Urinary Risk Profile, Impact of Diet, and Risk of Calcium Oxalate Urolithiasis in Idiopathic Uric Acid Stone Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Procedure
2.3. [13C2] Oxalate Absorption Test
2.4. Urinary Parameters
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Urine Composition
3.3. Nutrient Intake
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daudon, M.; Doré, J.-C.; Jungers, P.; Lacour, B. Changes in Stone Composition According to Age and Gender of Patients: A Multivariate Epidemiological Approach. Urol. Res. 2004, 32, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Lieske, J.C.; Rule, A.D.; Krambeck, A.E.; Williams, J.C.; Bergstralh, E.J.; Mehta, R.A.; Moyer, T.P. Stone Composition as a Function of Age and Sex. Clin. J. Am. Soc. Nephrol. 2014, 9, 2141–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siener, R.; Herwig, H.; Rüdy, J.; Schaefer, R.M.; Lossin, P.; Hesse, A. Urinary Stone Composition in Germany: Results from 45,783 Stone Analyses. World J. Urol. 2022, 40, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Enders, F.T.; Vaughan, L.E.; Bergstralh, E.J.; Knoedler, J.J.; Krambeck, A.E.; Lieske, J.C.; Rule, A.D. Stone Composition Among First-Time Symptomatic Kidney Stone Formers in the Community. Mayo Clin. Proc. 2015, 90, 1356–1365. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-C.; Chien, T.-M.; Wu, W.-J.; Huang, C.-N.; Chou, Y.-H. Uric Acid Stones Increase the Risk of Chronic Kidney Disease. Urolithiasis 2018, 46, 543–547. [Google Scholar] [CrossRef]
- Riese, R.J.; Sakhaee, K. Uric Acid Nephrolithiasis: Pathogenesis and Treatment. J. Urol. 1992, 148, 765–771. [Google Scholar] [CrossRef]
- Hesse, A.; Tiselius, H.-G.; Siener, R.; Hoppe, B. Urinary Stones: Diagnosis, Treatment and Prevention of Recurrence, 3rd revised and enlarged ed.; Karger: Basel, Switzerland, 2009; ISBN 978-3-8055-9149-2. [Google Scholar]
- Sakhaee, K. Epidemiology and Clinical Pathophysiology of Uric Acid Kidney Stones. J. Nephrol. 2014, 27, 241–245. [Google Scholar] [CrossRef]
- Tran, T.V.M.; Maalouf, N.M. Uric Acid Stone Disease: Lessons from Recent Human Physiologic Studies. Curr. Opin. Nephrol. Hypertens. 2020, 29, 407–413. [Google Scholar] [CrossRef]
- Sakhaee, K.; Adams-Huet, B.; Moe, O.W.; Pak, C.Y.C. Pathophysiologic Basis for Normouricosuric Uric Acid Nephrolithiasis. Kidney Int. 2002, 62, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Griebsch, A.; Zöllner, N. Effect of Ribomononucleotides Given Orally on Uric Acid Production in Man. Adv. Exp. Med. Biol. 1974, 41, 443–449. [Google Scholar] [CrossRef]
- Lonsdale, K. Human Stones: Limited Studies Give Some Details of Composition, Rates of Growth, Distribution, and Possible Causes. Science 1968, 159, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Coe, F.L.; Kavalach, A.G. Hypercalciuria and Hyperuricosuria in Patients with Calcium Nephrolithiasis. N. Engl. J. Med. 1974, 291, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Grases, F.; Sanchis, P.; Isern, B.; Perelló, J.; Costa-Bauzá, A. Uric Acid as Inducer of Calcium Oxalate Crystal Development. Scand. J. Urol. Nephrol. 2007, 41, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.A.; Maalouf, N.M.; Adams-Huet, B.; Moe, O.W.; Sakhaee, K. Urine Composition in Type 2 Diabetes: Predisposition to Uric Acid Nephrolithiasis. J. Am. Soc. Nephrol. 2006, 17, 1422–1428. [Google Scholar] [CrossRef] [Green Version]
- Ekeruo, W.O.; Tan, Y.H.; Young, M.D.; Dahm, P.; Maloney, M.E.; Mathias, B.J.; Albala, D.M.; Preminger, G.M. Metabolic Risk Factors and the Impact of Medical Therapy on the Management of Nephrolithiasis in Obese Patients. J. Urol. 2004, 172, 159–163. [Google Scholar] [CrossRef]
- Daudon, M.; Traxer, O.; Conort, P.; Lacour, B.; Jungers, P. Type 2 Diabetes Increases the Risk for Uric Acid Stones. J. Am. Soc. Nephrol. 2006, 17, 2026–2033. [Google Scholar] [CrossRef] [Green Version]
- Patel, N.D.; Ward, R.D.; Calle, J.; Remer, E.M.; Monga, M. Computerized Tomography Based Diagnosis of Visceral Obesity and Hepatic Steatosis is Associated with Low Urine pH. J. Urol. 2017, 198, 1085–1090. [Google Scholar] [CrossRef]
- Ding, Q.; Ouyang, J.; Fan, B.; Cao, C.; Fan, Z.; Ding, L.; Li, F.; Tu, W.; Jin, X.; Wang, J.; et al. Association between Dyslipidemia and Nephrolithiasis Risk in a Chinese Population. Urol. Int. 2019, 103, 156–165. [Google Scholar] [CrossRef]
- Trinchieri, A.; Croppi, E.; Simonelli, G.; Sciorio, C.; Montanari, E. Anthropometric Variables, Physical Activity and Dietary Intakes of Patients with Uric Acid Nephrolithiasis. Urolithiasis 2020, 48, 123–129. [Google Scholar] [CrossRef]
- Hönow, R.; Hesse, A. Comparison of Extraction Methods for the Determination of Soluble and Total Oxalate in Foods by HPLC-Enzyme-Reactor. Food Chem. 2002, 78, 511–521. [Google Scholar] [CrossRef]
- Siener, R.; Hönow, R.; Seidler, A.; Voss, S.; Hesse, A. Oxalate Contents of Species of the Polygonaceae, Amaranthaceae and Chenopodiaceae Families. Food Chem. 2006, 98, 220–224. [Google Scholar] [CrossRef]
- Siener, R. Nutrition and Kidney Stone Disease. Nutrients 2021, 13, 1917. [Google Scholar] [CrossRef]
- von Unruh, G.E.; Voss, S.; Sauerbruch, T.; Hesse, A. Reference Range for Gastrointestinal Oxalate Absorption Measured with a Standardized [13C2]Oxalate Absorption Test. J. Urol. 2003, 169, 687–690. [Google Scholar] [CrossRef]
- Voss, S.; Hesse, A.; Zimmermann, D.J.; Sauerbruch, T.; von Unruh, G.E. Intestinal Oxalate Absorption Is Higher in Idiopathic Calcium Oxalate Stone Formers than in Healthy Controls: Measurements with the [13C2]Oxalate Absorption Test. J. Urol. 2006, 175, 1711–1715. [Google Scholar] [CrossRef] [PubMed]
- Tiselius, H.-G. A Simplified Estimate of the Ion-Activity Product of Calcium Phosphate in Urine. Eur. Urol. 1984, 10, 191–195. [Google Scholar] [CrossRef]
- Tiselius, H.-G. Medical Evaluation of Nephrolithiasis. Endocrinol. Metab. Clin. N. Am. 2002, 31, 1031–1050. [Google Scholar] [CrossRef]
- Werness, P.G.; Brown, C.M.; Smith, L.H.; Finlayson, B. EQUIL2: A BASIC Computer Program for the Calculation of Urinary Saturation. J. Urol. 1985, 134, 1242–1244. [Google Scholar] [CrossRef]
- Chen, H.-W.; Chen, Y.-C.; Yang, F.M.; Wu, W.-J.; Li, C.-C.; Chang, Y.-Y.; Chou, Y.-H. Mediators of the Effects of Gender on Uric Acid Nephrolithiasis: A Novel Application of Structural Equation Modeling. Sci. Rep. 2018, 8, 6077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menezes, C.J.; Worcester, E.M.; Coe, F.L.; Asplin, J.; Bergsland, K.J.; Ko, B. Mechanisms for Falling Urine pH with Age in Stone Formers. Am. J. Physiol. Renal Physiol. 2019, 317, F65–F72. [Google Scholar] [CrossRef] [PubMed]
- Breslau, N.A.; Brinkley, L.; Hill, K.D.; Pak, C.Y.C. Relationship of Animal Protein-Rich Diet to Kidney Stone Formation and Calcium Metabolism. J. Clin. Endocrinol. Metab. 1988, 66, 140–146. [Google Scholar] [CrossRef]
- Reddy, S.T.; Wang, C.-Y.; Sakhaee, K.; Brinkley, L.; Pak, C.Y.C. Effect of Low-Carbohydrate High-Protein Diets on Acid-Base Balance, Stone-Forming Propensity, and Calcium Metabolism. Am. J. Kidney Dis. 2002, 40, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Hesse, A. The Effect of a Vegetarian and Different Omnivorous Diets on Urinary Risk Factors for Uric Acid Stone Formation. Eur. J. Nutr. 2003, 42, 332–337. [Google Scholar] [CrossRef]
- Khatchadourian, J.; Preminger, G.M.; Whitson, P.A.; Adams-Huet, B.; Pak, C.Y.C. Clinical and Biochemical Presentation of Gouty Diathesis: Comparison of Uric Acid versus Pure Calcium Stone Formation. J. Urol. 1995, 154, 1665–1669. [Google Scholar] [CrossRef]
- Pak, C.Y.C.; Sakhaee, K.; Peterson, R.D.; Poindexter, J.R.; Frawley, W.H. Biochemical Profile of Idiopathic Uric Acid Nephrolithiasis. Kidney Int. 2001, 60, 757–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobulescu, I.A.; Maalouf, N.M.; Capolongo, G.; Adams-Huet, B.; Rosenthal, T.R.; Moe, O.W.; Sakhaee, K. Renal Ammonium Excretion after an Acute Acid Load: Blunted Response in Uric Acid Stone Formers but Not in Patients with Type 2 Diabetes. Am. J. Physiol. Renal Physiol. 2013, 305, F1498–F1503. [Google Scholar] [CrossRef] [Green Version]
- Adomako, E.; Moe, O.W. Uric Acid and Urate in Urolithiasis: The Innocent Bystander, Instigator, and Perpetrator. Semin. Nephrol. 2020, 40, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Bobulescu, I.A.; Park, S.K.; Xu, L.H.R.; Blanco, F.; Poindexter, J.; Adams-Huet, B.; Davidson, T.L.; Sakhaee, K.; Maalouf, N.M.; Moe, O.W. Net Acid Excretion and Urinary Organic Anions in Idiopathic Uric Acid Nephrolithiasis. Clin. J. Am. Soc. Nephrol. 2019, 14, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Ramos, G.K.; Goldfarb, D.S. Update on Uric Acid and the Kidney. Curr. Rheumatol. Rep. 2022, 24, 132–138. [Google Scholar] [CrossRef]
- Abate, N.; Chandalia, M.; Cabo-Chan, A.V.; Moe, O.W.; Sakhaee, K. The Metabolic Syndrome and Uric Acid Nephrolithiasis: Novel Features of Renal Manifestation of Insulin Resistance. Kidney Int. 2004, 65, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Maalouf, N.M.; Cameron, M.A.; Moe, O.W.; Adams-Huet, B.; Sakhaee, K. Low Urine pH: A Novel Feature of the Metabolic Syndrome. Clin. J. Am. Soc. Nephrol. 2007, 2, 883–888. [Google Scholar] [CrossRef]
- Maalouf, N.M. Metabolic Syndrome and the Genesis of Uric Acid Stones. J. Ren. Nutr. 2011, 21, 128–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siener, R.; Metzner, C. Dietary Weight Loss Strategies for Kidney Stone Patients. World J. Urol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Ernsten, C.; Bitterlich, N.; Alteheld, B.; Metzner, C. Effect of Two Different Dietary Weight Loss Strategies on Risk Factors for Urinary Stone Formation and Cardiometabolic Risk Profile in Overweight Women. Nutrients 2022, 14, 5054. [Google Scholar] [CrossRef]
- Siener, R.; Hesse, A. Fluid Intake and Epidemiology of Urolithiasis. Eur. J. Clin. Nutr. 2003, 57 (Suppl. S2), S47–S51. [Google Scholar] [CrossRef] [Green Version]
- Siener, R. Can the Manipulation of Urinary pH by Beverages Assist with the Prevention of Stone Recurrence? Urolithiasis 2016, 44, 51–56. [Google Scholar] [CrossRef]
- Keßler, T.; Hesse, A. Cross-over study of the influence of bicarbonate-rich mineral water on urinary composition in comparison with sodium potassium citrate in healthy male subjects. Brit. J. Nutr. 2000, 84, 865–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cameron, M.A.; Sakhaee, K. Uric Acid Nephrolithiasis. Urol. Clin. N. Am. 2007, 34, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, A.; Montanari, E. Biochemical and Dietary Factors of Uric Acid Stone Formation. Urolithiasis 2018, 46, 167–172. [Google Scholar] [CrossRef]
Mean ± SD n (%) | |
---|---|
Number of patients | 20 |
Gender (men/women) | 17/3 |
Age (years) | 55.2 ± 12.8 |
BMI (kg/m2) a | 29.9 ± 3.7 |
BMI 18.5–24.9 kg/m2 a | 2/19 (11%) |
BMI 25.0–29.9 kg/m2 a | 9/19 (47%) |
BMI 30.0–34.9 kg/m2 a | 8/19 (42%) |
Systolic BP (mm Hg) | 124 ± 12 |
Diastolic BP (mm Hg) | 76 ± 5 |
[13C2]oxalate absorption (%) b | 6.8 ± 2.8 |
Type 2 diabetes | 4/20 (20%) |
Hypertension | 10/20 (50%) |
Hyperuricemia (n) c | 8/20 (40%) |
Family history of stones (n) | 5/15 (33%) |
Usual Diet n = 20 Mean ± SD | Balanced Diet n = 20 Mean ± SD | p Value | |
---|---|---|---|
Volume (L/24 h) | 1.884 ± 0.736 | 2.322 ± 0.803 | 0.015 |
Urinary pH | 5.53 ± 0.40 | 5.87 ± 0.46 | 0.003 |
Density (g/cm3) | 1.013 ± 0.005 | 1.006 ± 0.004 | <0.001 |
Sodium (mmol/24 h) | 188 ± 86 | 99 ± 40 | <0.001 |
Potassium (mmol/24 h) | 57 ± 22 | 58 ± 22 | 0.834 |
Calcium (mmol/24 h) | 5.00 ± 3.00 | 3.28 ± 1.54 | 0.005 |
Magnesium (mmol/24 h) | 4.58 ± 2.61 | 4.95 ± 2.14 | 0.199 |
Ammonium (mmol/24 h) | 26.8 ± 13.0 | 21.4 ± 10.7 | 0.121 |
Chloride (mmol/24 h) | 192 ± 87 | 103 ± 39 | <0.001 |
Phosphate (mmol/24 h) | 33.9 ± 11.7 | 27.2 ± 6.6 | 0.016 |
Sulfate (mmol/24 h) | 24.5 ± 8.3 | 17.8 ± 3.2 | <0.001 |
Creatinine (mmol/24 h) | 16.2 ± 4.6 | 14.5 ± 3.3 | 0.058 |
Uric acid (mmol/24 h) | 3.62 ± 1.22 | 3.22 ± 0.86 | 0.177 |
Oxalate (mmol/24 h) | 0.415 ± 0.137 | 0.310 ± 0.079 | 0.001 |
Citrate (mmol/24 h) | 3.016 ± 2.478 | 3.513 ± 1.943 | 0.165 |
AP Brushite index | 3.15 ± 3.79 | 1.73 ± 2.53 | 0.006 |
AP Struvite index | 0.67 ± 1.73 | 1.82 ± 5.28 | 0.105 |
AP Calcium oxalate index | 1.26 ± 0.81 | 0.54 ± 0.42 | <0.001 |
AP Uric acid (×10−9) | 2.48 ± 1.49 | 1.24 ± 0.98 | 0.001 |
RS Brushite | 0.461 ± 0.507 | 0.371 ± 0.489 | 0.202 |
RS Struvite | 0.011 ± 0.024 | 0.028 ± 0.085 | 0.349 |
RS Calcium oxalate | 6.236 ± 4.214 | 3.309 ± 2.918 | <0.001 |
RS Uric acid | 3.435 ± 1.958 | 1.821 ± 1.362 | 0.001 |
Reference Range | Usual Diet n (%) | Balanced Diet n (%) | |
---|---|---|---|
Volume (L/24 h) | <2.000 | 10 (50%) | 7 (35%) |
≥2.000 | 10 (50%) | 13 (65%) | |
Urinary pH | <5.40 | 8 (40%) | 2 (10%) |
5.40–5.79 | 9 (45%) | 10 (50%) | |
≥5.80 | 3 (15%) | 8 (40%) | |
Uric acid (mmol/24 h) | <4.0 | 12 (60%) | 17 (85%) |
≥4.0 | 8 (40%) | 3 (15%) | |
Calcium (mmol/24 h) | <5.0 | 12 (60%) | 17 (85%) |
5.0–7.9 | 5 (25%) | 3 (15%) | |
≥8.0 | 3 (15%) | – | |
Oxalate (mmol/24 h) | <0.500 | 15 (75%) | 20 (100%) |
≥0.500 | 5 (25%) | – | |
Citrate (mmol/24 h) | <2.500 | 10 (50%) | 6 (30%) |
≥2.500 | 10 (50%) | 14 (70%) |
Usual Diet n = 20 Mean ± SD | Balanced Diet n = 20 Mean | p Value | |
---|---|---|---|
Energy (kcal/day) | 2391 ± 516 | 2355 | 0.952 |
Protein (g/day) | 101 ± 25 | 71 | 0.001 |
Carbohydrates (g/day) | 242 ± 66 | 327 | 0.001 |
Fat (g/day) | 102 ± 28 | 81 | 0.017 |
Methionine (mg/day) | 2199 ± 585 | 1415 | <0.001 |
Cystine (mg/day) | 1311 ± 337 | 835 | <0.001 |
Cholesterol (mg/day) | 459 ± 156 | 195 | <0.001 |
Fiber (g/day) | 20.3 ± 5.5 | 31.0 | <0.001 |
Sodium (mg/day) a | 4337 ± 1821 | 2300 | 0.001 |
Potassium (mg/day) | 2867 ± 536 | 3390 | 0.007 |
Calcium (mg/day) | 974 ± 239 | 977 | 0.952 |
Oxalate (mg/day) | 146 ± 45 | 121 | 0.078 |
Purines (mg/day) | 579 ± 147 | 449 | 0.005 |
Alcohol (g/day) | 11.3 ± 20.4 | 0 | 0.001 |
Water (mL/day) | 2912 ± 837 | 3437 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siener, R.; Löhr, P.; Hesse, A. Urinary Risk Profile, Impact of Diet, and Risk of Calcium Oxalate Urolithiasis in Idiopathic Uric Acid Stone Disease. Nutrients 2023, 15, 572. https://doi.org/10.3390/nu15030572
Siener R, Löhr P, Hesse A. Urinary Risk Profile, Impact of Diet, and Risk of Calcium Oxalate Urolithiasis in Idiopathic Uric Acid Stone Disease. Nutrients. 2023; 15(3):572. https://doi.org/10.3390/nu15030572
Chicago/Turabian StyleSiener, Roswitha, Patricia Löhr, and Albrecht Hesse. 2023. "Urinary Risk Profile, Impact of Diet, and Risk of Calcium Oxalate Urolithiasis in Idiopathic Uric Acid Stone Disease" Nutrients 15, no. 3: 572. https://doi.org/10.3390/nu15030572
APA StyleSiener, R., Löhr, P., & Hesse, A. (2023). Urinary Risk Profile, Impact of Diet, and Risk of Calcium Oxalate Urolithiasis in Idiopathic Uric Acid Stone Disease. Nutrients, 15(3), 572. https://doi.org/10.3390/nu15030572