Prognostic Value of Cheyne-Stokes Respiration and Nutritional Status in Acute Decompensated Heart Failure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Sleep Study
2.3. Assessment of Nutritional Status
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Separate Prognostic Value of CSR and Malnutrition
3.3. Effect of CSR with and without Malnutrition on Prognosis
4. Discussion
4.1. CSR and All-Cause Mortality in ADHF Patients
4.2. Malnutrition and All-Cause Mortality in ADHF Patients
4.3. Clinical Implications
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Okura, Y.; Ramadan, M.M.; Ohno, Y.; Mitsuma, W.; Tanaka, K.; Ito, M.; Suzuki, K.; Tanabe, N.; Kodama, M.; Aizawa, Y. Impending epidemic: Future projection of heart failure in Japan to the year 2055. Circ. J. 2008, 72, 489–491. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, H.; Miura, M.; Nochioka, K.; Sakata, Y. Heart failure as a general pandemic in Asia. Eur. J. Heart Fail. 2015, 17, 884–892. [Google Scholar] [CrossRef]
- Cheyne, J. A case of apoplexy, in which the fleshy part of the heart was converted into fat. Dublin Hosp. Rep. Commun. Med. Surg. 1818, 2, 216–223, reprinted in Card. Class. 1941, 1, 317–320.. [Google Scholar]
- Yumino, D.; Bradley, T.D. Central sleep apnea and Cheyne-Stokes respiration. Proc. Am. Thorac. Soc. 2008, 15, 226–236. [Google Scholar] [CrossRef]
- Anker, S.D.; Ponikowski, P.; Varney, S.; Chua, T.P.; Clark, A.L.; Webb-Peploe, K.M.; Harrington, D.; Kox, W.J.; Poole-Wilson, P.A.; Coats, A.J. Wasting as independent risk factor for mortality in chronic heart failure. Lancet 1997, 349, 1050–1053. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Negassa, A.; Coats, A.J.; Afzal, R.; Poole-Wilson, P.A.; Cohn, J.N.; Yusuf, S. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: An observational study. Lancet 2003, 361, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Nochioka, K.; Sakata, Y.; Takahashi, J.; Miyata, S.; Miura, M.; Takada, T.; Fukumoto, Y.; Shiba, N.; Shimokawa, H. CHART-2 Investigators. Prognostic impact of nutritional status in asymptomatic patients with cardiac diseases: A report from the CHART-2 Study. Circ. J. 2013, 77, 2318–2326. [Google Scholar] [CrossRef] [Green Version]
- Ulíbarri, J.; González, M.A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A tool for controlling nutritional status. First validation in a hospital population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar]
- Nakagomi, A.; Kohashi, K.; Morisawa, T.; Kosugi, M.; Endoh, I.; Kusama, Y.; Atarashi, H.; Shimizu, W. Nutritional Status is Associated with Inflammation and Predicts a Poor Outcome in Patients with Chronic Heart Failure. J. Atheroscler. Thromb. 2016, 23, 713–727. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Luo, L.; Zhao, X.; Ye, P. Controlling Nutritional Status (CONUT) score as a predictor of all-cause mortality in elderly hypertensive patients: A prospective follow-up study. BMJ Open 2017, 7, e015649. [Google Scholar] [CrossRef] [Green Version]
- Takikawa, T.; Sumi, T.; Takahara, K.; Kawamura, Y.; Ohguchi, S.; Oguri, M.; Ishii, H.; Murohara, T. Prognostic Importance of Multiple Nutrition Screening Indexes for 1-Year Mortality in Hospitalized Acute Decompensated Heart Failure Patients. Circ. Rep. 2019, 11, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Suda, S.; Kasai, T.; Matsumoto, H.; Shiroshita, N.; Kato, M.; Kawana, F.; Yatsu, S.; Murata, A.; Kato, T.; Hiki, M.; et al. Prevalence and clinical correlates of sleep-disordered breathing in patients hospitalized with acute decompensated heart failure. Can. J. Cardiol. 2018, 34, 784–790. [Google Scholar] [CrossRef]
- Goldsmith, S.R.; Bart, B.A.; Pin, A.I. Neurohormonal Imbalance: A Neglected Problem-and Potential Therapeutic Target-in Acute Heart Failure. Curr. Probl. Cardiol. 2018, 43, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Spaak, J.; Egri, Z.J.; Kubo, T.; Yu, E.; Ando, S.; Kaneko, Y.; Usui, K.; Bradley, T.D.; Floras, J.S. Muscle sympathetic nerve activity during wakefulness in heart failure patients with and without sleep apnea. Hypertension 2005, 46, 1327–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishiwata, S.; Kasai, T.; Sato, A.; Suda, S.; Matsumoto, H.; Shitara, J.; Yatsu, S.; Murata, A.; Shimizu, M.; Kato, T.; et al. Prognostic effect of sleep-disordered breathing on hospitalized patients following acute heart failure. Clin. Res. Cardiol. 2022, 111, 663–672. [Google Scholar] [CrossRef]
- Yumino, D.; Wang, H.; Floras, J.S.; Newton, G.E.; Mak, S.; Ruttanaumpawan, P.; Parker, J.D.; Bradley, T.D. Prevalence and physiological predictors of sleep apnea in patients with heart failure and systolic dysfunction. J. Card. Fail. 2009, 15, 279–285. [Google Scholar] [CrossRef] [PubMed]
- McKee, P.A.; Castelli, W.P.; McNamara, P.M.; Kannel, W.B. The natural history of congestive heart failure: The Framingham study. N. Engl. J. Med. 1971, 285, 1441–1446. [Google Scholar] [CrossRef]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Lloyd, M.R.; Marcus, L.C.; Bradley, V.; Vaughn, M. The AASM Manual for the Scoring of Sleep and Associated Events Rules, Terminology and Technical Specifications; Version 2.2; American Academy of Sleep Medicine: Darien, IL, USA, 2015. [Google Scholar]
- Corrà, U.; Pistono, M.; Mezzani, A.; Braghiroli, A.; Giordano, A.; Lanfranchi, P.; Bosimini, E.; Gnemmi, M.; Giannuzzi, P. Sleep and exertional periodic breathing in chronic heart failure: Prognostic importance and interdependence. Circulation 2006, 113, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Narumi, T.; Arimoto, T.; Funayama, A.; Kadowaki, S.; Otaki, Y.; Nishiyama, S.; Takahashi, H.; Shishido, T.; Miyashita, T.; Miyamoto, T.; et al. Prognostic importance of objective nutritional indexes in patients with chronic heart failure. J. Cardiol. 2013, 62, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Takada, T.; Jujo, K.; Inagaki, K.; Abe, T.; Kishihara, M.; Shirotani, S.; Endo, N.; Watanabe, S.; Suzuki, K.; Minami, Y.; et al. Nutritional status during hospitalization is associated with the long-term prognosis of patients with heart failure. ESC Heart Fail. 2021, 8, 5372–5382. [Google Scholar] [CrossRef]
- Yaku, H.; Ozasa, N.; Morimoto, T.; Inuzuka, Y.; Tamaki, Y.; Yamamoto, E.; Yoshikawa, Y.; Kitai, T.; Taniguchi, R.; Iguchi, M.; et al. Demographics, Management, and In-Hospital Outcome of Hospitalized Acute Heart Failure Syndrome Patients in Contemporary Real Clinical Practice in Japan-Observations from the Prospective, Multicenter Kyoto Congestive Heart Failure (KCHF) Registry. Circ. J. 2018, 82, 2811–2819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naughton, M.T.; Benard, D.C.; Liu, P.P.; Rutherford, R.; Rankin, F.; Bradley, T.D. Effects of nasal CPAP on sympathetic activity in patients with heart failure and central sleep apnea. Am. J. Respir. Crit. Care Med. 1995, 152, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Iwakami, N.; Nagai, T.; Furukawa, T.A.; Sugano, Y.; Honda, S.; Okada, A.; Asaumi, Y.; Aiba, T.; Noguchi, T.; Kusano, K.; et al. Prognostic value of malnutrition assessed by Controlling Nutritional Status score for long-term mortality in patients with acute heart failure. Int. J. Cardiol. 2017, 230, 529–536. [Google Scholar] [CrossRef]
- Basic, K.; Fox, H.; Spießhöfer, J.; Bitter, T.; Horstkotte, D.; Oldenburg, O. Improvements of central respiratory events, Cheyne-Stokes respiration and oxygenation in patients hospitalized for acute decompensated heart failure. Sleep Med. 2016, 27, 15–19. [Google Scholar] [CrossRef]
- Kato, T.; Yaku, H.; Morimoto, T.; Inuzuka, Y.; Tamaki, Y.; Yamamoto, E.; Yoshikawa, Y.; Kitai, T.; Taniguchi, R.; Iguchi, M.; et al. Association with Controlling Nutritional Status (CONUT) Score and In-hospital Mortality and Infection in Acute Heart Failure. Sci. Rep. 2020, 24, 3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.L.; Sung, S.H.; Cheng, H.M.; Hsu, P.F.; Guo, C.Y.; Yu, W.C.; Chen, C.H. Prognostic Nutritional Index and the Risk of Mortality in Patients with Acute Heart Failure. J. Am. Heart Assoc. 2017, 25, e004876. [Google Scholar] [CrossRef] [PubMed]
- Ikeya, Y.; Saito, Y.; Nakai, T.; Kogawa, R.; Otsuka, N.; Wakamatsu, Y.; Kurokawa, S.; Ohkubo, K.; Nagashima, K.; Okumura, Y. Prognostic importance of the Controlling Nutritional Status (CONUT) score in patients undergoing cardiac resynchronisation therapy. Open Heart 2021, 8, e001740. [Google Scholar] [CrossRef]
- Turnbull, P.J.; Sinclair, A.J. Evaluation of nutritional status and its relationship with functional status in older citizens with diabetes mellitus using the mini nutritional assessment (MNA) tool—A preliminary investigation. J. Nutr. Health Aging 2002, 6, 185–189. [Google Scholar] [PubMed]
- Mineoka, Y.; Ishii, M.; Hashimoto, Y.; Nakamura, N.; Fukui, M. Malnutrition assessed by controlling nutritional status is correlated to carotid atherosclerosis in patients with type 2 diabetes. Endocr. J. 2019, 66, 1073–1082. [Google Scholar] [CrossRef] [Green Version]
- Ushijima, R.; Joho, S.; Nakagaito, M.; Akabane, T.; Nakamura, M.; Kinugawa, K. Relationship between malnutrition and sympathetic overactivation in patients with chronic heart failure. Eur. Heart J. 2018, 39, 1794. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.; Jafry, S.; Jeejeebhoy, K.; Nagpal, A.D.; Pisani, B.; Agarwala, R. Malnutrition and cachexia in heart failure. J. Parenter. Enter. Nutr. 2016, 40, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Berry, C.; Clark, A.L. Catabolism in chronic heart failure. Eur. Heart J. 2000, 12, 521–532. [Google Scholar] [CrossRef]
- Cowie, M.R.; Woehrle, H.; Wegscheider, K.; Angermann, C.; d’Ortho, M.; Erdmann, E.; Levy, P.; Simonds, A.K.; Somers, V.K.; Zannad, F.; et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N. Engl. J. Med. 2015, 373, 1095–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, C.M.; Whellan, D.J.; Fiuzat, M.; Punjabi, N.M.; Tasissa, G.; Anstrom, K.J.; Benjafield, A.V.; Woehrle, H.; Blasé, A.B.; Lindenfeld, J.; et al. Cardiovascular outcomes with minute ventilation-targeted adaptive servo-ventilation therapy in heart Failure: The CAT-HF Trial. J. Am. Coll. Cardiol. 2017, 69, 1577–1587. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All (n = 162) | Non-CSR without Malnutrition | Non-CSR with Malnutrition | CSR without Malnutrition | CSR with Malnutrition | p-Value * |
---|---|---|---|---|---|---|
(n = 27) | (n = 64) | (n = 26) | (n = 45) | |||
Age, year. | 62 (23) | 53 (19) a,e | 66 (25) a | 60 (24) | 64 (23) e | 0.02 |
Male (n, %) | 127 (78.4) | 20 (74.1) | 46 (71.9) | 22 (84.6) | 39 (86.7) | NS |
BMI (kg/m2) | 23.8 (6.1) | 25.3 (10.0) | 23.0 (5.1) | 24.4 (5.5) | 23.8 (5.9) | NS |
Systolic blood pressure (mmHg) | 106 (20) | 106.0 (14.0) | 108.0 (27.0) | 100.0 (13.0) | 104.0 (24.0) | NS |
Diastolic blood pressure (mmHg) | 60 (12) | 58.0 (14.0) | 60.0 (8.0) | 60.0 (15.0) | 60.0 (11.0) | NS |
Heart rate (per min) | 68 (17) | 68.0 (11.0) | 67.5 (16.0) | 71.0 (15) | 69.0 (15) | NS |
LVEF (%) | 33.9 ± 10.5 | 32.5 ± 8.4 | 36.6 ± 11.4 | 32.0 ± 8.7 | 31.9 ± 10.9 | NS |
NYHA class at polysomnography | NS | |||||
III, IV (n, %) | 45 (27.8) | 4 (14.8) | 19 (29.7) | 8 (30.8) | 14 (31.1) | NS |
Ischemic etiology (n, %) | 53 (32.7) | 6 (22.2) | 19 (29.7) | 7(26.9) | 21 (46.7) | NS |
History of HF (n, %) | 89 (54.9) | 14 (51.9) | 38 (59.4) | 16(61.5) | 21 (46.7) | NS |
AF (n, %) | 57 (35.2) | 7 (25.9) | 26 (40.6) | 8 (30.8) | 16 (35.6) | NS |
Diabetes (n, %) | 49 (30.2) | 4 (14.8) | 23 (35.9) | 5 (19.2) | 17 (37.8) | NS |
Laboratory data | ||||||
Hemoglobin (g/dL) | 14.2 ± 2.5 | 14.7 ± 2.0 | 13.5 ± 2.8 c | 14.9 ± 2.0 c | 14.0 ± 2.1 | <0.01 |
Albumin (g/dL) | 3.6 (0.7) | 4.0 (0.6) a,e | 3.3 (0.8) a,c | 3.8 (0.2) b,c | 3.4 (0.6) b,e | <0.01 |
Lymphocyte count (per mm3) | 1445.4 (938.2) | 1925.0 (601.4) a,e | 1192.8 (890.5) a,c | 1782.8 (619.4) b,c | 1308.1 (1051.7) b,e | <0.01 |
Total-cholesterol (mg/dL) | 166 (51) | 191 (35) a,e | 152 (55) a,c | 185 (55) b,c | 152 (36) b,e | <0.01 |
Triglyceride (mg/dL) | 93 (64) | 142 (71) a,e | 77 (51) a,c | 102 (55) b,c | 78 (47) b,e | <0.01 |
HDL-C (mg/dL) | 42.3 ± 13.6 | 39.5 ± 14.6 | 44.5 ± 14.9 | 45.3 ± 11.7 | 39.0 ± 11.6 | NS |
LDL-C (mg/dL) | 99 (41) | 126 (40) a,e | 92 (46) a,c | 117 (53) b,c | 93 (26) b,e | <0.01 |
Creatinine (mg/dL) | 0.98 (0.55) | 0.91 (0.30) e | 1.07 (0.70) c | 0.88 (0.33) b,c | 1.16 (0.61) b,e | <0.01 |
eGFR (mL/min/1.73 m2) | 58.1 ± 23.3 | 66.2 ± 18.5 a,e | 54.3 ± 18.7a,c | 67.2 ± 27.2 b,c | 53.4 ± 23.1 b,e | <0.01 |
CRP (mg/dL) | 0.2 (0.5) | 0.2 (0.4) | 0.2 (0.5) | 0.2 (0.3) | 0.4 (0.7) | NS |
BNP (mg/dL) | 267 (332) | 206 (257) e | 232 (293) d | 281 (312) | 386 (644) d,e | <0.01 |
CONUT, as continuous variable | 2.0 (3.0) | 1.0 (1.0) a,e | 4.0 (4.0) a,c | 1.0 (1.0) b,c | 3.0 (3.0) b,e | <0.01 |
Medication | ||||||
Beta blockers (n, %) | 154 (95.1) | 26 (96.3) | 60 (93.8) | 25 (96.2) | 43 (95.6) | NS |
ACE-Is/ARBs (n, %) | 135 (83.3) | 23 (85.2) | 52 (81.3) | 24 (92.3) | 36 (80.0) | NS |
Aldosterone blockers (n, %) | 110 (67.9) | 20 (74.1) | 40 (62.5) | 17 (65.4) | 33 (73.3) | NS |
Loop diuretics (n, %) | 132 (81.5) | 21 (77.8) | 46 (71.9) | 23 (88.5) | 42 (93.3) | 0.02 |
Statin (n, %) | 73 (45.1) | 13 (48.1) | 30 (46.9) | 7 (26.9) | 23 (51.1) | NS |
Sleep study findings | ||||||
Total sleep time, min | 355.9 ± 85.0 | 368.1 ± 79.8 | 346.9 ± 80.0 | 380.1 ± 74.9 | 347.2 ± 101.5 | NS |
% of slow wave sleep, % of TST | 6.4 (9.6) | 9.5 (5.9) | 4.6 (9.4) | 4.0 (10.6) | 4.5 (9.4) | NS |
% of REM sleep, % of TST | 15.8 ± 7.2 | 17.3 ± 7.6 | 14.9 ± 7.5 | 16.0 ± 5.3 | 16.2 ± 7.5 | NS |
Arousal index, event/h of sleep | 28.5 (23.1) | 22.1 (15.3) | 25.0 (30.0) | 32.8 (21.5) | 33.4 (18.1) | NS |
AHI, events/h of sleep | 32.5 (33.4) | 18.75 (26.7) e,f | 21.90 (31.2) c,d | 44.00 (25.5) c,f | 42.10 (20.0) e,d | <0.01 |
OAHI, events/h of sleep | 11.3 (19.9) | 8.60 (15.5) | 13.50 (27.7) | 10.22 (19.3) | 12.35 (15.6) | NS |
CAHI, events/h of sleep | 12.2 (19.8) | 12.35 (15.6) e,f | 7.38 (14.6) c,d | 19.23 (30.0) c,f | 24.10 (22.9) e,d | <0.01 |
Mean SO2, % | 95.2 ± 2.0 | 95.3 ± 2.0 | 95.6 ± 2.2 | 95.0 ± 2.2 | 95.2 ± 1.7 | NS |
PAP usage (n, %) | 49 (30.2) | 11 (40.7) | 14 (21.9) | 9 (34.6) | 15 (33.3) | NS |
CSR (n, %) | 71 (43.8) | 0 (0.0) | 0 (0.0) | 26 (100.0%) | 45 (100.0%) | <0.01 |
Characteristics | Univariate Analysis | Multivariate Analysis (Model 1) | Multivariate Analysis (Model 2) | ||||||
---|---|---|---|---|---|---|---|---|---|
HR | 95% CI | p | HR | 95% CI | p | HR | 95% CI | p | |
Log-transformed age (1 increase) | 4.45 | 0.77–25.58 | NS | 2.42 | 0.39–15.09 | NS | 2.56 | 0.41–16.15 | NS |
Log-transformed creatinine (1 increase) | 2.45 | 1.49–4.04 | <0.01 | 2.67 | 1.46–4.89 | <0.01 | 2.73 | 1.47–5.06 | <0.01 |
Log-transformed BNP (1 increase) | 1.75 | 1.13–2.72 | 0.01 | 1.35 | 0.91–2.00 | NS | 1.34 | 0.91–1.99 | NS |
CSR—yes | 2.58 | 1.15–5.79 | 0.02 | 3.92 | 1.64–9.39 | <0.01 | |||
CONUT (with malnutrition) | 6.31 | 1.49–26.75 | 0.01 | 5.77 | 1.33–25.00 | 0.03 | |||
Non-CSR/without malnutrition | Reference | Reference | |||||||
Non-CSR/with malnutrition | 3.09 | 0.39–24.76 | NS | 2.10 | 0.25–17.10 | NS | |||
CSR/without malnutrition | 0.88 | 0.06–14.03 | NS | 0.97 | 0.06–15.63 | NS | |||
CSR/with malnutrition | 10.76 | 1.42–81.35 | 0.02 | 9.30 | 1.23–70.47 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abulimiti, A.; Naito, R.; Kasai, T.; Ishiwata, S.; Nishitani-Yokoyama, M.; Sato, A.; Suda, S.; Matsumoto, H.; Shitara, J.; Yatsu, S.; et al. Prognostic Value of Cheyne-Stokes Respiration and Nutritional Status in Acute Decompensated Heart Failure. Nutrients 2023, 15, 964. https://doi.org/10.3390/nu15040964
Abulimiti A, Naito R, Kasai T, Ishiwata S, Nishitani-Yokoyama M, Sato A, Suda S, Matsumoto H, Shitara J, Yatsu S, et al. Prognostic Value of Cheyne-Stokes Respiration and Nutritional Status in Acute Decompensated Heart Failure. Nutrients. 2023; 15(4):964. https://doi.org/10.3390/nu15040964
Chicago/Turabian StyleAbulimiti, Abidan, Ryo Naito, Takatoshi Kasai, Sayaki Ishiwata, Miho Nishitani-Yokoyama, Akihiro Sato, Shoko Suda, Hiroki Matsumoto, Jun Shitara, Shoichiro Yatsu, and et al. 2023. "Prognostic Value of Cheyne-Stokes Respiration and Nutritional Status in Acute Decompensated Heart Failure" Nutrients 15, no. 4: 964. https://doi.org/10.3390/nu15040964
APA StyleAbulimiti, A., Naito, R., Kasai, T., Ishiwata, S., Nishitani-Yokoyama, M., Sato, A., Suda, S., Matsumoto, H., Shitara, J., Yatsu, S., Murata, A., Shimizu, M., Kato, T., Hiki, M., Daida, H., & Minamino, T. (2023). Prognostic Value of Cheyne-Stokes Respiration and Nutritional Status in Acute Decompensated Heart Failure. Nutrients, 15(4), 964. https://doi.org/10.3390/nu15040964