Prevalence of Ideal Cardiovascular Health Metrics among Young Asian Adults over 5 Years of Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Study Design
2.2. Measurements in the MJ Database
2.3. Cardiovascular Health (CVH) Metrics
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Lloyd-Jones, D.; Adams, R.J.; Brown, T.M.; Carnethon, M.; Dai, S.; De Simone, G.; Ferguson, T.B.; Ford, E.; Furie, K.; Gillespie, C.; et al. Executive summary: Heart disease and stroke statistics—2010 update: A report from the American Heart Association. Circulation 2010, 121, 948–954. [Google Scholar] [CrossRef]
- Fang, N.; Jiang, M.; Fan, Y. Ideal cardiovascular health metrics and risk of cardiovascular disease or mortality: A meta-analysis. Int. J. Cardiol. 2016, 214, 279–283. [Google Scholar] [CrossRef]
- Yang, Q.; Cogswell, M.E.; Flanders, W.D.; Hong, Y.; Zhang, Z.; Loustalot, F.; Gillespie, C.; Merritt, R.; Hu, F.B. Trends in cardiovascular health metrics and associations with all-cause and CVD mortality among US adults. JAMA 2012, 307, 1273–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, H.; Itoh, H.; Kamon, T.; Fujiu, K.; Morita, K.; Michihata, N.; Jo, T.; Morita, H.; Yasunaga, H.; Komuro, I. Association of Cardiovascular Health Metrics With Subsequent Cardiovascular Disease in Young Adults. J. Am. Coll. Cardiol. 2020, 76, 2414–2416. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, D.R.; Woo, J.G.; Sinaiko, A.R.; Daniels, S.R.; Ikonen, J.; Juonala, M.; Kartiosuo, N.; Lehtimäki, T.; Magnussen, C.G.; Viikari, J.S.A.; et al. Childhood Cardiovascular Risk Factors and Adult Cardiovascular Events. N. Engl. J. Med. 2022, 386, 1877–1888. [Google Scholar] [CrossRef] [PubMed]
- Oikonen, M.; Laitinen, T.T.; Magnussen, C.G.; Steinberger, J.; Sinaiko, A.R.; Dwyer, T.; Venn, A.; Smith, K.J.; Hutri-Kähönen, N.; Pahkala, K.; et al. Ideal cardiovascular health in young adult populations from the United States, Finland, and Australia and its association with cIMT: The International Childhood Cardiovascular Cohort Consortium. J. Am. Heart Assoc. 2013, 2, e000244. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Jones, D.M.; Hong, Y.; Labarthe, D.; Mozaffarian, D.; Appel, L.J.; Van Horn, L.; Greenlund, K.; Daniels, S.; Nichol, G.; Tomaselli, G.F.J.C. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 2010, 121, 586–613. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, T.T.; Pahkala, K.; Venn, A.; Woo, J.G.; Oikonen, M.; Dwyer, T.; Mikkilä, V.; Hutri-Kähönen, N.; Smith, K.J.; Gall, S.L.; et al. Childhood lifestyle and clinical determinants of adult ideal cardiovascular health: The Cardiovascular Risk in Young Finns Study, the Childhood Determinants of Adult Health Study, the Princeton Follow-Up Study. Int. J. Cardiol. 2013, 169, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Pahkala, K.; Hietalampi, H.; Laitinen, T.T.; Viikari, J.S.; Rönnemaa, T.; Niinikoski, H.; Lagström, H.; Talvia, S.; Jula, A.; Heinonen, O.J.; et al. Ideal cardiovascular health in adolescence: Effect of lifestyle intervention and association with vascular intima-media thickness and elasticity (the Special Turku Coronary Risk Factor Intervention Project for Children [STRIP] study). Circulation 2013, 127, 2088–2096. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, R.S.; Schneider, B.C.; Callo-Quinte, G.; Oliveira, I.O.; Gonçalves, H.; Wehrmeister, F.C.; Menezes, A.M.B. Prevalence of ideal cardiovascular health in young adults: A birth cohort from southern Brazil. Am. Heart J. 2021, 235, 65–73. [Google Scholar] [CrossRef]
- Arnett, J.J. Emerging adulthood: A theory of development from the late teens through the twenties. Am. Psychol. 2000, 55, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Gooding, H.C.; Shay, C.M.; Ning, H.; Gillman, M.W.; Chiuve, S.E.; Reis, J.P.; Allen, N.B.; Lloyd-Jones, D.M. Optimal Lifestyle Components in Young Adulthood Are Associated With Maintaining the Ideal Cardiovascular Health Profile into Middle Age. J. Am. Heart Assoc. 2015, 4, e002048. [Google Scholar] [CrossRef] [Green Version]
- Schultz, W.M.; Kelli, H.M.; Lisko, J.C.; Varghese, T.; Shen, J.; Sandesara, P.; Quyyumi, A.A.; Taylor, H.A.; Gulati, M.; Harold, J.G.; et al. Socioeconomic Status and Cardiovascular Outcomes. Circulation 2018, 137, 2166–2178. [Google Scholar] [CrossRef]
- Rodriguez, C.J. Disparities in Ideal Cardiovascular Health. Circulation 2012, 125, 2963–2964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, H.; Yan, Y.; Liu, J.; Zhao, X.; Cheng, H.; Hou, D.; Huang, G.; Li, S.; Wang, Y.; Mi, J. Alarming trends in ideal cardiovascular health among children and adolescents in Beijing, China, 2004 to 2014. Int. J. Cardiol. 2017, 231, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Guo, P.; Zou, Z.; Li, X.; Cao, M.; Ma, J.; Jing, J. Status of Cardiovascular Health in Chinese Children and Adolescents: A Cross-Sectional Study in China. JACC Asia 2022, 2, 87–100. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tsai, S.P.; Tsao, C.K.; Chiu, M.L.; Tsai, M.K.; Lu, P.J.; Lee, J.H.; Chen, C.H.; Wen, C.; Chang, S.-S.; et al. Cohort Profile: The Taiwan MJ Cohort: Half a million Chinese with repeated health surveillance data. Int. J. Epidemiol. 2017, 46, 1744–1744g. [Google Scholar] [CrossRef]
- Chen, C.H.; Tsai, M.K.; Lee, J.H.; Lin, R.T.; Hsu, C.Y.; Wen, C.; Wu, X.; Chu, T.W.; Wen, C.P. “Sugar-Sweetened Beverages” Is an Independent Risk From Pancreatic Cancer: Based on Half a Million Asian Cohort Followed for 25 Years. Front. Oncol. 2022, 12, 835901. [Google Scholar] [CrossRef]
- Chuang, S.Y.; Chen, J.H.; Yeh, W.T.; Wu, C.C.; Pan, W.H. Hyperuricemia and increased risk of ischemic heart disease in a large Chinese cohort. Int. J. Cardiol. 2012, 154, 316–321. [Google Scholar] [CrossRef]
- Hsu, C.C.; Wahlqvist, M.L.; Wu, I.C.; Chang, Y.H.; Chang, I.S.; Tsai, Y.F.; Liu, T.T.; Tsao, C.K.; Hsiung, C.A. Cardiometabolic disorder reduces survival prospects more than suboptimal body mass index irrespective of age or gender: A longitudinal study of 377,929 adults in Taiwan. BMC Public Health 2018, 18, 142. [Google Scholar] [CrossRef] [PubMed]
- Myers, G.L.; Miller, W.G.; Coresh, J.; Fleming, J.; Greenberg, N.; Greene, T.; Hostetter, T.; Levey, A.S.; Panteghini, M.; Welch, M.; et al. Recommendations for improving serum creatinine measurement: A report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin. Chem. 2006, 52, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.P.; Wai, J.P.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.; Lee, M.C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet 2011, 378, 1244–1253. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Gomez, D.; Ortega, F.B.; Hamer, M.; Lopez-Garcia, E.; Struijk, E.; Sadarangani, K.P.; Lavie, C.J.; Rodríguez-Artalejo, F. Physical Activity and Risk of Metabolic Phenotypes of Obesity: A Prospective Taiwanese Cohort Study in More Than 200,000 Adults. Mayo Clin. Proc. 2019, 94, 2209–2219. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sport. Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.M. (Ed.) Epidemiologic Methods in Physical Activity Studies; Oxford University Press: New York, NY, USA, 2008; 352p. [Google Scholar]
- Lyu, L.C.; Lin, C.F.; Chang, F.H.; Chen, H.F.; Lo, C.C.; Ho, H.F. Meal distribution, relative validity and reproducibility of a meal-based food frequency questionnaire in Taiwan. Asia Pac. J. Clin. Nutr. 2007, 16, 766–776. [Google Scholar]
- Fung, T.T.; Rimm, E.B.; Spiegelman, D.; Rifai, N.; Tofler, G.H.; Willett, W.C.; Hu, F.B. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am. J. Clin. Nutr. 2001, 73, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Meyer, K.A.; Sijtsma, F.P.; Nettleton, J.A.; Steffen, L.M.; Van Horn, L.; Shikany, J.M.; Gross, M.D.; Mursu, J.; Traber, M.G.; Jacobs, D.R., Jr. Dietary patterns are associated with plasma F₂-isoprostanes in an observational cohort study of adults. Free Radic. Biol. Med. 2013, 57, 201–209. [Google Scholar] [CrossRef] [Green Version]
- Nettleton, J.A.; Schulze, M.B.; Jiang, R.; Jenny, N.S.; Burke, G.L.; Jacobs, D.R., Jr. A priori-defined dietary patterns and markers of cardiovascular disease risk in the Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 2008, 88, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, T.T.; Ruohonen, S.; Juonala, M.; Magnussen, C.G.; Mikkilä, V.; Mikola, H.; Hutri-Kähönen, N.; Laitinen, T.; Tossavainen, P.; Jokinen, E.; et al. Ideal cardiovascular health in childhood—Longitudinal associations with cardiac structure and function: The Special Turku Coronary Risk Factor Intervention Project (STRIP) and the Cardiovascular Risk in Young Finns Study (YFS). Int. J. Cardiol. 2017, 230, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Guo, X.L.; Lu, Z.L.; Zhang, J.Y.; Tang, J.L.; Chen, X.; Gao, C.C.; Xu, C.X.; Xu, A.Q. Ideal cardiovascular health status and its association with socioeconomic factors in Chinese adults in Shandong, China. BMC Public Health 2016, 16, 942. [Google Scholar] [CrossRef] [Green Version]
- Shay, C.M.; Ning, H.; Allen, N.B.; Carnethon, M.R.; Chiuve, S.E.; Greenlund, K.J.; Daviglus, M.L.; Lloyd-Jones, D.M. Status of cardiovascular health in US adults: Prevalence estimates from the National Health and Nutrition Examination Surveys (NHANES) 2003–2008. Circulation 2012, 125, 45–56. [Google Scholar] [CrossRef]
- Wardle, J.; Haase, A.M.; Steptoe, A. Body image and weight control in young adults: International comparisons in university students from 22 countries. Int. J. Obes. 2006, 30, 644–651. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.A.; Moura, E.C.; Conde, W.L.; Popkin, B.M. Socioeconomic status and obesity in adult populations of developing countries: A review. Bull. World Health Organ. 2004, 82, 940–946. [Google Scholar] [PubMed]
- Bi, Y.; Jiang, Y.; He, J.; Xu, Y.; Wang, L.; Xu, M.; Zhang, M.; Li, Y.; Wang, T.; Dai, M.; et al. Status of Cardiovascular Health in Chinese Adults. J. Am. Coll. Cardiol. 2015, 65, 1013–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.J.; Haase, A.M.; Fox, K.R. Physical activity among adolescents in Taiwan. Asia Pac. J. Clin. Nutr. 2007, 16, 354–361. [Google Scholar] [PubMed]
- Yu, C.-C.; Liaw, Y.-H.; Barnd, S. Cultural and social factors affecting women’s physical activity participation in Taiwan. Sport Educ. Soc. 2004, 9, 379–393. [Google Scholar] [CrossRef]
- Vaara, J.P.; Vasankari, T.; Koski, H.J.; Kyröläinen, H. Awareness and Knowledge of Physical Activity Recommendations in Young Adult Men. Front. Public Health 2019, 7, 310. [Google Scholar] [CrossRef]
- Han, C.; Liu, F.; Yang, X.; Chen, J.; Li, J.; Cao, J.; Li, Y.; Shen, C.; Yu, L.; Liu, Z.; et al. Ideal cardiovascular health and incidence of atherosclerotic cardiovascular disease among Chinese adults: The China-PAR project. Sci. China Life Sci. 2018, 61, 504–514. [Google Scholar] [CrossRef]
- Li, M.-C.; Fang, H.-Y. Adherence to Daily Food Guides Is Associated with Lower Risk of Metabolic Syndrome: The Nutrition and Health Survey in Taiwan. Nutrients 2020, 12, 2955. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Shin, B.-C.; Son, C.; Ha, I.-H. An analysis of the associations between gender and metabolic syndrome components in Korean adults: A national cross-sectional study. BMC Endocr. Disord. 2019, 19, 67. [Google Scholar] [CrossRef]
- Kuan, P.X.; Ho, H.L.; Shuhaili, M.S.; Siti, A.A.; Gudum, H.R. Gender differences in body mass index, body weight perception and weight loss strategies among undergraduates in Universiti Malaysia Sarawak. Malays. J. Nutr. 2011, 17, 67–75. [Google Scholar]
- Faheem, M.; Qureshi, S.; Ali, J.; Hameed; Zahoor; Abbas, F.; Gul, A.M.; Hafizullah, M. Does BMI affect cholesterol, sugar, and blood pressure in general population? J. Ayub Med. Coll. Abbottabad JAMC 2010, 22, 74–77. [Google Scholar]
- Chen, L.J.; Fox, K.R.; Haase, A.; Wang, J.M. Obesity, fitness and health in Taiwanese children and adolescents. Eur. J. Clin. Nutr. 2006, 60, 1367–1375. [Google Scholar] [CrossRef] [PubMed]
- Skinner, A.C.; Perrin, E.M.; Moss, L.A.; Skelton, J.A. Cardiometabolic Risks and Severity of Obesity in Children and Young Adults. N. Engl. J. Med. 2015, 373, 1307–1317. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-Y.; Hsu, C.-Y.; Lee, H.-A.; Tinkov, A.A.; Skalny, A.V.; Wang, W.-H.; Chao, J.C.J. Gender difference in the association of dietary patterns and metabolic parameters with obesity in young and middle-aged adults with dyslipidemia and abnormal fasting plasma glucose in Taiwan. Nutr. J. 2019, 18, 75. [Google Scholar] [CrossRef] [PubMed]
- Gillis, E.E.; Sullivan, J.C. Sex Differences in Hypertension: Recent Advances. Hypertension 2016, 68, 1322–1327. [Google Scholar] [CrossRef] [Green Version]
- Caleyachetty, R.; Echouffo-Tcheugui, J.B.; Muennig, P.; Zhu, W.; Muntner, P.; Shimbo, D. Association between cumulative social risk and ideal cardiovascular health in US adults: NHANES 1999–2006. Int. J. Cardiol. 2015, 191, 296–300. [Google Scholar] [CrossRef]
- Machado, L.B.M.; Silva, B.L.S.; Garcia, A.P.; Oliveira, R.A.M.; Barreto, S.M.; Fonseca, M.D.J.M.; Lotufo, P.A.; Bensenor, I.M.; Santos, I.S. Ideal cardiovascular health score at the ELSA-Brasil baseline and its association with sociodemographic characteristics. Int. J. Cardiol. 2018, 254, 333–337. [Google Scholar] [CrossRef]
- Ross, C.E.; Mirowsky, J. Gender and the health benefits of education. Sociol. Q. 2010, 51, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Sobal, J.; Rauschenbach, B.S. Gender, marital status, and body weight in older U.S. adults. Gend. Issues 2003, 21, 75–94. [Google Scholar] [CrossRef]
- Alviar, C.L.; Rockman, C.; Guo, Y.; Adelman, M.; Berger, J. Association of marital status with vascular disease in different arterial territories: A population based study of over 3.5 million subjects. J. Am. Coll. Cardiol. 2014, 63, A1328. [Google Scholar] [CrossRef] [Green Version]
- Ploubidis, G.B.; Silverwood, R.J.; DeStavola, B.; Grundy, E. Life-Course Partnership Status and Biomarkers in Midlife: Evidence From the 1958 British Birth Cohort. Am. J. Public Health 2015, 105, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Ferree, M.M. Filling the Glass: Gender Perspectives on Families. J. Marriage Fam. 2010, 72, 420–439. [Google Scholar] [CrossRef]
- Strohschein, L. Do Men Really Benefit More From Marriage Than Women? Am. J. Public Health 2016, 106, e2. [Google Scholar] [CrossRef]
- Strohschein, L.; McDonough, P.; Monette, G.; Shao, Q. Marital transitions and mental health: Are there gender differences in the short-term effects of marital status change? Soc. Sci. Med. 2005, 61, 2293–2303. [Google Scholar] [CrossRef]
- Dhindsa, D.S.; Khambhati, J.; Schultz, W.M.; Tahhan, A.S.; Quyyumi, A.A. Marital status and outcomes in patients with cardiovascular disease. Trends Cardiovasc. Med. 2020, 30, 215–220. [Google Scholar] [CrossRef]
- Sobal, J.; Hanson, K. Marital status and physical activity in U. S. adults. Int. J. Sociol. Fam. 2010, 36, 181–198. [Google Scholar]
- Budig, M.J.; England, P. The Wage Penalty for Motherhood. Am. Sociol. Rev. 2001, 66, 204–225. [Google Scholar] [CrossRef] [Green Version]
- Marphatia, A.A.; Saville, N.M.; Amable, G.S.; Manandhar, D.S.; Cortina-Borja, M.; Wells, J.C.; Reid, A.M. How Much Education Is Needed to Delay Women’s Age at Marriage and First Pregnancy? Front. Public Health 2020, 7, 396. [Google Scholar] [CrossRef] [Green Version]
- Sobal, J.; Rauschenbach, B.S.; Frongillo, E.A. Marital status, fatness and obesity. Soc. Sci. Med. 1992, 35, 915–923. [Google Scholar] [CrossRef]
- Klos, L.A.; Sobal, J. Marital status and body weight, weight perception, and weight management among U.S. adults. Eat. Behav. 2013, 14, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Ma, X.; Yuan, L.; Ma, J. Age differences in the association between marital status and hypertension: A population-based study. J. Hum. Hypertens. 2021, 36, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Rundek, T.; Wright, C.B.; Anwar, Z.; Elkind, M.S.V.; Sacco, R.L. Ideal Cardiovascular Health Predicts Lower Risks of Myocardial Infarction, Stroke, and Vascular Death Across Whites, Blacks, and Hispanics. Circulation 2012, 125, 2975–2984. [Google Scholar] [CrossRef] [PubMed]
Male (N = 5042) | Female (N= 4958) | ||
---|---|---|---|
Numerical measurements, mean (S.D.) | |||
Age | 26.8 (2.4) | 26.8 (2.4) | p = 0.542 |
BMI | 23.5 (3.6) | 20.5 (3.2) | p < 0.001 |
Total Cholesterol | 181.6 (32.4) | 176.9 (30.0) | p < 0.001 |
Glucose | 95.9 (11.1) | 91.1 (9.1) | p < 0.001 |
Systolic BP | 120.4 (12.9) | 107.3 (11.4) | p < 0.001 |
Diastolic BP | 70.4 (9.3) | 63.6 (8.4) | p < 0.001 |
Categorical measurements, N (%) | |||
Educationa | 4384 (86.9) | 4188 (84.5) | p < 0.001 |
Financeb | 355 (7.0) | 335 (6.8) | p = 0.945 |
Marital status | p < 0.001 | ||
Single | 4028 (79.9) | 3381 (68.2) | |
Married | 850 (16.9) | 1411 (28.5) | |
Ideal CVH metrics | p < 0.001 | ||
0 | 55 (1.1) | 2 (0.0) | |
1 | 295 (5.9) | 33 (0.7) | |
2 | 728 (14.4) | 123 (2.5) | |
3 | 1327 (26.3) | 496 (10.0) | |
4 | 1621 (32.1) | 1589 (32.0) | |
5 | 913 (18.1) | 2514 (50.7) | |
6, 7 | 103 (2.0) | 201 (4.1) | |
Ideal PA | 373 (7.4) | 97 (2.0) | p < 0.001 |
Ideal BMI | 3615 (71.7) | 4569 (92.2) | p < 0.001 |
Ideal Diet | 199 (3.9) | 280 (5.6) | p < 0.001 |
Ideal Smoking | 3294 (65.3) | 4447 (89.7) | p < 0.001 |
Ideal Glucose | 3717 (73.7) | 4517 (91.1) | p < 0.001 |
Ideal Cholesterol | 3746 (74.3) | 3967 (80.0) | p < 0.001 |
Ideal BP | 2458 (48.8) | 4030 (81.3) | p < 0.001 |
Male (N = 5042) | Female (N= 4958) | |||||
---|---|---|---|---|---|---|
Initial | After 5 Years | Initial | After 5 Years | |||
Ideal CVH Metrics, N (%) | p < 0.001 | p < 0.001 | ||||
0 | 55 (1.1) | 104 (2.1) | 2 (0.0) | 6 (0.1) | ||
1 | 295 (5.9) | 495 (9.8) | 33 (0.7) | 63 (1.3) | ||
2 | 728 (14.4) | 937 (18.6) | 123 (2.5) | 210 (4.2) | ||
3 | 1327 (26.3) | 1296 (25.7) | 496 (10.0) | 655 (13.2) | ||
4 | 1621 (32.1) | 1409 (27.9) | 1589 (32.0) | 1668 (33.6) | ||
5 | 913 (18.1) | 720 (14.3) | 2514 (50.7) | 2108 (42.5) | ||
6,7 | 103 (2.0) | 81 (1.6) | 201 (4.1) | 248 (5.0) | ||
Ideal PA | 373 (7.4) | 215 (4.3) | p < 0.001 | 97 (2.0) | 156 (3.1) | p < 0.001 |
Ideal BMI | 3615 (71.7) | 3118 (61.8) | p < 0.001 | 4569 (92.2) | 4331 (87.4) | p < 0.001 |
Ideal Diet | 199 (3.9) | 308 (6.1) | p < 0.001 | 280 (5.6) | 379 (7.6) | p < 0.001 |
Ideal Smoking | 3294 (65.3) | 3305 (65.5) | p = 0.818 | 4447 (89.7) | 4492 (90.6) | p = 0.129 |
Ideal Glucose | 3717 (73.7) | 3176 (63.0) | p < 0.001 | 4517 (91.1) | 4182 (84.3) | p < 0.001 |
Ideal Cholesterol | 3746 (74.3) | 3168 (62.8) | p < 0.001 | 3967 (80.0) | 3628 (73.2) | p < 0.001 |
Ideal BP | 2458 (48.8) | 2692 (53.4) | p <0.001 | 4030 (81.3) | 3988 (80.4) | p = 0.284 |
Male | Female | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Less than a University Education (N = 627) | More than a University Education (N = 4384) | Less than a University Education (N = 735) | More than a University Education (N = 4188) | ||||||||||
Initial | After 5 Years | p | Initial | After 5 Years | p | Initial | After 5 Years | p | Initial | After 5 Years | p | ||
Ideal CVH metrics | 0.021 | <0.001 | 0.009 | <0.001 | |||||||||
CVH score | 0 | 13 (2.1) | 20 (3.2) | 42 (1.0) | 84 (1.9) | 1 (0.1) | 5 (0.7) | 1 (0.0) | 1 (0.0) | ||||
1 | 49 (7.8) | 71 (11.3) | 246 (5.6) | 421 (9.6) | 8 (1.1) | 19 (2.6) | 25 (0.6) | 44 (1.1) | |||||
2 | 105 (16.7) | 134 (21.4) | 619 (14.1) | 800 (18.2) | 27 (3.7) | 46 (6.3) | 94 (2.2) | 162 (3.9) | |||||
3 | 177 (28.2) | 158 (25.2) | 1144 (26.1) | 1132 (25.8) | 110 (15.0) | 130 (17.7) | 382 (9.1) | 520 (12.4) | |||||
4 | 196 (31.3) | 181 (28.9) | 1415 (32.3) | 1220 (27.8) | 276 (37.6) | 238 (32.4) | 1301 (31.1) | 1419 (33.9) | |||||
5 | 79 (12.6) | 59 (9.4) | 823 (18.8) | 650 (14.8) | 287 (39.0) | 271 (36.9) | 2211 (52.8) | 1821 (43.5) | |||||
6,7 | 8 (1.3) | 4 (0.6) | 95 (2.2) | 77 (1.8) | 26 (3.5) | 26 (3.5) | 174 (4.2) | 221 (5.3) | |||||
Ideal PA | 40 (6.4) | 36 (5.7) | 0.636 | 330 (7.5) | 176 (4.0) | <0.001 | 15 (2.0) | 34 (4.6) | 0.006 | 82 (2.0) | 120 (2.9) | 0.007 | |
Ideal BMI | 471 (75.1) | 406 (64.8) | 0.001 | 3119 (71.1) | 2688 (61.3) | <0.001 | 651 (88.6) | 618 (84.1) | 0.012 | 3890 (92.9) | 3684 (88.0) | <0.001 | |
Ideal Diet | 21 (3.3) | 28 (4.5) | 0.308 | 177 (4.0) | 278 (6.3) | <0.001 | 44 (6.0) | 44 (6.0) | 1.000 | 235 (5.6) | 333 (8.0) | <0.001 | |
Ideal Smoking | 246 (39.2) | 255 (40.7) | 0.604 | 3021 (68.9) | 3028 (69.1) | 0.872 | 541 (73.6) | 558 (75.9) | 0.307 | 3875 (92.5) | 3903 (93.2) | 0.235 | |
Ideal Glucose | 458 (73.0) | 385 (61.4) | <0.001 | 3237 (73.8) | 2767 (63.1) | <0.001 | 641 (87.2) | 580 (78.9) | <0.001 | 3845 (91.8) | 3571 (85.3) | <0.001 | |
Ideal Chol | 463 (73.8) | 404 (64.4) | <0.001 | 3257 (74.3) | 2743 (62.6) | <0.001 | 603 (82.0) | 546 (74.3) | <0.001 | 3339 (79.7) | 3059 (73.0) | <0.001 | |
Ideal BP | 318 (50.7) | 342 (54.5) | 0.175 | 2123 (48.4) | 2332 (53.2) | <0.001 | 592 (80.5) | 585 (79.6) | 0.648 | 3404 (81.3) | 3372 (80.5) | 0.374 |
Male | Female | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Single (N = 4028) | Married (N = 850) | Single (N = 3381) | Married (N = 1411) | ||||||||||
Initial | After 5 Years | p | Initial | After 5 Years | p | Initial | After 5 Years | p | Initial | After 5 Years | p | ||
Ideal CVH metrics | <0.001 | 0.001 | <0.001 | <0.001 | |||||||||
CVH score | 0 | 28 (0.7) | 72 (1.8) | 24 (2.8) | 26 (3.1) | 1 (0.0) | 3 (0.1) | 1 (0.1) | 3 (0.2) | ||||
1 | 223 (5.5) | 359 (8.9) | 64 (7.5) | 121 (14.2) | 25 (0.7) | 49 (1.4) | 7 (0.5) | 13 (0.9) | |||||
2 | 543 (13.5) | 740 (18.4) | 164 (19.3) | 172 (20.2) | 87 (2.6) | 145 (4.3) | 32 (2.3) | 59 (4.2) | |||||
3 | 1054 (26.2) | 1042 (25.9) | 227 (26.7) | 212 (24.9) | 329 (9.7) | 425 (12.6) | 148 (10.5) | 200 (14.2) | |||||
4 | 1329 (33.0) | 1147 (28.5) | 239 (28.1) | 208 (24.5) | 1061 (31.4) | 1174 (34.7) | 471 (33.4) | 433 (30.7) | |||||
5 | 760 (18.9) | 600 (14.9) | 120 (14.1) | 98 (11.5) | 1748 (51.7) | 1428 (42.2) | 685 (48.5) | 621 (44.0) | |||||
6,7 | 91 (2.3) | 68 (1.7) | 12 (1.4) | 13 (1.5) | 130 (3.8) | 157 (4.6) | 67 (4.7) | 82 (5.8) | |||||
Ideal PA | 311 (7.7) | 160 (4.0) | <0.001 | 50 (5.9) | 45 (5.3) | 0.598 | 70 (2.1) | 94 (2.8) | 0.058 | 25 (1.8) | 56 (4.0) | <0.001 | |
Ideal BMI | 2973 (73.8) | 2531 (62.8) | <0.001 | 526 (61.9) | 483 (56.8) | 0.034 | 3131 (92.6) | 2955 (87.4) | <0.001 | 1288 (91.3) | 1235 (87.5) | 0.001 | |
Ideal Diet | 156 (3.9) | 245 (6.1) | <0.001 | 37 (4.4) | 54 (6.4) | 0.067 | 166 (4.9) | 250 (7.4) | <0.001 | 108 (7.7) | 120 (8.5) | 0.407 | |
Ideal Smoking | 2696 (66.9) | 2707 (67.2) | 0.794 | 486 (57.2) | 497 (58.5) | 0.589 | 3034 (89.7) | 3059 (90.5) | 0.309 | 1271 (90.1) | 1291 (91.5) | 0.193 | |
Ideal Glucose | 2997 (74.4) | 2573 (63.9) | <0.001 | 596 (70.1) | 495 (58.2) | <0.001 | 3110 (92.0) | 2878 (85.1) | <0.001 | 1255 (88.9) | 1157 (82.0) | <0.001 | |
Ideal Chol | 3048 (75.7) | 2563 (63.6) | <0.001 | 577 (67.9) | 503 (59.2) | <0.001 | 2701 (79.9) | 2457 (72.7) | <0.001 | 1138 (80.7) | 1061 (75.2) | <0.001 | |
Ideal BP | 1955 (48.5) | 2185 (54.2) | <0.001 | 429 (50.5) | 424 (49.9) | 0.808 | 2742 (81.1) | 2703 (79.9) | 0.231 | 1145 (81.1) | 1144 (81.1) | 0.962 |
Predictors | B | S.E. | Wald | dF | p Value | Odds Ratio | ||
---|---|---|---|---|---|---|---|---|
Male | Education level a | CVH score ≥4 c | 0.312 | 0.089 | 12.341 | 1 | <0.001 | 1.366 |
Age | 0.168 | 0.017 | 96.620 | 1 | <0.001 | 1.183 | ||
Marital status b | CVH score ≥4 c | −0.132 | 0.083 | 2.537 | 1 | 0.111 | 0.876 | |
Age | 0.517 | 0.025 | 444.421 | 1 | <0.001 | 1.677 | ||
Female | Education level a | CVH score ≥4 c | 0.567 | 0.093 | 37.592 | 1 | <0.001 | 1.763 |
Age | −0.045 | 0.017 | 7.096 | 1 | 0.008 | 0.956 | ||
Marital status b | CVH score ≥4 c | 0.014 | 0.087 | 0.024 | 1 | 0.877 | 1.014 | |
Age | 0.438 | 0.018 | 588.483 | 1 | <0.001 | 1.549 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, P.-J.; Kuo, P.-H.; Chen, W.-L.; Kao, T.-W.; Wu, L.-W.; Yang, H.-F.; Peng, T.-C. Prevalence of Ideal Cardiovascular Health Metrics among Young Asian Adults over 5 Years of Follow-Up. Nutrients 2023, 15, 645. https://doi.org/10.3390/nu15030645
Fang P-J, Kuo P-H, Chen W-L, Kao T-W, Wu L-W, Yang H-F, Peng T-C. Prevalence of Ideal Cardiovascular Health Metrics among Young Asian Adults over 5 Years of Follow-Up. Nutrients. 2023; 15(3):645. https://doi.org/10.3390/nu15030645
Chicago/Turabian StyleFang, Pu-Jun, Ping-Hsuan Kuo, Wei-Liang Chen, Tung-Wei Kao, Li-Wei Wu, Hui-Fang Yang, and Tao-Chun Peng. 2023. "Prevalence of Ideal Cardiovascular Health Metrics among Young Asian Adults over 5 Years of Follow-Up" Nutrients 15, no. 3: 645. https://doi.org/10.3390/nu15030645
APA StyleFang, P. -J., Kuo, P. -H., Chen, W. -L., Kao, T. -W., Wu, L. -W., Yang, H. -F., & Peng, T. -C. (2023). Prevalence of Ideal Cardiovascular Health Metrics among Young Asian Adults over 5 Years of Follow-Up. Nutrients, 15(3), 645. https://doi.org/10.3390/nu15030645