2 | 1.3 | 28.0 | 13.4 | 3.4 | 1.8 | 44.3 | 19.8 |
Vitamin K (µg/day) | 14.3 | 8.9 | 7.3 | 5.8 | 53.3 | 42.6 | 26.0 | 20.8 |
Thiamin (mg/day) | 0.22 | 0.13 | 20.9 | 11.1 | 0.37 | 0.20 | 36.2 | 18.4 |
Riboflavin (mg/day) | 0.25 | 0.12 | 19.9 | 9.9 | 0.42 | 0.20 | 34.4 | 16.9 |
Niacin (mg/day) | 3.5 | 2.0 | 19.2 | 9.4 | 6.5 | 3.7 | 36.2 | 18.4 |
Vitamin B6 (mg/day) | 0.19 | 0.12 | 14.7 | 8.1 | 0.40 | 0.24 | 31.2 | 17.8 |
Vitamin B12 (µg/day) | 0.6 | 0.5 | 12.2 | 8.9 | 1.7 | 1.5 | 31.2 | 22.6 |
Folate (µg/day) | 41 | 19 | 13.1 | 7.3 | 93 | 52 | 29.6 | 17.3 |
Vitamin C (mg/day) | 5 | 7 | 5.7 | 6.9 | 21 | 18 | 22.8 | 18.7 |
Alcohol (g) 3 | 9.3 | 18.5 | 99.8 | 1.8 | 9.3 | 18.5 | 99.9 | 1.6 |
Low-Estimate Scenario 1 | High-Estimate Scenario 1 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% of Grams | % of Energy | % of Grams | % of Energy | ||||||||||||||
Variable | n | Mean | SD | p 2 | Mean | SD | p 2 | Mean | SD | p 2 | Mean | SD | p 2 | ||||
Age group (y) | <0.0001 | 0.005 | <0.0001 | <0.0001 | |||||||||||||
18–39 | 972 | 17.4 | a | 9.5 | 29.0 | a | 10.2 | 36.5 | a | 14.0 | 49.2 | a | 14.3 | ||||
40–59 | 892 | 17.3 | a | 9.9 | 28.9 | a | 9.6 | 34.6 | b | 14.2 | 45.0 | b | 13.3 | ||||
60–79 | 878 | 14.0 | b | 7.1 | 25.5 | b | 8.2 | 21.1 | c | 11.5 | 32.1 | c | 11.7 | ||||
Sex | <0.0001 | 0.005 | <0.0001 | <0.0001 | |||||||||||||
Male | 1350 | 18.8 | 10.1 | 28.4 | 10.3 | 33.9 | 15.3 | 43.8 | 15.7 | ||||||||
Female | 1392 | 13.9 | 7.2 | 27.4 | 8.7 | 28.1 | 14.0 | 41.0 | 14.3 | ||||||||
Body mass index (kg/m2) 3 | 0.10 | 0.64 | 0.51 | 0.71 | |||||||||||||
T1 (median: 19.8) | 914 | 16.1 | 9.1 | 27.9 | 9.8 | 31.1 | 14.9 | 42.6 | 14.8 | ||||||||
T2 (median: 22.5) | 914 | 16.2 | 9.0 | 27.7 | 9.5 | 30.8 | 14.9 | 42.0 | 14.9 | ||||||||
T3 (median: 26.1) | 914 | 16.6 | 9.2 | 28.0 | 9.3 | 30.9 | 15.1 | 42.5 | 15.4 | ||||||||
Annual household income (Japanese yen) | 0.003 | 0.40 | <0.0001 | <0.0001 | |||||||||||||
<4 million | 970 | 15.5 | a | 8.6 | 27.6 | 9.6 | 27.8 | a | 14.8 | 40.1 | a | 15.9 | |||||
≥4 to <7 million | 926 | 16.6 | b | 9.1 | 28.2 | 9.5 | 31.9 | b | 15.3 | 43.2 | b | 15.0 | |||||
≥7 million | 846 | 16.9 | b | 9.6 | 27.8 | 9.5 | 33.4 | b | 14.0 | 44.1 | b | 13.7 | |||||
Educational level | 0.002 | 0.07 | <0.0001 | <0.0001 | |||||||||||||
Junior high school or high school | 1092 | 16.0 | a | 9.2 | 27.4 | 9.4 | 27.3 | a | 14.6 | 38.8 | a | 14.7 | |||||
Junior college or technical school | 819 | 15.7 | a | 8.7 | 28.1 | 9.5 | 32.5 | b | 15.0 | 44.5 | b | 15.1 | |||||
University or higher | 831 | 17.2 | b | 9.3 | 28.3 | 9.7 | 34.2 | b | 14.3 | 45.0 | b | 14.5 | |||||
Employment status | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||||||||||||
unemployed (including students) | 622 | 13.9 | a | 7.0 | 25.7 | a | 8.4 | 19.5 | a | 10.6 | 32.1 | a | 12.6 | ||||
Part-time job | 336 | 14.9 | a | 7.4 | 27.3 | b | 8.1 | 24.0 | b | 12.0 | 36.2 | b | 12.6 | ||||
Full-time job | 1784 | 17.4 | b | 9.8 | 28.7 | c | 10.0 | 36.2 | c | 14.0 | 47.1 | c | 14.0 | ||||
Smoking status | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||||||||||||
Current smoker | 452 | 21.1 | a | 11.5 | 31.1 | a | 11.4 | 38.3 | a | 16.2 | 48.7 | a | 15.9 | ||||
Past smoker | 607 | 17.9 | b | 9.1 | 28.8 | b | 9.1 | 31.4 | b | 14.3 | 41.9 | b | 14.1 | ||||
Never smoker | 1683 | 14.4 | c | 7.7 | 26.6 | c | 8.8 | 28.8 | c | 14.2 | 40.9 | b | 14.7 | ||||
Physical activity level (MET × h) 3 | 0.04 | 0.15 | 0.03 | 0.003 | |||||||||||||
T1 (median: 33.3) | 914 | 15.9 | a | 9.0 | 27.6 | 9.1 | 31.2 | ab | 14.9 | 42.4 | ab | 14.6 | |||||
T2 (median: 38.3) | 914 | 16.0 | a | 8.9 | 27.7 | 9.6 | 29.9 | a | 14.7 | 41.2 | a | 15.0 | |||||
T3 (median: 45.0) | 914 | 16.9 | a | 9.4 | 28.4 | 9.8 | 31.7 | b | 15.2 | 43.5 | b | 15.4 |
% of Grams | % of Energy | |||||||
---|---|---|---|---|---|---|---|---|
Variable | Regression Coefficient | 95% Confidence Interval | p 2 | Regression Coefficient | 95% Confidence Interval | p 2 | ||
Age group (y) | ||||||||
18–39 | Ref | - | - | - | Ref | - | - | - |
40–59 | −0.58 | −1.38 | 0.22 | 0.16 | −0.45 | −1.32 | 0.43 | 0.32 |
60–79 | −3.19 | −4.11 | −2.27 | <0.0001 | −3.55 | −4.56 | −2.55 | <0.0001 |
Sex | ||||||||
Male | Ref | - | - | - | Ref | - | - | - |
Female | −3.47 | −4.20 | −2.73 | <0.0001 | 0.41 | −0.40 | 1.21 | 0.32 |
Body mass index (kg/m2) 3 | ||||||||
T1 (median: 19.8) | Ref | - | - | - | Ref | - | - | - |
T2 (median: 22.5) | 0.74 | −0.60 | 2.08 | 0.28 | 0.73 | −0.74 | 2.20 | 0.33 |
T3 (median: 26.1) | 0.12 | −1.34 | 1.58 | 0.87 | 0.91 | −0.69 | 2.51 | 0.26 |
Annual household income 1 | ||||||||
<4 million Japanese yen | Ref | - | - | - | Ref | - | - | - |
≥4 to <7 million Japanese yen | 0.10 | −0.68 | 0.87 | 0.81 | −0.25 | −1.10 | 0.60 | 0.57 |
≥7 million Japanese yen | 0.42 | −0.41 | 1.24 | 0.32 | −0.70 | −1.60 | 0.20 | 0.13 |
Educational level | ||||||||
Junior high school or high school | Ref | - | - | - | Ref | - | - | - |
Junior college or technical school | −0.50 | −1.31 | 0.31 | 0.23 | 0.06 | −0.83 | 0.95 | 0.89 |
University or higher | −0.28 | −1.10 | 0.54 | 0.50 | 0.30 | −0.59 | 1.20 | 0.51 |
Employment status | ||||||||
Unemployed (including students) | Ref | - | - | - | Ref | - | - | - |
Part-time job | 0.88 | −0.27 | 2.02 | 0.13 | 0.99 | −0.27 | 2.24 | 0.12 |
Full-time job | 0.83 | −0.12 | 1.78 | 0.09 | 0.56 | −0.48 | 1.61 | 0.29 |
Smoking status | ||||||||
Current smoker | Ref | - | - | - | Ref | - | - | - |
Past smoker | −2.37 | −3.42 | −1.32 | <0.0001 | −1.41 | −2.56 | −0.25 | 0.02 |
Never smoker | −4.82 | −5.76 | −3.87 | <0.0001 | −4.20 | −5.23 | −3.17 | <0.0001 |
Physical activity level (MET × h) 3 | ||||||||
T1 (median: 33.3) | Ref | - | - | - | Ref | - | - | - |
T2 (median: 38.3) | 0.36 | −0.42 | 1.14 | 0.37 | 0.13 | −0.73 | 0.98 | 0.77 |
T3 (median: 45.0) | 0.79 | 0.00 | 1.58 | 0.05 | 0.45 | −0.41 | 1.32 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinozaki, N.; Murakami, K.; Masayasu, S.; Sasaki, S. Highly Processed Food Consumption and Its Association with Anthropometric, Sociodemographic, and Behavioral Characteristics in a Nationwide Sample of 2742 Japanese Adults: An Analysis Based on 8-Day Weighed Dietary Records. Nutrients 2023, 15, 1295. https://doi.org/10.3390/nu15051295
Shinozaki N, Murakami K, Masayasu S, Sasaki S. Highly Processed Food Consumption and Its Association with Anthropometric, Sociodemographic, and Behavioral Characteristics in a Nationwide Sample of 2742 Japanese Adults: An Analysis Based on 8-Day Weighed Dietary Records. Nutrients. 2023; 15(5):1295. https://doi.org/10.3390/nu15051295
Chicago/Turabian StyleShinozaki, Nana, Kentaro Murakami, Shizuko Masayasu, and Satoshi Sasaki. 2023. "Highly Processed Food Consumption and Its Association with Anthropometric, Sociodemographic, and Behavioral Characteristics in a Nationwide Sample of 2742 Japanese Adults: An Analysis Based on 8-Day Weighed Dietary Records" Nutrients 15, no. 5: 1295. https://doi.org/10.3390/nu15051295