The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients—Critical Review: State-of-the-Art
Abstract
:1. Introduction
- May only be placed on the market if it complies with this regulation;
- Falls within three categories:
- ○
- Nutritionally complete food with a standard nutrient formulation, which could constitute the sole source of nutrition, or be used as a partial replacement or supplement;
- ○
- Nutritionally complete food with a formulation adapted to nutrient requirements specific for a disease, disorder, or medical condition, which could constitute the sole source of nourishment or be used as a partial replacement or supplement;
- ○
- Nutritionally incomplete food that is not suitable for use as the sole source of nutrition.
2. Materials and Methods
2.1. Search for Publications on the Content and Role of Essential Elements in FSMPs Dedicated to Cancer Patients
2.2. Keywords and Selection of Scientific Data
2.3. Classification and Presentation of the Results
2.4. Presentation of Results
3. Results
3.1. Zinc
3.2. Copper
3.3. Selenium
3.4. Iron
3.5. Manganese
4. Conclusions
- Disturbances in Zn homeostasis are observed in oncology patients, therefore, the appropriate level of this essential element should be controlled during nutritional treatment with FSMPs, according to the ESPEN micronutrient guidelines;
- Based on a review of the literature, there is evidence that the Cu level is correlated with cancer stage, therefore, the supply and bioavailability of copper from FSMPs should be verified to avoid falsifying test results for cancer recurrence;
- In light of the data and guidelines of the current literature, the use of different amounts of Se in FSMPs seems to be safe;
- Fe, due to its important function in the body and significant changes in metabolism during cancer, deserves special attention in the correlation of supply with FSMPs and the state of iron metabolism (e.g., serum level);
- Mn is not recognised as a carcinogenic factor, it participates in the immune response; therefore, it can be used safely in oncological patients fed with FSMPs. Additionally, a deficiency in this element in the diet of cancer patients should be monitored.
- There are no clear and unambiguous technical guidelines for producers (qualitative and quantitative) on the element (Zn, Cu, Se, Fe, Mn) content of the FSMPs for oncology patients;
- Manufacturers do not verify or comply with the scientific literature on the requirements of FSMPs for cancer treatment;
- FSMP manufacturers do not verify that elements that are in excess or under measurement may be additional carcinogens in oncology patients;
- FSMPs for cancer patients should have separate technical and quality guidelines and be seen as a pharmaceutical product;
- Manufacturers use different ways of marking FSMPs (e.g., different units of element content), therefore, the legal implications of the introduction of the use of the same unit should be considered;
- Manufacturers of FSMPs do not consider that a product without an element in its composition may be contaminated (e.g., during many processes);
- When determining the composition of FSMPs for oncological patients, the supply of the element in the full-day food ration should be considered.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Congress, L. Joint Collection Development Policy: Human Nutrition and Food. Available online: https://wayback.archive-it.org/org-350/20190227225406/https://www.nlm.nih.gov/pubs/cd_hum.nut.html (accessed on 3 November 2022).
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN Guidelines on Definitions and Terminology of Clinical Nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef]
- Adams, S.H.; Anthony, J.C.; Carvajal, R.; Chae, L.; Khoo, C.S.H.; Latulippe, M.E.; Matusheski, N.V.; McClung, H.L.; Rozga, M.; Schmid, C.H.; et al. Perspective: Guiding Principles for the Implementation of Personalized Nutrition Approaches That Benefit Health and Function. Adv. Nutr. 2020, 11, 25–34. [Google Scholar] [CrossRef] [Green Version]
- EUR-Lex-4391704-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/EN/legal-content/summary/foods-for-special-medical-purposes.html (accessed on 3 November 2022).
- Casale, R.; Symeonidou, Z.; Ferfeli, S.; Micheli, F.; Scarsella, P.; Paladini, A. Food for Special Medical Purposes and Nutraceuticals for Pain: A Narrative Review. Pain Ther. 2021, 10, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Pawłowicz, M.B.; Cudowska, B.; Lebensztejn, D.M. Preparaty mleka modyfikowanego i mlekozastępcze w żywieniu dzieci. Medyczne/Pediatria 2015, 12, 551–558. [Google Scholar]
- Surveillance, Epidemiology, and End Results Program. Available online: https://seer.cancer.gov/index.html (accessed on 25 October 2022).
- Ruthsatz, M.; Chen, J.; Wu, C.; Morck, T. Foods for Special Medical Purposes/ Medical Foods: A Global Regulatory Synopsis. Available online: https://www.raps.org/RAPS/media/news-images/Feature%20PDF%20Files/22-8_Ruthsatz-et-al_r2_final.pdf (accessed on 25 October 2022).
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific and Technical Guidance on Foods for Special Medical Purposes in the Context of Article 3 of Regulation (EU) No 609/20131. EFSA J. 2021, 19, e06544. [CrossRef]
- Nutrison-Produkty-Nutricia. Available online: https://nutricia.pl/produkt/nutrison (accessed on 18 October 2022).
- Berger, M.M.; Shenkin, A.; Schweinlin, A.; Amrein, K.; Augsburger, M.; Biesalski, H.-K.; Bischoff, S.C.; Casaer, M.P.; Gundogan, K.; Lepp, H.-L.; et al. ESPEN Micronutrient Guideline. Clin. Nutr. 2022, 41, 1357–1424. [Google Scholar] [CrossRef]
- Jurowski, K.; Szewczyk, B.; Nowak, G.; Piekoszewski, W. Biological Consequences of Zinc Deficiency in the Pathomechanisms of Selected Diseases. J. Biol. Inorg. Chem. 2014, 19, 1069–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brito, S.; Lee, M.-G.; Bin, B.-H.; Lee, J.-S. Zinc and Its Transporters in Epigenetics. Mol. Cells 2020, 43, 323–330. [Google Scholar]
- Stefanidou, M.; Maravelias, C.; Dona, A.; Spiliopoulou, C. Zinc: A Multipurpose Trace Element. Arch. Toxicol. 2006, 80, 1–9. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001; p. 10026. ISBN 978-0-309-07279-3. [Google Scholar]
- EFSA—European Food Safety Authority. Scientific Opinion on Dietary Reference Values for Zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef] [Green Version]
- Lowe, N.M.; Dykes, F.C.; Skinner, A.-L.; Patel, S.; Warthon-Medina, M.; Decsi, T.; Fekete, K.; Souverein, O.W.; Dullemeijer, C.; Cavelaars, A.E.; et al. EURRECA—Estimating Zinc Requirements for Deriving Dietary Reference Values. Crit. Rev. Food Sci. Nutr. 2013, 53, 1110–1123. [Google Scholar] [CrossRef] [PubMed]
- Olechnowicz, J.; Tinkov, A.; Skalny, A.; Suliburska, J. Zinc Status Is Associated with Inflammation, Oxidative Stress, Lipid, and Glucose Metabolism. J. Physiol. Sci. 2018, 68, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daradkeh, G.; Zerie, M.; Othman, M.; Chandra, P.; Jaiosi, A.; Mahmood, L.; Alowainati, B.; Mohammad, I.; Daghash, M. Zinc Status among Type (2) Diabetes Mellitus in the State of Qatar. Public Health Front. 2014, 4–10. [Google Scholar] [CrossRef]
- Haase, H.; Rink, L. The immune system and the impact of zinc during aging. Immun. Ageing 2009, 6, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, L.Y.; Nguyen, V.T.; Farber, J.L. Esophageal Cancer Prevention in Zinc-Deficient Rats: Rapid Induction of Apoptosis by Replenishing Zinc. J. Natl. Cancer Inst. 2001, 93, 1525–1533. [Google Scholar] [CrossRef]
- Mathur, A.; Wallenius, K.; Abdulla, M. Influence of Zinc on Onset and Progression of Oral Carcinogenesis in Rats. Acta Odontol. Scand. 1979, 37, 277–284. [Google Scholar] [CrossRef]
- Avi, R.B.; Lpez-Moya, J.R.; Navarro-Avio, J.P. Health Implications: Trace Elements in Cancer. In Trace Elements as Contaminants and Nutrients; Prasad, M.N.V., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 495–521. ISBN 978-0-470-37012-4. [Google Scholar]
- Jaiswal, A.S.; Narayan, S. Zinc Stabilizes Adenomatous Polyposis Coli (APC) Protein Levels and Induces Cell Cycle Arrest in Colon Cancer Cells. J. Cell. Biochem. 2004, 93, 345–357. [Google Scholar] [CrossRef]
- Tubek, S. Zinc Supplementation or Regulation of Its Homeostasis: Advantages and Threats. Biol. Trace Elem. Res. 2007, 119, 1–9. [Google Scholar] [CrossRef]
- Ji, J.H.; Shin, D.G.; Kwon, Y.; Cho, D.H.; Lee, K.B.; Park, S.S.; Yoon, J. Clinical Correlation between Gastric Cancer Type and Serum Selenium and Zinc Levels. J. Gastric Cancer 2012, 12, 217. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.T.; Chang, W.T.; Yang, T.L. Study of the Concentrations of Calcium, Copper, Iron, Magnesium and Zinc in the Hair of Breast Cancer Patients. Trace Elem. Electrolytes 2006, 23, 281–286. [Google Scholar] [CrossRef]
- Younoszai, H.D. Clinical Zinc Deficiency in Total Parenteral Nutrition: Zinc Supplementation. J. Parenter. Enter. Nutr. 1983, 7, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Alam, W.; Ullah, H.; Santarcangelo, C.; Di Minno, A.; Khan, H.; Daglia, M.; Arciola, C.R. Micronutrient Food Supplements in Patients with Gastro-Intestinal and Hepatic Cancers. Int. J. Mol. Sci. 2021, 22, 8014. [Google Scholar] [CrossRef] [PubMed]
- Pasha, Q.; Malik, S.A.; Shaheen, N.; Shah, M.H. Investigation of Trace Metals in the Blood Plasma and Scalp Hair of Gastrointestinal Cancer Patients in Comparison with Controls. Clin. Chim. Acta 2010, 411, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Siren, P.M.A.; Siren, M.J. Systemic Zinc Redistribution and Dyshomeostasis in Cancer Cachexia. J. Cachexia Sarcopenia Muscle 2010, 1, 23–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, X.; Jiang, M.; Jing, H.; Sheng, W.; Wang, X.; Han, J.; Wang, L. Analysis of Serum Levels of 15 Trace Elements in Breast Cancer Patients in Shandong, China. Environ. Sci. Pollut. Res. 2015, 22, 7930–7935. [Google Scholar] [CrossRef]
- Namikawa, T.; Shimizu, S.; Yokota, K.; Tanioka, N.; Iwabu, J.; Munekage, M.; Uemura, S.; Maeda, H.; Kitagawa, H.; Kobayashi, M.; et al. Serum Zinc Deficiency in Patients after Gastrectomy for Gastric Cancer. Int. J. Clin. Oncol. 2021, 26, 1864–1870. [Google Scholar] [CrossRef]
- Atakul, T.; Altinkaya, S.O.; Abas, B.I.; Yenisey, C. Serum Copper and Zinc Levels in Patients with Endometrial Cancer. Biol. Trace Elem. Res. 2020, 195, 46–54. [Google Scholar] [CrossRef]
- Wang, W.; Wang, X.; Luo, J.; Chen, X.; Ma, K.; He, H.; Li, W.; Cui, J. Serum Copper Level and the Copper-to-Zinc Ratio Could Be Useful in the Prediction of Lung Cancer and Its Prognosis: A Case-Control Study in Northeast China. Nutr. Cancer 2021, 73, 1908–1915. [Google Scholar] [CrossRef]
- Zowczak, M.; Iskra, M.; Torliński, L.; Cofta, S. Analysis of Serum Copper and Zinc Concentrations in Cancer Patients. Biol. Trace Elem. Res. 2001, 82, 001–008. [Google Scholar] [CrossRef]
- Zhang, C.; Cheng, R.; Ding, J.; Li, X.; Niu, H.; Li, X. Serum Copper and Zinc Levels and Colorectal Cancer in Adults: Findings from the National Health and Nutrition Examination 2011-2016. Biol. Trace Elem. Res. 2022, 200, 2033–2039. [Google Scholar] [CrossRef]
- Saleh, S.A.K.; Adly, H.M.; Abdelkhaliq, A.A.; Nassir, A.M. Serum Levels of Selenium, Zinc, Copper, Manganese, and Iron in Prostate Cancer Patients. Curr. Urol. 2020, 14, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Freeland-Graves, J.H.; Sanjeevi, N.; Lee, J.J. Global Perspectives on Trace Element Requirements. J. Trace Elem. Med. Biol. 2015, 31, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.S. The Role of Diet- and Host-Related Factors in Nutrient Bioavailability and Thus in Nutrient-Based Dietary Requirement Estimates. Food Nutr. Bull. 2007, 28, S77–S100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michael, H.; Cousins, R.; Costello, R. Zinc and Health: Current Status and Future Directions-Introduction. J. Nutr. 2000, 130, 1341S–1343S. [Google Scholar]
- Semrad, C.E. Zinc and Intestinal Function. Curr. Gastroenterol. Rep. 1999, 1, 398–403. [Google Scholar] [CrossRef]
- Office of Dietary Supplements-Zinc. Available online: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/ (accessed on 3 November 2022).
- Council, N.H.; Zinc, M.R. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes. Available online: https://www.eatforhealth.gov.au/nutrient-reference-values/nutrients/zinc (accessed on 3 November 2022).
- Boston, 677 Huntington Avenue; Ma 02115 +1495-1000 Zinc. Available online: https://www.hsph.harvard.edu/nutritionsource/zinc/ (accessed on 3 November 2022).
- WHO | JECFA. Available online: https://apps.who.int/food-additives-contaminants-jecfa-database/Home/Chemical/4197 (accessed on 7 November 2022).
- Ihedioha, J.N.; Okoye, C.O.B.; Onyechi, U.A. Health Risk Assessment of Zinc, Chromium, and Nickel from Cow Meat Consumption in an Urban Nigerian Population. Int J. Occup. Environ. Health 2014, 20, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Zinc: Foods, Functions, How Much Do You Need & More. Available online: https://www.eufic.org/en/vitamins-and-minerals/article/zinc-foods-functions-how-much-do-you-need-more (accessed on 16 November 2022).
- Anandhi, P.; Sharief, R.M.; Rahila, C. The Benefit of Zinc Sulfate in Oropharyngeal Mucositis during Hyperfractionated Accelerated Concomitant Boost Radiotherapy with Concurrent Cisplatin for Advanced-Stage Oropharyngeal and Hypopharyngeal Cancers. Indian J. Palliat. Care 2020, 26, 437–443. [Google Scholar] [CrossRef]
- Golasik, M.; Przybyłowicz, A.; Woźniak, A.; Herman, M.; Gawęcki, W.; Golusiński, W.; Walas, S.; Krejpcio, Z.; Szyfter, K.; Florek, E.; et al. Essential Metals Profile of the Hair and Nails of Patients with Laryngeal Cancer. J. Trace Elem. Med. Biol. 2015, 31, 67–73. [Google Scholar] [CrossRef]
- Hoppe, C.; Kutschan, S.; Dörfler, J.; Büntzel, J.; Huebner, J. Zinc as a Complementary Treatment for Cancer Patients: A Systematic Review. Clin. Exp. Med. 2021, 21, 297–313. [Google Scholar] [CrossRef]
- Majidi, Z.; Djalali, M.; Javanbakht, M.H.; Fathi, M.; Zarei, M.; Foladsaz, K. Evaluation of the Level of Zinc and Malondialdehyde in Basal Cell Carcinoma. Iran. J. Public Health 2017, 46, 1104–1109. [Google Scholar]
- Wozniak, A.; Napierala, M.; Golasik, M.; Herman, M.; Walas, S.; Piekoszewski, W.; Szyfter, W.; Szyfter, K.; Golusinski, W.; Baralkiewicz, D.; et al. Metal Concentrations in Hair of Patients with Various Head and Neck Cancers as a Diagnostic Aid. Biometals 2016, 29, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Inutsuka, S.; Araki, S. Plasma Copper and Zinc Levels in Patients with Malignant Tumors of Digestive Organs: Clinical Evaluation of the C1/Zn Ratio. Cancer 1978, 42, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Zinc Concentrations in Serum during Head and Neck Cancer Progression. Available online: https://www.researchgate.net/publication/6188513_Zinc_concentrations_in_serum_during_head_and_neck_cancer_progression (accessed on 4 November 2022).
- Kuo, H.W.; Chen, S.F.; Wu, C.C.; Chen, D.R.; Lee, J.H. Serum and Tissue Trace Elements in Patients with Breast Cancer in Taiwan. Biol. Trace Elem. Res. 2002, 89, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Scott, H.R.; McMillan, D.C.; Talwar, D.; O’Reilly, D.S.; Fell, G.S. Acute-Phase Reactants and Plasma Trace Element Concentrations in Non-Small Cell Lung Cancer Patients and Controls. Nutr. Cancer 1997, 28, 308–312. [Google Scholar] [CrossRef]
- Martín-Lagos, F.; Navarro-Alarcón, M.; Terrés-Martos, C.; López-G de la Serrana, H.; López-Martínez, M.C. Serum Copper and Zinc Concentrations in Serum from Patients with Cancer and Cardiovascular Disease. Sci. Total Environ. 1997, 204, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Gelbard, A. Zinc in Cancer Therapy. Am. J. Food Nutr. 2016, 4, 112–114. [Google Scholar] [CrossRef]
- Skrajnowska, D.; Bobrowska-Korczak, B. Role of Zinc in Immune System and Anti-Cancer Defense Mechanisms. Nutrients 2019, 11, 2273. [Google Scholar] [CrossRef] [Green Version]
- Resource Protein | Nestlé Health Science. Available online: https://www.nestlehealthscience.pl/poradnik-zywienia-medycznego/produkty/resource/resource-protein (accessed on 7 November 2022).
- Nutrison Protein Advance-Produkty-Nutricia. Available online: https://nutricia.pl/produkt/nutrison-advanced-protison (accessed on 19 October 2022).
- Nutrison Multi Fibre-Produkty-Nutricia. Available online: https://nutricia.pl/produkt/nutrison-multi-fibre (accessed on 7 November 2022).
- Nutrison Soya-Produkty-Nutricia. Available online: https://nutricia.pl/produkt/nutrison-soya (accessed on 7 November 2022).
- Resource. Available online: https://nutricia.pl/produkt/nutrison-protein-plus (accessed on 7 November 2022).
- Resource 2.0-Wysokoenergetyczny | Nestlé Health Science. Available online: https://www.nestlehealthscience.pl/produkty/resource/resource-2-0 (accessed on 7 November 2022).
- Resource 2.0 | Nestle Health Science. Available online: https://www.nestlehealthscience.pl/produkty/resource/resource-2-0 (accessed on 30 November 2022).
- Resource® 2.0+Fibre | NHS. Available online: https://www.nestlehealthscience.pl/poradnik-zywienia-medycznego/produkty/resource/resource-2-0-fibre (accessed on 7 November 2022).
- Resource® Refresh | NHS. Available online: https://www.nestlehealthscience.pl/poradnik-zywienia-medycznego/produkty/resource/resource-refresh (accessed on 7 November 2022).
- Resource® Diabet Plus | NHS. Available online: https://www.nestlehealthscience.pl/poradnik-zywienia-medycznego/produkty/resource/resource-diabet-plus (accessed on 7 November 2022).
- Resource® Instant Protein | NHS. Available online: https://www.nestlehealthscience.pl/poradnik-zywienia-medycznego/produkty/resource/resource-instant-protein (accessed on 7 November 2022).
- Nutramil Complex. Olimp Labs. Available online: https://olimp-labs.pl/produkty/nutramil-complex/ (accessed on 9 November 2022).
- Nutramil Complex Protein. Olimp Labs. Available online: https://olimp-labs.pl/produkty/nutramil-complex-protein/?lang=en (accessed on 9 November 2022).
- Nutricia Fortimel Pulver. Available online: https://www.nutricia.de/produkte/erwachsene/trinknahrung/fortimel-trinknahrung/fortimel-pulver/ (accessed on 9 November 2022).
- Apodiscounter, Apteka Provide Xtra Drink o Smaku Wiśniowym 4×200 ml. Available online: https://www.apo-discounter.pl/provide-xtra-drink-o-smaku-wisniowym-4x200ml-pzn-00089141 (accessed on 9 November 2022).
- Tube Feeds For Special Indications-Fresenius Kabi Great Britain. Available online: https://www.fresenius-kabi.com/gb/products/tube-feeds-for-special-indications (accessed on 9 November 2022).
- Nutrison. Available online: https://www.nutricia.co.uk/hcp/pim-products/nutrison.html (accessed on 18 November 2022).
- Nutrison Diason Energy HP. Available online: https://www.nutricia.co.uk/hcp/pim-products/nutrison-diason-energy-hp.html (accessed on 18 November 2022).
- Rodríguez-Tomàs, E.; Baiges-Gaya, G.; Castañé, H.; Arenas, M.; Camps, J.; Joven, J. Trace Elements under the Spotlight: A Powerful Nutritional Tool in Cancer. J. Trace Elem. Med. Biol. 2021, 68, 126858. [Google Scholar] [CrossRef]
- Boal, A.K.; Rosenzweig, A.C. Structural Biology of Copper Trafficking. Chem. Rev. 2009, 109, 4760–4779. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Trivedi, P.P.; Timbalia, S.A.; Griffin, A.T.; Rahn, J.J.; Chan, S.S.L.; Gohil, V.M. Copper Supplementation Restores Cytochrome c Oxidase Assembly Defect in a Mitochondrial Disease Model of COA6 Deficiency. Hum. Mol. Genet. 2014, 23, 3596–3606. [Google Scholar] [CrossRef]
- Olivares, C.; Solano, F. New Insights into the Active Site Structure and Catalytic Mechanism of Tyrosinase and Its Related Proteins. Pigment. Cell Melanoma Res. 2009, 22, 750–760. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.K.; AlSharif, M.A. Copper (Cu) an Essential Redox-Active Transition Metal in Living System—A Review Article. Am. J. Anal. Chem. 2018, 9, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Arredondo, M.; Núñez, M.T. Iron and Copper Metabolism. Mol. Asp. Med. 2005, 26, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Galhardi, C.M.; Diniz, Y.S.; Faine, L.A.; Rodrigues, H.G.; Burneiko, R.C.M.; Ribas, B.O.; Novelli, E.L.B. Toxicity of Copper Intake: Lipid Profile, Oxidative Stress and Susceptibility to Renal Dysfunction. Food Chem. Toxicol. 2004, 42, 2053–2060. [Google Scholar] [CrossRef]
- Marques, D.M.; Veroneze Júnior, V.; da Silva, A.B.; Mantovani, J.R.; Magalhães, P.C.; de Souza, T.C. Copper Toxicity on Photosynthetic Responses and Root Morphology of Hymenaea Courbaril L. (Caesalpinioideae). Water Air Soil Pollut. 2018, 229, 138. [Google Scholar] [CrossRef] [Green Version]
- Tokuda, E.; Furukawa, Y. Copper Homeostasis as a Therapeutic Target in Amyotrophic Lateral Sclerosis with SOD1 Mutations. Int. J. Mol. Sci. 2016, 17, 636. [Google Scholar] [CrossRef] [Green Version]
- Mali, H.R.; Siddiqui, S.A.; Garg, M.; Singh, R.K.; Bhatt, M.L.B. Changes in Serum Copper Levels in Patients with Malignant Diseases Undergoing Radiotherapy. Indian J. Clin. Biochem. 1998, 13, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Gupte, A.; Mumper, R.J. Elevated Copper and Oxidative Stress in Cancer Cells as a Target for Cancer Treatment. Cancer Treat. Rev. 2009, 35, 32–46. [Google Scholar] [CrossRef]
- Ishida, S.; Andreux, P.; Poitry-Yamate, C.; Auwerx, J.; Hanahan, D. Bioavailable Copper Modulates Oxidative Phosphorylation and Growth of Tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 19507–19512. [Google Scholar] [CrossRef] [Green Version]
- Vella, V.; Malaguarnera, R.; Lappano, R.; Maggiolini, M.; Belfiore, A. Recent Views of Heavy Metals as Possible Risk Factors and Potential Preventive and Therapeutic Agents in Prostate Cancer. Mol. Cell. Endocrinol. 2017, 457, 57–72. [Google Scholar] [CrossRef]
- Li, Y. Copper Homeostasis: Emerging Target for Cancer Treatment. IUBMB Life 2020, 72, 1900–1908. [Google Scholar] [CrossRef] [PubMed]
- Denoyer, D.; Masaldan, S.; La Fontaine, S.; Cater, M.A. Targeting Copper in Cancer Therapy: ‘Copper That Cancer’. Metallomics 2015, 7, 1459–1476. [Google Scholar] [CrossRef] [PubMed]
- Scientific Opinion on Dietary Reference Values for Copper. EFSA J. 2015, 13, 4253. [CrossRef]
- Chan, N.; Willis, A.; Kornhauser, N.; Ward, M.M.; Lee, S.B.; Nackos, E.; Seo, B.R.; Chuang, E.; Cigler, T.; Moore, A.; et al. Influencing the Tumor Microenvironment: A Phase II Study of Copper Depletion Using Tetrathiomolybdate in Patients with Breast Cancer at High Risk for Recurrence and in Preclinical Models of Lung Metastases. Clin. Cancer Res. 2017, 23, 666–676. [Google Scholar] [CrossRef] [Green Version]
- Araya, M.; Pizarro, F.; Olivares, M.; Arredondo, M.; González, M.; Méndez, M. Understanding Copper Homeostasis in Humans and Copper Effects on Health. Biol. Res. 2006, 39, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M.; Dou, Q.P.; Franz, K.J.; Gohil, V.M.; Gupta, S.; et al. Connecting Copper and Cancer: From Transition Metal Signalling to Metalloplasia. Nat. Rev. Cancer 2022, 22, 102–113. [Google Scholar] [CrossRef]
- Copper: Reference Range, Interpretation, Collection and Panels. Available online: https://emedicine.medscape.com/article/2087780-overview (accessed on 9 November 2022).
- Feng, Y.; Zeng, J.-W.; Ma, Q.; Zhang, S.; Tang, J.; Feng, J.-F. Serum Copper and Zinc Levels in Breast Cancer: A Meta-Analysis. J. Trace Elem. Med. Biol. 2020, 62, 126629. [Google Scholar] [CrossRef]
- Przybylik-Mazurek, E.; Zagrodzki, P.; Kuźniarz-Rymarz, S.; Hubalewska-Dydejczyk, A. Thyroid Disorders—Assessments of Trace Elements, Clinical, and Laboratory Parameters. Biol. Trace Elem. Res. 2011, 141, 65–75. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Q. Association between Serum Copper Levels and Lung Cancer Risk: A Meta-Analysis. J. Int. Med. Res. 2018, 46, 4863–4873. [Google Scholar] [CrossRef] [Green Version]
- Grail, A.; Norval, M. Copper and Zinc Levels in Serum from Patients with Abnormalities of the Uterine Cervix. Acta Obs. Gynecol. Scand. 1986, 65, 443–447. [Google Scholar] [CrossRef]
- Ramteke, T.D.; Jambhulkar, R.K.; Tadas, A.; Kute, P. Original Article Study of Alterations of Serum Copper and Zinc in Patients of Cervical Cancer. Biosci Rep. 2018, 4, 9. [Google Scholar]
- Chen, F.; Wang, J.; Chen, J.; Yan, L.; Hu, Z.; Wu, J.; Bao, X.; Lin, L.; Wang, R.; Cai, L.; et al. Serum Copper and Zinc Levels and the Risk of Oral Cancer: A New Insight Based on Large-Scale Case-Control Study. Oral Dis. 2019, 25, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestergaard, M.; Kerman, K.; Tamiya, E. An Electrochemical Approach for Detecting Copper-Chelating Properties of Flavonoids Using Disposable Pencil Graphite Electrodes: Possible Implications in Copper-Mediated Illnesses. Anal. Chim. Acta 2005, 538, 273–281. [Google Scholar] [CrossRef]
- Office of Dietary Supplements-Copper. Available online: https://ods.od.nih.gov/factsheets/Copper-HealthProfessional/ (accessed on 17 November 2022).
- National Health and Medical Research Council. Copper. Available online: https://www.eatforhealth.gov.au/nutrient-reference-values/nutrients/copper (accessed on 17 November 2022).
- Denoyer, D.; Clatworthy, S.A.S.; Cater, M.A. 16. Copper Complexes in Cancer Therapy. In Metallo-Drugs: Development and Action of Anticancer Agents; Sigel, A., Sigel, H., Freisinger, E., Sigel, R.K.O., Eds.; De Gruyter: Berlin, Germany, 2018; pp. 469–506. ISBN 978-3-11-047073-4. [Google Scholar]
- Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in Copper Complexes as Anticancer Agents. Chem. Rev. 2014, 114, 815–862. [Google Scholar] [CrossRef] [PubMed]
- Jurowska, A.; Jurowski, K.; Szklarzewicz, J.; Buszewski, B.; Kalenik, T.; Piekoszewski, W. Molybdenum Metallopharmaceuticals Candidate Compounds-The “Renaissance” of Molybdenum Metallodrugs? Curr. Med. Chem. 2016, 23, 3322–3342. [Google Scholar] [CrossRef]
- Baumgart, M. A Phase I Study of Tetrathiomolybdate (TM) in Combination With Carboplatin and Pemetrexed in Chemo-Naive Metastatic or Recurrent Non-Squamous Non-Small Cell Lung Cancer. 2019. Available online: clinicaltrials.gov (accessed on 17 November 2022).
- IFL Chemotherapy-Wikidoc. Available online: https://wikidoc.org/index.php/IFL_chemotherapy (accessed on 18 November 2022).
- Gartner, E.M.; Griffith, K.A.; Pan, Q.; Brewer, G.J.; Henja, G.F.; Merajver, S.D.; Zalupski, M.M. A Pilot Trial of the Anti-Angiogenic Copper Lowering Agent Tetrathiomolybdate in Combination with Irinotecan, 5-Flurouracil, and Leucovorin for Metastatic Colorectal Cancer. Investig. New Drugs 2009, 27, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Lelièvre, P.; Sancey, L.; Coll, J.-L.; Deniaud, A.; Busser, B. The Multifaceted Roles of Copper in Cancer: A Trace Metal Element with Dysregulated Metabolism, but Also a Target or a Bullet for Therapy. Cancers 2020, 12, 3594. [Google Scholar] [CrossRef]
- Reynaud, C.; Ferreras, L.; Di Mauro, P.; Kan, C.; Croset, M.; Bonnelye, E.; Pez, F.; Thomas, C.; Aimond, G.; Karnoub, A.E.; et al. Lysyl Oxidase Is a Strong Determinant of Tumor Cell Colonization in Bone. Cancer Res. 2017, 77, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Lopez, J.; Ramchandani, D.; Vahdat, L. 12. Copper Depletion as a Therapeutic Strategy in Cancer. In Essential Metals in Medicine: Therapeutic Use and Toxicity of Metal Ions in the Clinic; Carver, P.L., Ed.; De Gruyter: Berlin, Germany, 2019; pp. 303–330. ISBN 978-3-11-052787-2. [Google Scholar]
- FortiCare. Available online: https://www.nutricia.co.uk/hcp/pim-products/forticare.html (accessed on 18 November 2022).
- Nutrison 1000 Complete Multi Fibre. Available online: https://www.nutricia.co.uk/hcp/pim-products/nutrison-1000-complete-multi-fibre.html (accessed on 18 November 2022).
- RESOURCE® Protein 200 mL. Available online: https://www.ncare.net.au/resourceaprotein200ml-1 (accessed on 21 November 2022).
- RESOURCE® Refresh 200 mL. Available online: https://www.ncare.net.au/resource-refreshv (accessed on 21 November 2022).
- Resource Diabet Plus | Nestlé Health Science. Available online: https://www.nestlehealthscience.com/brands/resource/resource-diabet-plus (accessed on 21 November 2022).
- Fortimel Pulver Neutral. Available online: https://produkte.nutricia.de/de_de/pim/adults/standard-trinknahrung-zur-ausschliesslichen-ernaehrung/fortimel-pulver/939/ (accessed on 21 November 2022).
- Survimed OPD-Fresenius Kabi Polska. Available online: https://www.fresenius-kabi.com/pl/produkty/survimed-opd (accessed on 21 November 2022).
- Barceloux, D.G. Selenium. J. Toxicol. Clin. Toxicol. 1999, 37, 145–172. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- Present Knowledge in Nutrition | Wiley Online Books. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119946045 (accessed on 14 October 2022).
- Mangiapane, E.; Pessione, A.; Pessione, E. Selenium and Selenoproteins: An Overview on Different Biological Systems. Curr. Protein Pept. Sci. 2014, 15, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Vinceti, M.; Filippini, T.; Del Giovane, C.; Dennert, G.; Zwahlen, M.; Brinkman, M.; Zeegers, M.P.; Horneber, M.; D’Amico, R.; Crespi, C.M. Selenium for Preventing Cancer. Cochrane Database Syst. Rev. 2018, 2018, CD005195. [Google Scholar] [CrossRef] [PubMed]
- Newairy, A.A.; El-Sharaky, A.S.; Badreldeen, M.M.; Eweda, S.M.; Sheweita, S.A. The Hepatoprotective Effects of Selenium against Cadmium Toxicity in Rats. Toxicology 2007, 242, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Fan, A.M.; Vinceti, M. Selenium and Its Compounds. In Hamilton & Hardy’s Industrial Toxicology; Harbison, R.D., Bourgeois, M.M., Johnson, G.T., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 205–228. ISBN 978-1-118-83401-5. [Google Scholar]
- Vinceti, M.; Filippini, T.; Wise, L.A. Environmental Selenium and Human Health: An Update. Curr. Environ. Health Rep. 2018, 5, 464–485. [Google Scholar] [CrossRef]
- Tsuji, P.; Carlson, B.; Anderson, C.; Seifried, H.; Hatfield, D.; Howard, M. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-γ and IL-6 Immune Response Pathways in Mice. Nutrients 2015, 7, 6529–6549. [Google Scholar] [CrossRef] [Green Version]
- Tobe, R.; Carlson, B.A.; Tsuji, P.A.; Lee, B.J.; Gladyshev, V.N.; Hatfield, D.L. Differences in Redox Regulatory Systems in Human Lung and Liver Tumors Suggest Different Avenues for Therapy. Cancers 2015, 7, 2262–2276. [Google Scholar] [CrossRef]
- Irimie, A.; Braicu, C.; Pasca, S.; Magdo, L.; Gulei, D.; Cojocneanu, R.; Ciocan, C.; Olariu, A.; Coza, O.; Berindan-Neagoe, I. Role of Key Micronutrients from Nutrigenetic and Nutrigenomic Perspectives in Cancer Prevention. Medicina 2019, 55, 283. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Mikhail, S.S.; Ding, Y.W.; Yang, G.; Bondoc, F.; Yang, C.S. Effects of Vitamin E and Selenium Supplementation on Esophageal Adenocarcinogenesis in a Surgical Model with Rats. Carcinogenesis 2000, 21, 1531–1536. [Google Scholar] [CrossRef]
- Harvie, M. Nutritional Supplements and Cancer: Potential Benefits and Proven Harms. Am. Soc. Clin. Oncol. Educ. Book 2014, 34, e478–e486. [Google Scholar] [CrossRef] [Green Version]
- Wimmer, I.; Hartmann, T.; Brustbauer, R.; Minear, G.; Dam, K. Selenium Levels in Patients with Autoimmune Thyroiditis and Controls in Lower Austria. Horm. Metab. Res. 2014, 46, 707–709. [Google Scholar] [CrossRef]
- Lubiński, J.; Marciniak, W.; Muszynska, M.; Jaworowska, E.; Sulikowski, M.; Jakubowska, A.; Kaczmarek, K.; Sukiennicki, G.; Falco, M.; Baszuk, P.; et al. Serum Selenium Levels and the Risk of Progression of Laryngeal Cancer. PLoS ONE 2018, 13, e0184873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bleys, J. Serum Selenium Levels and All-Cause, Cancer, and Cardiovascular Mortality Among US Adults. Arch. Intern. Med. 2008, 168, 404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szwiec, M.; Marciniak, W.; Derkacz, R.; Huzarski, T.; Gronwald, J.; Cybulski, C.; Dębniak, T.; Jakubowska, A.; Lener, M.; Falco, M.; et al. Serum Selenium Level Predicts 10-Year Survival after Breast Cancer. Nutrients 2021, 13, 953. [Google Scholar] [CrossRef] [PubMed]
- Suadicani, P.; Hein, H.O.; Gyntelberg, F. Serum Selenium Level and Risk of Lung Cancer Mortality: A 16-Year Follow-up of the Copenhagen Male Study. Eur. Respir. J. 2012, 39, 1443–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, M.S. Nutrition and Cancer: A Review of the Evidence for an Anti-Cancer Diet. Nutr. J. 2004, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Algotar, A.M.; Stratton, M.S.; Ahmann, F.R.; Ranger-Moore, J.; Nagle, R.B.; Thompson, P.A.; Slate, E.; Hsu, C.H.; Dalkin, B.L.; Sindhwani, P.; et al. Phase 3 Clinical Trial Investigating the Effect of Selenium Supplementation in Men at High Risk for Prostate Cancer. Prostate 2013, 73, 328–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. In Selenium; National Academies Press (US): Washington, DC, USA, 2000. [Google Scholar]
- Office of Dietary Supplements-Selenium. Available online: https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/ (accessed on 30 November 2022).
- Boston, 677 Huntington Avenue; Ma 02115 +1495-1000 Selenium. Available online: https://www.hsph.harvard.edu/nutritionsource/selenium/ (accessed on 29 November 2022).
- Nutrison Soya. Available online: https://www.nutricia.co.uk/hcp/pim-products/nutrison-soya.html (accessed on 29 November 2022).
- Torti, S.V.; Manz, D.H.; Paul, B.T.; Blanchette-Farra, N.; Torti, F.M. Iron and Cancer. Annu. Rev. Nutr. 2018, 38, 97–125. [Google Scholar] [CrossRef]
- Scientific Opinion on Dietary Reference Values for Iron. EFSA J. 2015, 13, 4254. [CrossRef]
- Hurrell, R.; Egli, I. Iron Bioavailability and Dietary Reference Values. Am. J. Clin. Nutr. 2010, 91, 1461S–1467S. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, E.D. Iron, Infection, and Neoplasia. Clin. Physiol. Biochem. 1986, 4, 50–60. [Google Scholar]
- Nemeth, E.; Ganz, T. Anemia of Inflammation. Hematol. Oncol. Clin. N. Am. 2014, 28, 671–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basuli, D.; Tesfay, L.; Deng, Z.; Paul, B.; Yamamoto, Y.; Ning, G.; Xian, W.; McKeon, F.; Lynch, M.; Crum, C.P.; et al. Iron Addiction: A Novel Therapeutic Target in Ovarian Cancer. Oncogene 2017, 36, 4089–4099. [Google Scholar] [CrossRef] [Green Version]
- Schonberg, D.L.; Miller, T.E.; Wu, Q.; Flavahan, W.A.; Das, N.K.; Hale, J.S.; Hubert, C.G.; Mack, S.C.; Jarrar, A.M.; Karl, R.T.; et al. Preferential Iron Trafficking Characterizes Glioblastoma Stem-like Cells. Cancer Cell 2015, 28, 441–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torti, S.V.; Torti, F.M. Iron and Cancer: More Ore to Be Mined. Nat. Rev. Cancer 2013, 13, 342–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, K.-J.; Polack, A.; Dalla-Favera, R. Coordinated Regulation of Iron-Controlling Genes, H-Ferritin and IRP2, by c-MYC. Science 1999, 283, 676–679. [Google Scholar] [CrossRef]
- Neshastehriz, A.; Khosravi, Z.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold-Coated Iron Oxide Nanoparticles Trigger Apoptosis in the Process of Thermo-Radiotherapy of U87-MG Human Glioma Cells. Radiat. Environ. Biophys. 2018, 57, 405–418. [Google Scholar] [CrossRef]
- Ludwig, H.; Evstatiev, R.; Kornek, G.; Aapro, M.; Bauernhofer, T.; Buxhofer-Ausch, V.; Fridrik, M.; Geissler, D.; Geissler, K.; Gisslinger, H.; et al. Iron Metabolism and Iron Supplementation in Cancer Patients. Wien. Klin. Wochenschr. 2015, 127, 907–919. [Google Scholar] [CrossRef] [Green Version]
- Powers, J.M.; Buchanan, G.R. Disorders of Iron Metabolism: New Diagnostic and Treatment Approaches to Iron Deficiency. Hematol./Oncol. Clin. 2019, 33, 393–408. [Google Scholar] [CrossRef]
- Guo, Q.; Li, L.; Hou, S.; Yuan, Z.; Li, C.; Zhang, W.; Zheng, L.; Li, X. The Role of Iron in Cancer Progression. Front. Oncol. 2021, 11, 778492. [Google Scholar] [CrossRef]
- Lee, S.; Eo, W.; Jeon, H.; Park, S.; Chae, J. Prognostic Significance of Host-Related Biomarkers for Survival in Patients with Advanced Non-Small Cell Lung Cancer. J. Cancer 2017, 8, 2974–2983. [Google Scholar] [CrossRef] [Green Version]
- Koyama, S.; Fujisawa, S.; Watanabe, R.; Itabashi, M.; Ishibashi, D.; Ishii, Y.; Hattori, Y.; Nakajima, Y.; Motohashi, K.; Takasaki, H.; et al. Serum Ferritin Level Is a Prognostic Marker in Patients with Peripheral T-Cell Lymphoma. Int. J. Lab. Hematol. 2017, 39, 112–117. [Google Scholar] [CrossRef]
- Sukiennicki, G.; Muszyńska, M.; Jaworska-Bieniek, K.; Kaczmarek, K.; Marciniak, W.; Lener, M.; Durda, K.; Gromowski, T.; Huzarski, T.; Byrski, T.; et al. Iron as Diagnostic Marker of Cancer. Hered. Cancer Clin. Pract. 2015, 13, A5. [Google Scholar] [CrossRef] [Green Version]
- Iron: Reference Range, Interpretation, Collection and Panels. Available online: https://emedicine.medscape.com/article/2085704-overview (accessed on 1 December 2022).
- Wen, C.P.; Lee, J.H.; Tai, Y.-P.; Wen, C.; Wu, S.B.; Tsai, M.K.; Hsieh, D.P.H.; Chiang, H.-C.; Hsiung, C.A.; Hsu, C.Y.; et al. High Serum Iron Is Associated with Increased Cancer Risk. Cancer Res. 2014, 74, 6589–6597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naoum, F.A. Iron Deficiency in Cancer Patients. Rev. Bras. Hematol Hemoter 2016, 38, 325–330. [Google Scholar] [CrossRef] [Green Version]
- Toblli, J.E.; Angerosa, M. Optimizing Iron Delivery in the Management of Anemia: Patient Considerations and the Role of Ferric Carboxymaltose. Drug Des. Dev. Ther. 2014, 8, 2475–2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, H.; Van Belle, S.; Barrett-Lee, P.; Birgegård, G.; Bokemeyer, C.; Gascón, P.; Kosmidis, P.; Krzakowski, M.; Nortier, J.; Olmi, P.; et al. The European Cancer Anaemia Survey (ECAS): A Large, Multinational, Prospective Survey Defining the Prevalence, Incidence, and Treatment of Anaemia in Cancer Patients. Eur. J. Cancer 2004, 40, 2293–2306. [Google Scholar] [CrossRef]
- Crawford, J.; Cella, D.; Cleeland, C.S.; Cremieux, P.-Y.; Demetri, G.D.; Sarokhan, B.J.; Slavin, M.B.; Glaspy, J.A. Relationship between Changes in Hemoglobin Level and Quality of Life during Chemotherapy in Anemic Cancer Patients Receiving Epoetin Alfa Therapy. Cancer 2002, 95, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Iron | Eat For Health. Available online: https://www.eatforhealth.gov.au/nutrient-reference-values/nutrients/iron (accessed on 1 December 2022).
- Iron | The Nutrition Source | Harvard T.H. Chan School of Public Health. Available online: https://www.hsph.harvard.edu/nutritionsource/iron/ (accessed on 1 December 2022).
- Schrijvers, D.; De Samblanx, H.; Roila, F.; ESMO Guidelines Working Group. Erythropoiesis-Stimulating Agents in the Treatment of Anaemia in Cancer Patients: ESMO Clinical Practice Guidelines for Use. Ann. Oncol 2010, 21 (Suppl. 5), v244–v247. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, J.D.; Brouwers, M.; Hurley, P.; Seidenfeld, J.; Somerfield, M.R.; Temin, S. American Society of Clinical Oncology/American Society of Hematology Clinical Practice Guideline Update on the Use of Epoetin and Darbepoetin in Adult Patients with Cancer. J. Oncol. Pract. 2010, 6, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Blaauw, R.; Osland, E.; Sriram, K.; Ali, A.; Allard, J.P.; Ball, P.; Chan, L.-N.; Jurewitsch, B.; Logan Coughlin, K.; Manzanares, W.; et al. Parenteral Provision of Micronutrients to Adult Patients: An Expert Consensus Paper. J. Parenter. Enter. Nutr. 2019, 43, S5–S23. [Google Scholar] [CrossRef] [Green Version]
- Forbes, A. Iron and Parenteral Nutrition. Gastroenterology 2009, 137, S47–S54. [Google Scholar] [CrossRef] [PubMed]
- Aschner, M.; Erikson, K.M.; Dorman, D.C. Manganese Dosimetry: Species Differences and Implications for Neurotoxicity. Crit. Rev. Toxicol. 2005, 35, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Erikson, K.M.; Dorman, D.C.; Lash, L.H.; Aschner, M. Manganese Inhalation by Rhesus Monkeys Is Associated with Brain Regional Changes in Biomarkers of Neurotoxicity. Toxicol. Sci. 2007, 97, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschner, M.; Erikson, K. Manganese. Adv. Nutr. 2017, 8, 520–521. [Google Scholar] [CrossRef] [Green Version]
- Aschner, J.L.; Aschner, M. Nutritional Aspects of Manganese Homeostasis. Mol. Asp. Med. 2005, 26, 353–362. [Google Scholar] [CrossRef]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese Is Essential for Neuronal Health. Annu. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef]
- Soldin, O.; Aschner, M. EFFECTS OF MANGANESE ON THYROID HORMONE HOMEOSTASIS. Neurotoxicology 2007, 28, 951–956. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on Dietary Reference Values for Manganese. EFSA J. 2013, 11, 3419. [CrossRef] [Green Version]
- Treiber, N.; Maity, P.; Singh, K.; Ferchiu, F.; Wlaschek, M.; Scharffetter-Kochanek, K. The Role of Manganese Superoxide Dismutase in Skin Aging. Derm. -Endocrinol. 2012, 4, 232–235. [Google Scholar] [CrossRef] [Green Version]
- Harischandra, D.S.; Ghaisas, S.; Zenitsky, G.; Jin, H.; Kanthasamy, A.; Anantharam, V.; Kanthasamy, A.G. Manganese-Induced Neurotoxicity: New Insights into the Triad of Protein Misfolding, Mitochondrial Impairment, and Neuroinflammation. Front. Neurosci. 2019, 13, 654. [Google Scholar] [CrossRef] [Green Version]
- de Moura, T.C.; Afadlal, S.; Hazell, A.S. Potential for Stem Cell Treatment in Manganism. Neurochem. Int. 2018, 112, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Reimund, J.-M.; Dietemann, J.-L.; Warter, J.-M.; Baumann, R.; Duclos, B. Factors Associated to Hypermanganesemia in Patients Receiving Home Parenteral Nutrition. Clin. Nutr. 2000, 19, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Robbins, D.; Zhao, Y. Manganese Superoxide Dismutase in Cancer Prevention. Antioxidants Redox Signal. 2014, 20, 1628–1645. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Tian, C.; Yan, Y.; Zhang, L.; Zhang, H.; Zhang, Z. Manganese-Based Nanoactivator Optimizes Cancer Immunotherapy via Enhancing Innate Immunity. ACS Nano 2020, 14, 3927–3940. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Chen, M.; Zhang, R.; Zhang, W.; Wang, C.; Zhang, Y.; Wei, X.; Guan, Y.; Liu, J.; Feng, K.; et al. Manganese Is Critical for Antitumor Immune Responses via CGAS-STING and Improves the Efficacy of Clinical Immunotherapy. Cell Res. 2020, 30, 966–979. [Google Scholar] [CrossRef] [PubMed]
- Hollow Mesoporous Manganese Oxides: Application in Cancer Diagnosis and Therapy-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35043579/ (accessed on 5 December 2022).
- Manganese-Based Multifunctional Nanoplatform for Dual-Modal Imaging and Synergistic Therapy of Breast Cancer-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35038584/ (accessed on 5 December 2022).
- O’Neal, S.L.; Zheng, W. Manganese Toxicity Upon Overexposure: A Decade in Review. Curr. Environ. Health Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manganese | ToxFAQsTM | ATSDR. Available online: https://wwwn.cdc.gov/TSP/ToxFAQs/ToxFAQsDetails.aspx?faqid=101&toxid=23 (accessed on 5 December 2022).
- United States Environmental Protection Agency. Manganese CASRN 7439-96-5 | IRIS | US EPA, ORD. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=373 (accessed on 5 December 2022).
- Manganese Blood Level-an Overview | ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/manganese-blood-level (accessed on 8 December 2022).
- Choi, R.; Kim, M.-J.; Sohn, I.; Kim, S.; Kim, I.; Ryu, J.M.; Choi, H.J.; Kim, J.-M.; Lee, S.K.; Yu, J.; et al. Serum Trace Elements and Their Associations with Breast Cancer Subgroups in Korean Breast Cancer Patients. Nutrients 2019, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Milde, D.; Novák, O.; Stu ka, V.; Vyslou il, K.; Machá ek, J. Serum Levels of Selenium, Manganese, Copper, and Iron in Colorectal Cancer Patients. Biol. Trace Elem. Res. 2001, 79, 107–114. [Google Scholar] [CrossRef]
- Baker, B.; Ali, A.; Isenring, L. Recommendations for Manganese Supplementation to Adult Patients Receiving Long-Term Home Parenteral Nutrition: An Analysis of the Supporting Evidence. Nutr. Clin. Pract. 2016, 31, 180–185. [Google Scholar] [CrossRef]
- Takagi, Y.; Okada, A.; Sando, K.; Wasa, M.; Yoshida, H.; Hirabuki, N. Evaluation of Indexes of in Vivo Manganese Status and the Optimal Intravenous Dose for Adult Patients Undergoing Home Parenteral Nutrition. Am. J. Clin. Nutr. 2002, 75, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Boston, 677 Huntington Avenue; Ma 02115 +1495-1000 Manganese. Available online: https://www.hsph.harvard.edu/nutritionsource/manganese/ (accessed on 8 December 2022).
- Estimated Dietary Intake of Essential Elements from Four Selected Staple Foods in Najran City, Saudi Arabia | BMC Chemistry | Full Text. Available online: https://bmcchem.biomedcentral.com/articles/10.1186/s13065-019-0588-5 (accessed on 8 December 2022).
- Opinion of the French Food Safety Agency (Afssa) on the Assessment of the Vitamin and Mineral Content of Fortified Foods and Food Supplements: Summary. Available online: https://www.anses.fr/en/content/opinion-french-food-safety-agency-afssa-assessment-vitamin-and-mineral-content-fortified (accessed on 24 October 2022).
- Safe Upper Levels for Vitamins and Minerals. Available online: http://www.stewartnutrition.co.uk/supplement_safety/safe_upper_levels_for_vitamins_and_minerals.html (accessed on 24 October 2022).
- Cowan, D.M.; Zheng, W.; Zou, Y.; Shi, X.; Chen, J.; Rosenthal, F.S.; Fan, Q. Manganese Exposure among Smelting Workers: Relationship between Blood Manganese-Iron Ratio and Early Onset Neurobehavioral Alterations. Neurotoxicology 2009, 30, 1214–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanek, V.W.; Borum, P.; Buchman, A.; Fessler, T.A.; Howard, L.; Jeejeebhoy, K.; Kochevar, M.; Shenkin, A.; Valentine, C.J.; Novel Nutrient Task Force, Parenteral Multi-Vitamin and Multi–Trace Element Working Group; et al. A.S.P.E.N. Position Paper: Recommendations for Changes in Commercially Available Parenteral Multivitamin and Multi-Trace Element Products. Nutr. Clin. Pract. 2012, 27, 440–491. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yang, Y.; Li, H.-L.; Zheng, W.; Gao, J.; Zhang, W.; Yang, G.; Shu, X.-O.; Xiang, Y.-B. Dietary Trace Element Intake and Liver Cancer Risk: Results from Two Population-Based Cohorts in China. Int. J. Cancer 2017, 140, 1050–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resource 2.0-Features and Ingredients | Nestlé Health Science. Available online: https://www.nestlehealthscience.ca/en/brands/resource/resource-2-0-hcp (accessed on 5 December 2022).
- Manganese | The Nutrition Source. Available online: https://www.hsph.harvard.edu/nutritionsource/manganese/ (accessed on 30 November 2022).
- Mohamed, H.; Haris, P.I.; Brima, E.I. Estimated dietary intake of essential elements from four selected staple foods in Najran City, Saudi Arabia. BMC Chemistry 2019, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Manganese Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/ManganeseHealthProfessional/ (accessed on 30 November 2022).
- Cefalu, W.T.; Stephens, J.M.; Ribnicky, D.M. Diabetes and Herbal (Botanical) Medicine. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011; Chapter 19. [Google Scholar]
- Gandhi, D.; Rudrashetti, A.P.; Rajasekaran, S. The impact of environmental and occupational exposures of manganese on pulmonary, hepatic, and renal functions. J. Appl. Toxicol. 2022, 42, 103–129. [Google Scholar] [CrossRef] [PubMed]
- Avila, D.S.; Puntel, R.L.; Aschner, M. Manganese in health and disease. Interrelat. Essent. Met. Ions Hum. Dis. 2013, 13, 199–227. [Google Scholar] [CrossRef]
Type of Cancer | Type of Change, Biological Material, Value [µg/dL] | Reference(s) |
---|---|---|
Cancer cachexia | Normal, serum, 71.00 | [32] |
Breast cancer | Normal, serum, 110.96 | [33] |
Gastric cancer | Increase, serum, 233.00 | [34] |
Endometrial cancer | Increase, serum, 183.00 | [35] |
Lung cancer | Increase, serum, 85.00–183.00 | [36] |
Pulmonary cancer | Increase, serum, 248.00 | [37] |
Gastrointestinal cancer | Increase, serum, 273.00 | [37] |
Gynaecological cancer | Increase, serum, 249.00 | [37] |
Colorectal Cancer CRC | Normal, serum, 78.00–97.00 | [38] |
Prostate cancer | Decrease, serum, 51.00 | [39] |
Parameter/Index | Value | Reference(s) |
---|---|---|
RDA/PRI (mg/day) | 8–11 | [44] |
EAR/AR (mg/day) | 6.5–12 | [43,44] |
UL (mg/day) | 40 | [44,45] |
RDI (mg/day) | 8.0–14.0 | [44] |
ADI (mg/day) | 14–20 | [46] |
PMTDI (mg/kg bw/d.) | 0.3–1 | [46,47] |
EDI (μg/day) | 10,496–13,459 | [47] |
DRV (mg/day) | 7.5–16.3 | [43,48] |
Declared Zn Content | Product | Source |
---|---|---|
1.3 mg/100 mL | Resource® Protein | [61] |
1.2 mg/100 mL | Nutrison® | [62] |
1.2 mg/100 mL | Nutrison® Multi Fibre | [63] |
1.2 mg/100 mL | Nutrison® Soya | [64] |
1.8 mg/100 mL | Nutrison® 1000 Complete Multi Fibre | [64] |
1.5 mg/100 mL | Nutrison® Protein Plus | [65] |
1.7 mg/100 mL | Resource® 2.0 | [66,67] |
1.7 mg/100 mL | Resource® 2.0 + Fibre | [68] |
ND | Resource® Refresh | [69] |
1.5 mg/100 mL | Resource® Diabet Plus | [70] |
ND | Resource® Instant Protein | [71] |
0.9 mg/100 mL | Nutramil® Complex | [72] |
2.0 mg/200 mL | Nutramil complex® Protein | [73] |
1.2 mg/100 mL | Fortimel Pulver | [74] |
1.9 mg/100 mL | Provide Xtra Drink | [75] |
1.8 mg/100 mL | Survimed® OPD | [76] |
Type of Cancer | Type of Change, Biological Material, Value [µg/dL] | Reference(s) |
---|---|---|
Breast cancer | Increase, serum, 137.15 ± 36.24 Increase, serum, 128.15 ±19.14 | [33] [101] |
Endometrial cancer | Increase, serum, 372 ± 215 | [35] |
Thyroid cancer | Normal, serum, 6.2 ± 0.9 | [102] |
Lung cancer | Increase, serum, 127 ± 27 | [103] |
Cervical cancer | Increase, serum, 147 ± 26 Increase, serum, 156.9 ± 3.4 | [104] [105] |
Colorectal Cancer CRC | Increase, serum, 123.75 ± 27.11 | [38] |
Oral cancer | Increase, serum, 95.85 | [106] |
Lung cancer | Increase, serum, 176.00 | [36] |
Prostate cancer | Increase, serum, 169.00 | [39] |
Parameter/index | Value | Reference(s) |
---|---|---|
RDA/PRI (mcg/day) | 200–900 | [108] |
EAR/AR (mg/day) | ND * | [96] |
AI (mg/day) | 1.3–1.6 | [96] |
UL (mg/day) | 1.0–10.0 | [109] |
RDI/DRI (mg/day) | ND | ND |
ADI (mg/kg bw/d.) | 0.07 | [96] |
PMTDI (mg/kg bw/d.) | ND | ND |
Declared Cu Content | Product | Source |
---|---|---|
0.29 mg/100 mL | Nutricia® FortiCare | [120] |
0.18 mg/100 mL | Nutricia® Nutrison | [77] |
0.21 mg/100 mL | Nutricia® Nutrison Diason Energy HP | [78] |
0.27 mg/100 mL | Nutricia® Nutrison 1000 Complete Multi Fibre | [121] |
0.15 mg/100 mL | Resource® Protein | [122] |
ND | Resource® Refresh | [69,123] |
0.13 mg/100 mL | Resource® Diabet Plus | [70,124] |
0.75 mg/100 mL | Fortimel Pulver | [74,125] |
0.09 mg/100 mL | Nutramil® Complex | [72] |
0.20 mg/200 mL | Nutramil complex® Protein | [73] |
0.38 mg/100 mL | Provide Xtra Drink | [75] |
0.20 mg/100 mL | Survimed® OPD | [126] |
Type of Cancer | Type of Change, Biological Material, Value [µg/dL] | Reference(s) |
---|---|---|
Laryngeal cancer | Decrease, serum, 5.87 | [141] |
Prostate cancer | Normal, serum, 12.56 | [142] |
Breast cancer | Decrease, serum, 8.62 | [143] |
Lung cancer | Decrease, serum, 7.86 | [144] |
Prostate cancer | Decrease, serum, 7.00 | [39] |
Parameter/Index | Value | Reference(s) |
---|---|---|
RDA/PRI (μg/day) | 55 | [147] |
EAR/AR (μg/day) | 45 | [147] |
UL (μg/day) | 400 | [148] |
RDI/DRI | 70 | [149] |
ADI (μg/day) | ND | ND |
PMTDI (mg/kg bw/d.) | ND | ND |
EDI (μg/day) | ND | ND |
Declared Se Content | Product | Source |
---|---|---|
10 μg/100 mL | Survimed® OPD | [126] |
4.8 μg/100 mL | Nutramil® Complex | [72] |
12 μg/100 mL | Resource® 2.0 + Fibre | [68] |
7.5 μg/100 mL | Resource® Protein | [71] |
5.7 μg/100 mL | Nutrison® Soya | [150] |
8.5 μg/100 mL | Nutrison® Multi Fibre | [121] |
5.7 μg/100 mL | Nutrison® | [77] |
8.5 μg/100 mL | Nutrison® 1000 Complete Multi Fibre | [121] |
3.5 μg/100 mL | Fortimel Pulver | [125] |
12.5 μg/100 mL | Provide Xtra Drink | [75] |
7.1 μg/100 mL | Nutrison® Protein Plus | [65] |
12 μg/100 mL | Resource® 2.0 | [66] |
10 μg/100 mL | Resource® Diabet Plus | [124] |
11 μg/100 mL | Nutramil Complex® Protein | [73] |
Type of Cancer | Type of Change, Serum Levels, Value [µg/dL] | Reference(s) |
---|---|---|
Liver cancer | Normal, serum, 142 | [170] |
Lung cancer | Normal, serum, 150 | [170] |
Kidney cancer | Normal, serum, 169 | [170] |
Breast cancer | Normal, serum, 81 | [170] |
Colorectal cancer | Normal, serum, 12 | [170] |
Prostate cancer | Normal, serum, 196 | [39] |
Parameter/Index | Value | Reference(s) |
---|---|---|
RDA/PRI (mg/day) | 11 | [152] |
EAR/AR (mg/day) | 6 | [175] |
UL (mg/day) | 45 | [176] |
RDI/DRI (mg/day) | 8 | [11] |
ADI (μg/day) | ND | ND * |
PMTDI (mg/kg bw/day) | ND | ND * |
EDI (μg/day) | ND | ND * |
Declared Se Content | Product | Source |
---|---|---|
1.3 mg/100 mL | Survimed® OPD | [126] |
0.65 mg/100 mL | Nutramil® Complex | [72] |
1.5 mg/100 mL | Resource® 2.0 + Fibre | [68] |
1.5 mg/100 mL | Resource® Protein | [71] |
1.6 mg/100 mL | Nutrison® Soya | [150] |
2.4 mg/100 mL | Nutrison® Multi Fibre | [121] |
1.6 mg/100 mL | Nutrison® | [77] |
2.4 mg/100 mL | Nutrison® 1000 Complete Multi Fibre | [121] |
3.5 mg/100 mL | Fortimel Pulver | [125] |
2.5 mg/100 mL | Provide Xtra Drink | [75] |
2 mg/100 mL | Nutrison® Protein Plus | [65] |
2.4 mg/100 mL | Resource® 2.0 | [66] |
1.2 mg/100 mL | Resource® Diabet Plus | [124] |
1.5 mg/100 mL | Nutramil Complex® Protein | [73] |
Type of Cancer | Type of Change, Biological Material, Value [µg/dL] | Reference(s) |
---|---|---|
Prostate cancer | Normal, serum, 0.100 | [39] |
Breast cancer | Increase, serum, 0.175 | [202] |
Colorectal cancer | Increase, serum, 0.770 | [203] |
Parameter/Index | Value | Reference |
---|---|---|
AI (mg/day) | 3 | [187] |
RDA/PRI (mg/day) | ND * | [187] |
EAR/AR (mg/day) | ND * | [187] |
UL (mg/day) | 11 | [207] |
RDI/DRI (mg/day) | ND | ND |
ADI (μg/day) | ND | ND |
PMTDI (mg/kg bw/day) | 0.5 | [208] |
EDI (μg/day) | ND | ND |
PTWI (mg/kg bw/week) | 3.5 | [208] |
Declared Mn Content | Product | Source |
---|---|---|
0.28 mg/100 mL | Resource® Protein | [122] |
0.33 mg/100 mL | Nutrison® | [77] |
0.50 mg/100 mL | Nutrison® Multi Fibre | [121] |
0.33 mg/100 mL | Nutrison® Soya | [150] |
0.50 mg/100 mL | Nutrison® 1000 Complete Multi Fibre | [121] |
0.41 mg/100 mL | Nutrison® Protein Plus | [65] |
0.25 mg/100 mL | Resource® 2.0 | [206] |
0.32 mg/100 mL | Resource® 2.0 + Fibre | [68] |
ND | Resource® Refresh | [123] |
0.26 mg/100 mL | Resource® Diabet Plus | [124] |
ND | Resource® Instant Protein | [71] |
0.17 mg/100 mL | Nutramil® Complex | [72] |
0.2 mg/100 mL | Nutramil complex® Protein | [73] |
0.65 mg/100 mL | Fortimel Pulver | [74] |
0.5 mg/100 mL | Provide Xtra Drink | [75] |
0.27 mg/100 mL | Survimed® OPD | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frydrych, A.; Krośniak, M.; Jurowski, K. The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients—Critical Review: State-of-the-Art. Nutrients 2023, 15, 1012. https://doi.org/10.3390/nu15041012
Frydrych A, Krośniak M, Jurowski K. The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients—Critical Review: State-of-the-Art. Nutrients. 2023; 15(4):1012. https://doi.org/10.3390/nu15041012
Chicago/Turabian StyleFrydrych, Adrian, Mirosław Krośniak, and Kamil Jurowski. 2023. "The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients—Critical Review: State-of-the-Art" Nutrients 15, no. 4: 1012. https://doi.org/10.3390/nu15041012
APA StyleFrydrych, A., Krośniak, M., & Jurowski, K. (2023). The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients—Critical Review: State-of-the-Art. Nutrients, 15(4), 1012. https://doi.org/10.3390/nu15041012