Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Extraction of Whole Protein and Preparation of Protein Hydrolysates
2.3. ACE-Inhibition Activity Determination
2.4. Determination of Antioxidant Activities
2.4.1. DPPH Radical Scavenging Assay
2.4.2. ABTS Radical Scavenging Assay
2.5. Peptide Fractionation Using Ultrafiltration
2.6. Peptide Fractionation Using RP-HPLC
2.7. Human Umbilical Vein Endothelial Cell Line (HUVECs) Culture
2.8. Cell Viability Assay
2.9. Immunocytochemistry
2.10. Protein Extraction and Western Blot Analysis
2.11. COX-2 and IL-1β Detection Using ELISA
2.12. Statistical Analysis
3. Results and Discussion
3.1. Effects of Different Proteases on the Degree of Hydrolysis
3.2. ACE-Inhibitory Potential of Hydrolysates
3.3. Antioxidative Potential of Selected Hydrolysates
3.4. Antioxidative and ACE-Inhibition Potential of Ultrafiltrates
3.5. Fractionation of Peptides in Alc_M60min_F3 and Pap_E240min_F3
3.6. Anti-Oxinflammatory Activity of Purified Peptide Fractions F4 and F6 in Human Endothelial Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kvietys:, P.R.; Granger, D.N. Role of Reactive Oxygen and Nitrogen Species in the Vascular Responses to Inflammation. Free Radic. Biol. Med. 2012, 52, 556–592. [Google Scholar] [CrossRef] [Green Version]
- Putnam, K.; Shoemaker, R.; Yiannikouris, F.; Cassis, L.A. The Renin-Angiotensin System: A Target of and Contributor to Dyslipidemias, Altered Glucose Homeostasis, and Hypertension of the Metabolic Syndrome. Am. J. Physiol.-Heart Circ. Physiol. 2012, 302, H1219–H1230. [Google Scholar] [CrossRef] [Green Version]
- Valacchi, G.; Virgili, F.; Cervellati, C.; Pecorelli, A. OxInflammation: From Subclinical Condition to Pathological Biomarker. Front. Physiol. 2018, 9, 858. [Google Scholar] [CrossRef] [Green Version]
- Haybar, H.; Shahrabi, S.; Rezaeeyan, H.; Shirzad, R.; Saki, N. Endothelial Cells: From Dysfunction Mechanism to Pharmacological Effect in Cardiovascular Disease. Cardiovasc. Toxicol. 2019, 19, 13–22. [Google Scholar] [CrossRef]
- Combination Therapy with ACE Inhibitors/Angiotensin II Receptor Antagonists and Diuretics in Hypertension. Expert Rev. Cardiovasc. Ther. 2003, 1, 43–50. [CrossRef]
- Lammi, C.; Aiello, G.; Boschin, G.; Arnoldi, A. Multifunctional Peptides for the Prevention of Cardiovascular Disease: A New Concept in the Area of Bioactive Food-Derived Peptides. J. Funct. Foods 2019, 55, 135–145. [Google Scholar] [CrossRef]
- Joseph, B.; Raj, S.J. Therapeutic Applications and Properties of Silk Proteins from Bombyx Mori. Front. Life Sci. 2012, 6, 55–60. [Google Scholar] [CrossRef]
- Tomotake, H.; Katagiri, M.; Yamato, M. Silkworm Pupae (Bombyx Mori) Are New Sources of High Quality Protein and Lipid. J. Nutr. Sci. Vitaminol. (Tokyo) 2010, 56, 446–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, N.; Hazarika, N.C.; Narain, K.; Mahanta, J. Nutritive Value of Non-Mulberry and Mulberry Silkworm Pupae and Consumption Pattern in Assam, India. Nutr. Res. 2003, 23, 1303–1311. [Google Scholar] [CrossRef]
- Available online: https://www.wur.nl/upload_mm/7/4/1/ca8baa25-b035-4bd2-9fdc-a7df1405519a_WORLD%20LIST%20EDIBLE%20INSECTS%202015.pdf (accessed on 12 April 2020).
- Jia, J.; Wu, Q.; Yan, H.; Gui, Z. Purification and Molecular Docking Study of a Novel Angiotensin-I Converting Enzyme (ACE) Inhibitory Peptide from Alcalase Hydrolysate of Ultrasonic-Pretreated Silkworm Pupa (Bombyx Mori) Protein. Process Biochem. 2015, 50, 876–883. [Google Scholar] [CrossRef]
- Hall, F.G.; Jones, O.G.; O’Haire, M.E.; Liceaga, A.M. Functional Properties of Tropical Banded Cricket (Gryllodes Sigillatus) Protein Hydrolysates. Food Chem. 2017, 224, 414–422. [Google Scholar] [CrossRef]
- Hall, F.; Johnson, P.E.; Liceaga, A. Effect of Enzymatic Hydrolysis on Bioactive Properties and Allergenicity of Cricket (Gryllodes Sigillatus) Protein. Food Chem. 2018, 262, 39–47. [Google Scholar] [CrossRef] [PubMed]
- You, S.-J.; Wu, J. Angiotensin-I Converting Enzyme Inhibitory and Antioxidant Activities of Egg Protein Hydrolysates Produced with Gastrointestinal and Nongastrointestinal Enzymes. J. Food Sci. 2011, 76, C801–C807. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Pambianchi, E.; Pecorelli, A.; Woodby, B.; Messano, N.; Therrien, J.-P.; Lila, M.A.; Valacchi, G. Redox Regulation of Cutaneous Inflammasome by Ozone Exposure. Free Radic. Biol. Med. 2020, 152, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Volpi, N.; Pecorelli, A.; Lorenzoni, P.; Di Lazzaro, F.; Belmonte, G.; Aglianò, M.; Cantarini, L.; Giannini, F.; Grasso, G.; Valacchi, G. Antiangiogenic VEGF Isoform in Inflammatory Myopathies. Mediators Inflamm. 2013, 2013, e219313. [Google Scholar] [CrossRef]
- Dai, C.; Ma, H.; Luo, L.; Yin, X. Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptide Derived from Tenebrio Molitor (L.) Larva Protein Hydrolysate. Eur. Food Res. Technol. 2013, 236, 681–689. [Google Scholar] [CrossRef]
- Dion-Poulin, A.; Laroche, M.; Doyen, A.; Turgeon, S.L. Functionality of cricket and mealworm hydrolysates generated after pretreatment of meals with high hydrostatic pressures. Molecules 2020, 25, 5366. [Google Scholar] [CrossRef]
- Purschke, B.; Meinlschmidt, P.; Horn, C.; Rieder, O.; Jäger, H. Improvement of techno-functional properties of edible insect protein from migratory locust by enzymatic hydrolysis. Eur. Food Res. Technol. 2018, 244, 999–1013. [Google Scholar] [CrossRef] [Green Version]
- Sousa, P.; Borges, S.; Pintado, M. Enzymatic hydrolysis of insect Alphitobius diaperinus towards the development of bioactive peptide hydrolysates. Food Funct. 2020, 11, 3539–3548. [Google Scholar] [CrossRef]
- Grossmann, K.K.; Merz, M.; Appel, D.; De Araujo, M.M.; Fischer, L. New insights into the flavoring potential of cricket (Acheta domesticus) and mealworm (Tenebrio molitor) protein hydrolysates and their Maillard products. Food Chem. 2021, 364, 130336. [Google Scholar] [CrossRef]
- Salampessy, J.; Reddy, N.; Kailasapathy, K.; Phillips, M. Functional and Potential Therapeutic ACE-Inhibitory Peptides Derived from Bromelain Hydrolysis of Trevally Proteins. J. Funct. Foods 2015, 14, 716–725. [Google Scholar] [CrossRef]
- Vercruysse, L.; Smagghe, G.; Herregods, G.; Van Camp, J. ACE Inhibitory Activity in Enzymatic Hydrolysates of Insect Protein. J. Agric. Food Chem. 2005, 53, 5207–5211. [Google Scholar] [CrossRef]
- Vercruysse, L.; Smagghe, G.; Beckers, T.; Camp, J.V. Antioxidative and ACE Inhibitory Activities in Enzymatic Hydrolysates of the Cotton Leafworm, Spodoptera Littoralis. Food Chem. 2009, 114, 38–43. [Google Scholar] [CrossRef]
- Zielińska, E.; Baraniak, B.; Karaś, M. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 2017, 9, 970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielińska, E.; Karaś, M.; Jakubczyk, A. Antioxidant activity of predigested protein obtained from a range of farmed edible insects. Int. J. Food Sci. Technol. 2017, 52, 306–312. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Jia, J.Q.; Tan, G.X.; Xu, J.L.; Gui, Z.Z. Physicochemical properties of silkworm larvae protein isolate and gastrointestinal hydrolysate bioactivities. Afr. J. Biotechnol. 2011, 10, 6145–6153. [Google Scholar]
- Gleeson, J.P.; Ryan, S.M.; Brayden, D.J. Oral Delivery Strategies for Nutraceuticals: Delivery Vehicles and Absorption Enhancers. Trends Food Sci. Technol. 2016, 53, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase Isozymes: The Biology of Prostaglandin Synthesis and Inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, S.M.; Sobey, C.G.; Latz, E.; Mansell, A.; Drummond, G.R. IL–1β and IL–18: Inflammatory Markers or Mediators of Hypertension? Br. J. Pharmacol. 2014, 171, 5589–5602. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Xu, H.; Cheng, Y.; Mintah, B.K.; Dabbour, M.; Yang, F.; Chen, W.; Zhang, Z.; Dai, C.; He, R.; et al. Recent Insight on Edible Insect Protein: Extraction, Functional Properties, Allergenicity, Bioactivity, and Applications. Foods 2022, 11, 2931. [Google Scholar] [CrossRef]
- He, W.-J.; Lv, C.-H.; Chen, Z.; Shi, M.; Zeng, C.-X.; Hou, D.-X.; Qin, S. The Regulatory Effect of Phytochemicals on Chronic Diseases by Targeting Nrf2-ARE Signaling Pathway. Antioxidants 2023, 12, 236. [Google Scholar] [CrossRef]
- Tonolo, F.; Folda, A.; Scalcon, V.; Marin, O.; Bindoli, A.; Rigobello, M.P. Nrf2-Activating Bioactive Peptides Exert Anti-Inflammatory Activity through Inhibition of the NF-ΚB Pathway. Int. J. Mol. Sci. 2022, 23, 4382. [Google Scholar] [CrossRef] [PubMed]
S. No. | Hydrolysates | ACE Inhibition (%) | ACE Inhibition (IC50 mg mL−1) | DPPH (EC50 mg mL−1) | ABTS (EC50 mg mL−1) |
---|---|---|---|---|---|
1. | Alc_M60min | 74.46 ± 2.44 | 0.17 ± 0.02 f | 1.01 ± 0.05 c | 2.45 ± 0.48 c |
2. | Ther_M360min | 73.59 ± 2.39 | 1.52 ± 0.14 a | 2.58 ± 0.14 ab | 2.34 ± 0.19 c |
3. | Pep_M180min | 72.89 ± 1.36 | 1.29 ± 0.21 ab | 0.9 ± 0.13 c | 4.02 ± 1.04 a |
4. | Pep_M240min | 77.35 ± 1.57 | 0.12 ± 0.01 f | 2.08 ± 0.38 b | 3.47 ± 1.05 b |
5. | Alc_E180min | 77.05 ± 2.12 | 0.65 ± 0.21 d | 0.75 ± 0.21 c | 3.52 ± 1.11 b |
6. | Pap_E240min | 83.21 ± 2.51 | 0.33 ± 0.11 e | 0.48 ± 0.27 d | 2.08 ± 0.64 cd |
7. | Pep_E60min | 75.31 ± 2.57 | 1.71 ± 0.29 a | 3.88 ± 0.91 a | 1.26 ± 0.27 d |
8. | Pep_E180min | 82.07 ± 2.56 | 0.87 ± 0.18 bc | 2.11 ± 0.57 b | 3.41 ± 0.28 b |
Fraction | Molecular Weight | ACE Inhibition (IC50 µg mL−1) | DPPH (EC50 µg mL−1) | ABTS (EC50 µg mL−1) |
---|---|---|---|---|
Alc_M60min_F1 | MW > 10 kDa | 16.57 ± 1.79 a | 144.13 ± 4.66 a | 70.73 ± 2.38 b |
Alc_M60min_F2 | 3 < MW < 10 KDa | 2.34 ± 1.08 b | 129.58 ± 4.05 b | 56.35 ± 3.11 c |
Alc_M60min_F3 | MW < 3 kDa | 0.49 ± 0.25 c | 90.21 ± 3.27 c | 85.14 ± 4.63 a |
Pap_E240min_F1 | MW > 10 kDa | 56.45 ± 1.38 a | 66.41 ± 3.05 a | 88.76 ± 4.80 a |
Pap_E240min_F2 | 3 < MW < 10 KDa | 10.6 ± 2.77 b | 58.21 ± 2.56 b | 23.71 ± 3.57 b |
Pap_E240min_F3 | MW < 3 kDa | 0.67 ± 0.16 c | 49.32 ± 4.09 c | 19.21 ± 3.64 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, P.; Pecorelli, A.; Woodby, B.; Pambianchi, E.; Ferrara, F.; Duary, R.K.; Valacchi, G. Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii). Nutrients 2023, 15, 1035. https://doi.org/10.3390/nu15041035
Sarkar P, Pecorelli A, Woodby B, Pambianchi E, Ferrara F, Duary RK, Valacchi G. Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii). Nutrients. 2023; 15(4):1035. https://doi.org/10.3390/nu15041035
Chicago/Turabian StyleSarkar, Preeti, Alessandra Pecorelli, Brittany Woodby, Erika Pambianchi, Francesca Ferrara, Raj Kumar Duary, and Giuseppe Valacchi. 2023. "Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii)" Nutrients 15, no. 4: 1035. https://doi.org/10.3390/nu15041035
APA StyleSarkar, P., Pecorelli, A., Woodby, B., Pambianchi, E., Ferrara, F., Duary, R. K., & Valacchi, G. (2023). Evaluation of Anti-Oxinflammatory and ACE-Inhibitory Properties of Protein Hydrolysates Obtained from Edible Non-Mulberry Silkworm Pupae (Antheraea assama and Philosomia ricinii). Nutrients, 15(4), 1035. https://doi.org/10.3390/nu15041035