Severe Dyslipidemia Mimicking Familial Hypercholesterolemia Induced by High-Fat, Low-Carbohydrate Diets: A Critical Review
Abstract
:1. Introduction
2. High-Fat, Low-Carbohydrate Diets: Examples from the Lipid Clinic
2.1. Carnivorous Diet
Patient 1 | Patient 2 | Reference Range | |
---|---|---|---|
BMI (kg/m2) | 26.2 | 27.3 | 18.5–25 |
Total cholesterol (mmol/L) | 16.81 | 10.88 | |
HDL cholesterol (mmol/L) | 1.53 | 2.00 | |
LDL cholesterol (mmol/L) | 15.02 | 8.59 | |
Triglycerides (mmol/L) | 0.57 | 0.65 | <1.80 |
ApoB (mg/dL) | 321 | 186 | <120 |
ApoA1 (mg/dL) | 156 | 188 | |
Lp(a) (nmol/L) | 18 | 7 | <105 |
Glucose (mmol/L) | 4.3 | 5.0 | <6.0 |
Insulin (pmol/L) | 16.4 | 17.5 | 12–96 |
C-peptide (nmol/L) | 0.19 | 0.19 | 0.2–0.8 |
HOMA-IR | 0.5 | 0.6 | <2.0 |
FibroScan CAP (dB/m) | 185 | 185 | 156–288 |
FibroScan LSM (kPa) | 6.2 | 6.2 | <7 |
Liver fat content (%) | <2 | 2.7 | <5 |
Carotid IMT thickness (percentile) | >97th | 90th | Based on age and sex, according to [19] |
2.2. Journey from Zero-Carb to Raw-Food Diet
2.3. Heterozygous Familial Hypercholesterolemia Derailed
3. Mechanism of Dietary Induced Hypercholesterolemia
3.1. Increased Intake of Dietary Cholesterol
3.2. Increased Intake of Dietary Fatty Acids
3.3. Decreased Intake of Carbohydrates
4. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dietary Pattern of Patient 1 on an Example Day
- Breakfast
- –
- Black coffee (filtered).
- Lunch
- –
- Eggs (6 to 8) and bacon fried in butter.
- Dinner
- –
- Approximately 750 g of meat, such as red meat steak pork chops (fat still on), chicken thighs, fatty fish, meatballs (three parts 18% minced meat mixed with one part minced liver), fried in butter.
- Beverages
- –
- Water with meals, black coffee, approximately two beers weekly;
- –
- No protein shakes/beverages or sugar-sweetened beverages.
- Cooking/baking
- –
- 500 g of butter weekly used for baking;
- –
- Explicitly no vegetables oils or margarines; no vegetables or fruits; no rice, pasta, or potatoes.
Patient 1 | |
---|---|
Energy (kcal/d) | 3275 |
Fat (g/d) | 220.5 |
Fat (E-%) | 60.6 |
Saturated fat (g/d) | 99.0 |
Saturated fat (E-%) | 27.2 |
Protein (g/d) | 304.1 |
Protein E-% | 37.1 |
Carbohydrate (g/d) | 5.5 |
Carbohydrate (E-%) | 0.7 |
Alcohol (g/d) | 6 |
Fiber (g/d) | 0.4 |
Salt (g/d) | 12.8 |
Sodium (mg/d) | 5097 |
Appendix B
Dietary Pattern of Patient 4 on Example Days
- Breakfast
- –
- 10% Greek yogurt with home-baked seeds in a little coconut fat, honey, and cinnamon (no other sugar or sweeteners);
- –
- Three eggs and bacon fried in butter;
- –
- Oven-baked ricotta cheese with raspberries, oranges, pecan nuts, and an egg.
- Lunch
- –
- Alternatives for lunch were beet salad with herring in olive oil or fatty mayonnaise; chicory salad with salmon and a scoop of 10% Greek yogurt; Cesar salad with fatty mayonnaise; zucchini soup with fatty cooking cream; OR low-carbohydrate sandwich with fried egg, cheese, and raw vegetables.
- Dinner
- –
- Alternatives for dinner were leek disk codfish in high-fat cooking cream; chicory dish in cheese and ham, in butter; spinach with egg and cream; Nasi (typical Indonesian dish) of cauliflower rice with rice and chicken fried in coconut fat; lightly cooked beans with chicken, tomato and some extra herbs, stir-fried in butter; OR pizza made with chicken breast with lots of vegetables covered in tomato sauce and mozzarella.
- Cooking/baking
- –
- Nearly all dishes are cooked based on recipes in the books by “The New Food”: https://thenewfood.nl/ (accessed on 26 November 2021)
Patient 4 | |
---|---|
Energy (kcal/d) | 1912 |
Fat (g/d) | 147.2 |
Fat (E-%) | 69.3 |
Saturated fat (g/d) | 74.1 |
Saturated fat (E-%) | 34.9 |
Protein (g/d) | 85.2 |
Protein (E-%) | 17.8 |
Carbohydrate (g/d) | 55.3 |
Carbohydrate (E-%) | 11.6 |
Alcohol (g/d) | 0.0 |
Fiber (g/d) | 17.2 |
Salt (g/d) | 3.9 |
Sodium (mg/d) | 1558 |
References
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [Green Version]
- Anitschkow, N.N.; Chalatov, S. Ueber experimentelle Choleserinsteatose und ihre Bedeutung fur die Entstehung einiger pathologischer Prozesse. Zentralbl. Allg. Pathol. 1913, 24, 1–9. [Google Scholar]
- Goldstein, J.L.; Brown, M.S. A century of cholesterol and coronaries: From plaques to genes to statins. Cell 2015, 161, 161–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kromhout, D.; Menotti, A.; Bloemberg, B.; Aravanis, C.; Blackburn, H.; Buzina, R.; Dontas, A.S.; Fidanza, F.; Giaipaoli, S.; Jansen, A.; et al. Dietary saturated and trans fatty acids and cholesterol and 25-year mortality from coronary heart disease: The Seven Countries Study. Prev. Med. 1995, 24, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Menotti, A.; Puddu, P.E.; Adachi, H.; Tolonen, H.; Kafatos, A. Association of serum cholesterol with coronary heart disease mortality during 50-year follow-up in ten cohorts of the seven countries study. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1337–1346. [Google Scholar] [CrossRef]
- Steinberg, D. An interpretive history of the cholesterol controversy: Part I. J. Lipid. Res. 2004, 45, 1583–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poli, A.; Barbagallo, C.M.; Cicero, A.F.G.; Corsini, A.; Manzato, E.; Trimarco, B.; Bernini, F.; Visioli, F.; Bianchi, A.; Canzone, G.; et al. Nutraceuticals and functional foods for the control of plasma cholesterol levels. An intersociety position paper. Pharmacol. Res. 2018, 134, 51–60. [Google Scholar] [CrossRef]
- Schoeneck, M.; Iggman, D. The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1325–1338. [Google Scholar] [CrossRef]
- The Lipid Research Clinics Coronary Primary Prevention Trial results. I. Reduction in incidence of coronary heart disease. JAMA 1984, 251, 351–364. [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2019, 74, e177–e232. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Hollænder, P.L.B.; Ross, A.B.; Kristensen, M. Whole-grain and blood lipid changes in apparently healthy adults: A systematic review and meta-analysis of randomized controlled studies1-3. Am. J. Clin. Nutr. 2015, 102, 556–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.S.; Goldstein, J.L. Familial hypercholesterolemia: Defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3 hydroxy 3 methylglutaryl coenzyme A reductase activity. Proc. Natl. Acad. Sci. USA 1974, 71, 788–792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordestgaard, B.G.; Chapman, M.J.; Humphries, S.E.; Ginsberg, H.N.; Masana, L.; Descamps, O.S.; Wiklund, O.; Hegele, R.A.; Raal, F.J.; Defesche, J.C.; et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease: Consensus Statement of the European Atherosclerosis Society. Eur. Heart J. 2013, 34, 3478–3490. [Google Scholar] [CrossRef] [Green Version]
- Reeskamp, L.F.; Tromp, T.R.; Defesche, J.C.; Grefhorst, A.; Stroes, E.S.; Hovingh, G.K.; Zuurbier, L. Next-generation sequencing to confirm clinical familial hypercholesterolemia. Eur. J. Prev. Cardiol. 2020, 28, 875–883. [Google Scholar] [CrossRef]
- Balder, J.W.; de Vries, J.K.; Nolte, I.M.; Lansberg, P.J.; Kuivenhoven, J.A.; Kamphuisen, P.W. Lipid and lipoprotein reference values from 133,450 Dutch Lifelines participants: Age- and gender-specific baseline lipid values and percentiles. J. Clin. Lipidol. 2017, 11, 1055–1064.e6. [Google Scholar] [CrossRef] [Green Version]
- Matli, B.; Schulz, A.; Koeck, T.; Falter, T.; Lotz, J.; Rossmann, H.; Pfeiffer, N.; Beutel, M.; Münzel, T.; Strauch, K.; et al. Distribution of HOMA-IR in a population-based cohort and proposal for reference intervals. Clin. Chem. Lab. Med. 2021, 59, 1844–1851. [Google Scholar] [CrossRef]
- Engelen, L.; Ferreira, I.; Stehouwer, C.D.; Boutouyrie, P.; Laurent, S. Reference intervals for common carotid intima-medi thickness measured with echotracking: Relation with risk factors. Eur. Heart J. 2013, 34, 2368–2380. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, I.J.; Ibrahim, N.; Bredefeld, C.; Foo, S.; Lim, V.; Gutman, D.; Huggins, L.-A.; Hegele, R.A. Ketogenic diets, not for everyone. J. Clin. Lipidol. 2021, 15, 61–67. [Google Scholar] [CrossRef]
- Schaffer, A.E.; D’Alessio, D.A.; Guyton, J.R. Extreme elevations of low-density lipoprotein cholesterol with very low carbohydrate, high fat diets. J. Clin. Lipidol. 2021, 15, 525–526. [Google Scholar] [CrossRef]
- Norwitz, N.G.; Feldman, D.; Soto-Mota, A.; Kalayjian, T.; Ludwig, D.S. Elevated LDL Cholesterol with a Carbohydrate-Restricted Diet: Evidence for a “lean Mass Hyper-Responder” Phenotype. Curr. Dev. Nutr. 2022, 6, nzab144. [Google Scholar] [CrossRef] [PubMed]
- Norwitz, N.G.; Soto-Mota, A.; Feldman, D.; Parpos, S.; Budoff, M. Case Report: Hypercholesterolemia “Lean Mass Hyper-Responder” Phenotype Presents in the Context of a Low Saturated Fat Carbohydrate-Restricted Diet. Front. Endocrinol. 2022, 13, 830325. [Google Scholar] [CrossRef] [PubMed]
- Tromp, T.R.; Hartgers, M.L.; Hovingh, G.K.; Vallejo-Vaz, A.J.; Ray, K.K.; Soran, H.; Freiberger, T.; Bertolini, S.; Harada-Shiba, M.; Blom, D.J.; et al. Worldwide experience of homozygous familial hypercholesterolaemia: Retrospective cohort study. Lancet 2022, 399, 719–728. [Google Scholar] [CrossRef]
- Cuchel, M.; Bruckert, E.; Ginsberg, H.N.; Raal, F.J.; Santos, R.D.; Hegele, R.A.; Kuivenhoven, J.A.; Nordestgaard, B.G.; Descamps, O.S.; Steinhagen-Thiessen, E.; et al. Homozygous familial hypercholesterolaemia: New insights and guidance for clinicians to improve detection and clinical management. A position paper from the Consensus Panel on Familial Hypercholesterolaemia of the European Atherosclerosis Society. Eur. Heart J. 2014, 35, 2146–2157. [Google Scholar] [CrossRef]
- Suarez-Lledo, V.; Alvarez-Galvez, J. Prevalence of health misinformation on social media: Systematic review. J. Med. Internet Res. 2021, 23, e17187. [Google Scholar] [CrossRef] [PubMed]
- Tahreem, A.; Rakha, A.; Rabail, R.; Nazir, A.; Socol, C.T.; Maerescu, C.M.; Aadil, R.M. Fad Diets: Facts and Fiction. Front. Nutr. 2022, 9, 960922. [Google Scholar] [CrossRef]
- O’Neill, B.; Raggi, P. The ketogenic diet: Pros and cons. Atherosclerosis 2020, 292, 119–126. [Google Scholar] [CrossRef] [Green Version]
- International Food Information Council. 2021 Food & Health Survey. Available online: https://foodinsight.org/wp-content/uploads/2021/05/IFIC-2021-Food-and-Health-Survey.May-2021-1.pdf (accessed on 26 November 2022).
- International Food Information Council. 2022 Food and Health Survey. 18 May 2022. Available online: https://foodinsight.org/wp-content/uploads/2022/05/IFIC-2022-Food-and-Health-Survey-Report.pdf (accessed on 26 November 2022).
- Stellaard, F. From Dietary Cholesterol to Blood Cholesterol, Physiological Lipid Fluxes, and Cholesterol Homeostasis. Nutrients 2022, 14, 1643. [Google Scholar] [CrossRef]
- Lütjohann, D.; Meyer, S.; von Bergmann, K.; Stellaard, F. Cholesterol Absorption and Synthesis in Vegetarians and Omnivores. Mol. Nutr. Food Res. 2018, 62, 1700689. [Google Scholar] [CrossRef]
- Berger, S.; Raman, G.; Vishwanathan, R.; Jacques, P.F.; Johnson, E.J. Dietary cholesterol and cardiovascular disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2015, 102, 276–294. [Google Scholar] [CrossRef] [PubMed]
- Kern, F. Normal Plasma Cholesterol in an 88-Year-Old Man Who Eats 25 Eggs a Day. N. Engl. J. Med. 1991, 324, 896–899. [Google Scholar] [CrossRef] [PubMed]
- Bosner, M.S.; Ostlund, R.E.; Osofisan, O.; Grosklos, J.; Fritschle, C.; Lange, L.G. Assessment of percent cholesterol absorption in humans with stable isotopes. J. Lipid. Res. 1993, 34, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Lutjohann, D.; Meese, C.O.; Crouse, J.R.; Von Bergmann, K. Evaluation of deuterated cholesterol and deuterated sitostanol for measurement of cholesterol absorption in humans. J. Lipid. Res. 1993, 34, 1039–1046. [Google Scholar] [CrossRef]
- Grundy, S.M. Does Dietary Cholesterol Matter? Curr. Atheroscler. Rep. 2016, 18, 68. [Google Scholar] [CrossRef]
- Goldstein, J.L.; Brown, M.S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Dandan, M.; Han, J.; Mann, S.; Kim, R.; Mohammed, H.; Nyangau, E.; Hellerstein, M. Turnover Rates of the Low-Density Lipoprotein Receptor and PCSK9: Added Dimension to the Cholesterol Homeostasis Model. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2866–2876. [Google Scholar] [CrossRef]
- Vourakis, M.; Mayer, G.; Rousseau, G. The role of gut microbiota on cholesterol metabolism in atherosclerosis. Int. J. Mol. Sci. 2021, 22, 8074. [Google Scholar] [CrossRef]
- Russell, D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 2003, 72, 137–174. [Google Scholar] [CrossRef] [Green Version]
- Menotti, A.; Kromhout, D.; Puddu, P.E.; Alberti-Fidanza, A.; Hollman, P.; Kafatos, A.; Tolonen, H.; Adachi, H.; Jacobs, D.R., Jr. Baseline fatty acids, food groups, a diet score and 50-year all-cause mortality rates. An ecological analysis of the Seven Countries Study. Ann. Med. 2017, 49, 718–727. [Google Scholar] [CrossRef] [Green Version]
- Maki, K.C.; Dicklin, M.R.; Kirkpatrick, C.F. Saturated fats and cardiovascular health: Current evidence and controversies. J. Clin. Lipidol. 2021, 15, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Astrup, A.; Magkos, F.; Bier, D.M.; Brenna, J.T.; De Oliveira Otto, M.C.; Hill, J.O.; King, J.C.; Mente, A.; Ordovas, J.M.; Volek, J.S.; et al. Saturated Fats and Health: A Reassessment and Proposal for Food-Based Recommendations: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Mensink, R.P.; World Health Organization. Effects of Saturated Fatty Acids on Serum Lipids and Lipoproteins: A Systematic Review and Regression Analysis; World Health Organization: Geneva, Switzerland, 2016; pp. 1–63. [Google Scholar]
- Fernandez, M.L.; West, K.L. Mechanisms by which dietary fatty acids modulate plasma lipids. J. Nutr. 2005, 135, 2075–2078. [Google Scholar] [CrossRef] [Green Version]
- Woollett, L.A.; Spady, D.K.; Dietschy, J.M. Saturated and unsaturated fatty acids independently regulate low density lipoprotein receptor activity and production rate. J. Lipid. Res. 1992, 33, 77–88. [Google Scholar] [CrossRef]
- Bergeron, N.; Chiu, S.; Williams, P.T.; MKing, S.; Krauss, R.M. Effects of red meat, white meat, and nonmeat protein sources on atherogenic lipoprotein measures in the context of low compared with high saturated fat intake: A randomized controlled trial. Am. J. Clin. Nutr. 2019, 110, 24–33. [Google Scholar] [CrossRef]
- Ginsberg, H.N. Insulin resistance and cardiovascular disease. J. Clin. Invest. 2000, 106, 453–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkpatrick, C.F.; Bolick, J.P.; Kris-Etherton, P.M.; Sikand, G.; Aspry, K.E.; Soffer, D.E.; Willard, K.-E.; Maki, K.C. Review of current evidence and clinical recommendations on the effects of low-carbohydrate and very-low-carbohydrate (including ketogenic) diets for the management of body weight and other cardiometabolic risk factors: A scientific statement from the Nati. J. Clin. Lipidol. 2019, 13, 689–711.e1. [Google Scholar] [CrossRef] [Green Version]
- Kossoff, E.H.; Zupec-Kania, B.A.; Auvin, S.; Ballaban-Gil, K.R.; Christina Bergqvist, A.G.; Blackford, R.; Buchhalter, J.R.; Caraballo, R.H.; Cross, J.H.; Dahlin, M.G.; et al. Optimal clinical management of children receiving dietary therapies for epilepsy: Updated recommendations of the International Ketogenic Diet Study Group. Epilepsia Open. 2018, 3, 175–192. [Google Scholar] [CrossRef]
- Kwiterovich, P.O.; Vining, E.P.G.; Pyzik, P.; Skolasky, R.; Freeman, J.M. Effect of a High-Fat Ketogenic Diet on Plasma Levels of Lipids, Lipoproteins, and Apolipoproteins in Children. J. Am. Med. Assoc. 2003, 290, 912–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.S.; Lee, J. Influences of ketogenic diet on body fat percentage, respiratory exchange rate, and total cholesterol in athletes: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 2912. [Google Scholar] [CrossRef]
- Buga, A.; Welton, G.L.; Scott, K.E.; Atwell, A.D.; Haley, S.J.; Esbenshade, N.J.; Abraham, J.; Buxton, J.D.; Ault, D.L.; Raabe, A.S.; et al. The Effects of Carbohydrate versus Fat Restriction on Lipid Profiles in Highly Trained, Recreational Distance Runners: A Randomized, Cross-Over Trial. Nutrients 2022, 14, 1135. [Google Scholar] [CrossRef]
- Creighton, B.C.; Hyde, P.N.; Maresh, C.M.; Kraemer, W.J.; Phinney, S.D.; Volek, J.S. Paradox of hypercholesterolaemia in highly trained, keto-adapted athletes. BMJ Open Sport Exerc. Med. 2018, 4, e000429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burén, J.; Ericsson, M.; Damasceno, N.; Sjödin, A. A Ketogenic Low-Carbohydrate High-Fat Diet Increases LDL Cholesterol in Healthy, Young, Normal-Weight Women: A Randomized Controlled Feeding Trial. Nutrients 2021, 13, 814. [Google Scholar] [CrossRef] [PubMed]
- Retterstøl, K.; Svendsen, M.; Narverud, I.; Holven, K.B. Effect of low carbohydrate high fat diet on LDL cholesterol and gene expression in normal-weight, young adults: A randomized controlled study. Atherosclerosis 2018, 279, 52–61. [Google Scholar] [CrossRef] [Green Version]
- Norwitz, N.G.; Soto-Mota, A.; Kaplan, B.; Ludwig, D.S.; Budoff, M.; Kontush, A.; Feldman, D. The Lipid Energy Model: Reimagining Lipoprotein Function in the Context of Carbohydrate-Restricted Diets. Metabolites 2022, 12, 460. [Google Scholar] [CrossRef] [PubMed]
Referral | Lipid Clinic, First Visit | Lipid Clinic, Second Visit | Study Visit | |
---|---|---|---|---|
Timepoint | T = 0 | +3 Months | +6 Months | +4 Years |
Total cholesterol (mmol/L) | 15.0 | 10.07 | 5.11 | 3.79 |
HDL cholesterol (mmol/L) | 2.22 | 1.76 | 1.55 | 1.17 |
LDL cholesterol (mmol/L) | 12.15 | 7.93 | 3.40 | 2.29 |
Triglycerides (mmol/L) | 1.40 | 0.85 | 0.35 | 0.74 |
ApoB (mg/dL) | N.A. | N.A. | N.A. | 64 |
Pre-Diet | On Diet | Modified Diet | |
---|---|---|---|
Timepoint | T = 0 | +6 Months | +9 Months |
Total cholesterol (mmol/L) | 4.7 | 10.8 | 5.1 |
HDL cholesterol (mmol/L) | 1.4 | 2.15 | 1.4 |
LDL cholesterol (mmol/L) | 2.9 | 8.39 | 2.8 |
Triglycerides (mmol/L) | 0.9 | 1.78 | 0.8 |
ApoB (mg/dL) | 79 | 194 | 79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houttu, V.; Grefhorst, A.; Cohn, D.M.; Levels, J.H.M.; Roeters van Lennep, J.; Stroes, E.S.G.; Groen, A.K.; Tromp, T.R. Severe Dyslipidemia Mimicking Familial Hypercholesterolemia Induced by High-Fat, Low-Carbohydrate Diets: A Critical Review. Nutrients 2023, 15, 962. https://doi.org/10.3390/nu15040962
Houttu V, Grefhorst A, Cohn DM, Levels JHM, Roeters van Lennep J, Stroes ESG, Groen AK, Tromp TR. Severe Dyslipidemia Mimicking Familial Hypercholesterolemia Induced by High-Fat, Low-Carbohydrate Diets: A Critical Review. Nutrients. 2023; 15(4):962. https://doi.org/10.3390/nu15040962
Chicago/Turabian StyleHouttu, Veera, Aldo Grefhorst, Danny M. Cohn, Johannes H. M. Levels, Jeanine Roeters van Lennep, Erik S. G. Stroes, Albert K. Groen, and Tycho R. Tromp. 2023. "Severe Dyslipidemia Mimicking Familial Hypercholesterolemia Induced by High-Fat, Low-Carbohydrate Diets: A Critical Review" Nutrients 15, no. 4: 962. https://doi.org/10.3390/nu15040962
APA StyleHouttu, V., Grefhorst, A., Cohn, D. M., Levels, J. H. M., Roeters van Lennep, J., Stroes, E. S. G., Groen, A. K., & Tromp, T. R. (2023). Severe Dyslipidemia Mimicking Familial Hypercholesterolemia Induced by High-Fat, Low-Carbohydrate Diets: A Critical Review. Nutrients, 15(4), 962. https://doi.org/10.3390/nu15040962