Nutritional Care in Children with Cystic Fibrosis
Abstract
:1. Introduction
2. Pathogenesis of Malnutrition in Cystic Fibrosis
3. Nutritional Assessment in Cystic Fibrosis
3.1. Growth Parameters
3.2. Laboratory Tests and Other Measures
4. Energy Requirements
5. Macronutrients: Fats, Proteins, Carbohydrates in the Diet of Patients with Cystic Fibrosis
- -
- Individualized carbohydrate intake that is monitored for glycemic control;
- -
- A higher than standard intake of calories and protein;
- -
- A high fat diet, as needed, for weight maintenance and for the compensation of essential fatty acids;
- -
- A limited use of artificial sweeteners due to the need for adequate calories.
6. Fat-Soluble Vitamins
6.1. Vitamin A
6.2. Vitamin D
6.3. Vitamin K
6.4. Vitamin E
7. Electrolytes and Minerals
7.1. Sodium
7.2. Iron
7.3. Calcium
7.4. Zinc
8. Pancreatic Enzyme Replacement Therapy
9. Intensified Feeding Intervention
- -
- A BMI percentile between the 10th and 50th percentile; or
- -
- Weight loss in the previous 2 to 4 months; or
- -
- No weight gain in the last 2 months.
- -
- Metabolic issues or factors that increase the energy expenditure: recurrent or chronic pulmonary infections or exacerbations, impaired glucose tolerance, salt depletion, zinc deficiency, periods of rapid growth;
- -
- Factors that contribute to malnutrition: problems with doses or adherence to the PERT administration, the need of PPI therapy;
- -
- Factors that decrease the energy intake: gastro-esophageal reflux disease, constipation, celiac or Crohn’s disease, poor appetite and depression.
- -
- Modification in diet in order to improve the caloric intake;
- -
- Control of malabsorption and exclusion of other issues (GERD, CFRLD, other GI diseases);
- -
- Optimal respiratory care;
- -
- Psychologist support.
9.1. Oral Nutritional Supplementation
9.2. Enteral Nutrition
9.3. Parenteral Nutrition
10. New Therapies and Future Trajectories
10.1. CFTR Modulators
10.2. CFTR Modulators and Impact on the Microbiome
10.3. New Therapies Ongoing: Gene Therapy
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houwen, R.H.J.; van der Woerd, W.L.; Slae, M.; Wilschanski, M. Effects of new and emerging therapies on gastrointestinal outcomes in cystic fibrosis. Curr. Opin. Pulm. Med. 2017, 23, 551–555. [Google Scholar] [CrossRef]
- Hoen, A.G.; Li, J.; Moulton, L.A.; O’Toole, G.A.; Housman, M.L.; Koestler, D.C.; Guill, M.F.; Moore, J.H.; Hibberd, P.L.; Morrison, H.G.; et al. Associations between Gut Microbial Colonization in Early Life and Respiratory Outcomes in Cystic Fibrosis. J. Pediatr. 2015, 167, 138–147.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Biervliet, S.; Hauser, B.; Verhulst, S.; Stepman, H.; Delanghe, J.; Warzee, J.-P.; Pot, B.; Vandewiele, T.; Wilschanski, M. Probiotics in cystic fibrosis patients: A double blind crossover placebo controlled study: Pilot study from the ESPGHAN Working Group on Pancreas/CF. Clin. Nutr. ESPEN 2018, 27, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, B.W.; Davies, J.; McElvaney, N.G.; Tullis, E.; Bell, S.C.; Dřevínek, P.; Griese, M.; McKone, E.F.; Wainwright, C.E.; Konstan, M.W.; et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 2011, 365, 1663–1672. [Google Scholar] [CrossRef] [Green Version]
- Rafeeq, M.M.; Murad, H.A.S. Cystic fibrosis: Current therapeutic targets and future approaches. J. Transl. Med. 2017, 15, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelfond, D.; Borowitz, D. Gastrointestinal complications of cystic fibrosis. Clin. Gastroenterol. Hepatol. 2013, 11, 333–342, quiz e30–e31. [Google Scholar] [CrossRef]
- Uc, A.; Fishman, D.S. Pancreatic Disorders. Pediatr. Clin. N. Am. 2017, 64, 685–706. [Google Scholar] [CrossRef]
- Schindler, T.; Michel, S.; Wilson, A.W.M. Nutrition Management of Cystic Fibrosis in the 21st Century. Nutr. Clin. Pract. 2015, 30, 488–500. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Somerset, S. Digestive system dysfunction in cystic fibrosis: Challenges for nutrition therapy. Dig. Liver Dis. 2014, 46, 865–874. [Google Scholar] [CrossRef]
- Turck, D.; Braegger, C.P.; Colombo, C.; Declercq, D.; Morton, A.; Pancheva, R.; Robberecht, E.; Stern, M.; Strandvik, B.; Wolfe, S.; et al. ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin. Nutr. 2016, 35, 557–577. [Google Scholar] [CrossRef]
- Solomon, M.; Bozic, M.; Mascarenhas, M.R. Nutritional Issues in Cystic Fibrosis. Clin. Chest Med. 2016, 37, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Mauch, R.M.; Kmit, A.H.P.; de Lima Marson, F.A.; Levy, C.E.; de Azevedo Barros-Filho, A.; Ribeiro, J.D. Association of growth and nutritional parameters with pulmonary function in cystic fibrosis: A literature review. Rev. Paul. Pediatr. 2016, 34, 503–509. [Google Scholar] [PubMed]
- Collins, S. Nutritional management of cystic fibrosis—An update for the 21st century. Paediatr. Respir. Rev. 2018, 26, 4–6. [Google Scholar] [CrossRef]
- Wolfe, S.P.; Collins, C. The changing face of nutrition in cystic fibrosis. J. Cyst. Fibros. 2017, 16, 436–438. [Google Scholar] [CrossRef]
- Farrell, P.M.; Kosorok, M.R.; Rock, M.J.; Laxova, A.; Zeng, L.; Lai, H.-C.; Hoffman, G.; Laessig, R.H.; Splaingard, M.L.; the Wisconsin Cystic Fibrosis Neonatal Screening Study Group. Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Wisconsin Cystic Fibrosis Neonatal Screening Study Group. Pediatrics 2001, 107, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gaskin, K.; Gurwitz, D.; Durie, P.; Corey, M.; Levison, H.; Forstner, G. Improved respiratory prognosis in patients with cystic fibrosis with normal fat absorption. J. Pediatr. 1982, 100, 857–862. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, R.; Rüdeberg, A.; Hadorn, B.; Rossi, E. Relative underweight in cystic fibrosis and its prognostic value. Acta Paediatr Scand. 1978, 67, 33–37. [Google Scholar] [CrossRef]
- de Miranda Chaves, C.R.M.; de Britto, J.A.A.; de Oliveira, C.Q.; Gomes, M.M.; da Cunha, A.L.P. Association between nutritional status measurements and pulmonary function in children and adolescents with cystic fibrosis. J. Bras. Pneumol. 2009, 35, 409–414. [Google Scholar]
- Konstan, M.W.; Butler, S.M.; Wohl, M.E.B.; Stoddard, M.; Matousek, R.; Wagener, J.S.; Johnson, C.A.; Morgan, W.J. Growth and nutritional indexes in early life predict pulmonary function in cystic fibrosis. J. Pediatr. 2003, 142, 624–630. [Google Scholar] [CrossRef]
- Sanders, D.B.; Fink, A.; Mayer-Hamblett, N.; Schechter, M.S.; Sawicki, G.S.; Rosenfeld, M.; Flume, P.A.; Morgan, W.J. Early Life Growth Trajectories in Cystic Fibrosis are Associated with Pulmonary Function at Age 6 Years. J. Pediatr. 2015, 167, 1081–1088.e1. [Google Scholar] [CrossRef] [Green Version]
- Yen, E.H.; Quinton, H.; Borowitz, D. Better nutritional status in early childhood is associated with improved clinical outcomes and survival in patients with cystic fibrosis. J. Pediatr. 2013, 162, 530–535.e1. [Google Scholar] [CrossRef] [PubMed]
- Ashkenazi, M.; Nathan, N.; Sarouk, I.; Bar Aluma, B.E.; Dagan, A.; Bezalel, Y.; Keler, S.; Vilozni, D.; Efrati, O. Nutritional Status in Childhood as a Prognostic Factor in Patients with Cystic Fibrosis. Lung 2019, 197, 371–376. [Google Scholar] [CrossRef]
- Buchdahl, R.M.; Fulleylove, C.; Marchant, J.L.; Warner, J.O.; Brueton, M.J. Energy and nutrient intakes in cystic fibrosis. Arch. Dis. Child. 1989, 64, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, S.D.; Blanco, P.G.; Zaman, M.M.; Shea, J.C.; Ollero, M.; Hopper, I.K.; Weed, D.A.; Gelrud, A.; Regan, M.M.; Laposata, M.; et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N. Engl. J. Med. 2004, 350, 560–569. [Google Scholar] [CrossRef]
- Bronstein, M.; Sokol, R.; Abman, S.; Chatfield, B.; Hammond, K.; Hambidge, K.; Stall, C.; Accurso, F. Pancreatic insufficiency, growth, and nutrition in infants identified by newborn screening as having cystic fibrosis. J. Pediatr. 1992, 120 Pt 1, 533–540. [Google Scholar] [CrossRef]
- Fridge, J.L.; Conrad, C.; Gerson, L.; Castillo, R.O.; Cox, K. Risk factors for small bowel bacterial overgrowth in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Leach, S.T.; Katz, T.; Day, A.S.; Jaffe, A.; Ooi, C.Y. Update of faecal markers of inflammation in children with cystic fibrosis. Mediat. Inflamm. 2012, 2012, 948367. [Google Scholar] [CrossRef]
- Kopelman, H.; Corey, M.; Gaskin, K.; Durie, P.; Weizman, Z.; Forstner, G. Impaired chloride secretion, as well as bicarbonate secretion, underlies the fluid secretory defect in the cystic fibrosis pancreas. Gastroenterology 1988, 95, 349–355. [Google Scholar] [CrossRef]
- Singh, V.K.; Schwarzenberg, S.J. Pancreatic insufficiency in Cystic Fibrosis. J. Cyst. Fibros. 2017, 16 (Suppl. S2), S70–S78. [Google Scholar] [CrossRef] [Green Version]
- Augarten, A.; Tov, A.B.; Madgar, I.; Barak, A.; Akons, H.; Laufer, J.; Efrati, O.; Aviram, M.; Bentur, L.; Blau, H.; et al. The changing face of the exocrine pancreas in cystic fibrosis: The correlation between pancreatic status, pancreatitis and cystic fibrosis genotype. Eur. J. Gastroenterol. Hepatol. 2008, 20, 164–168. [Google Scholar] [CrossRef]
- Pratha, V.S.; Hogan, D.L.; Martensson, B.A.; Bernard, J.; Zhou, R.; Isenberg, J.I. Identification of transport abnormalities in duodenal mucosa and duodenal enterocytes from patients with cystic fibrosis. Gastroenterology 2000, 118, 1051–1060. [Google Scholar] [CrossRef]
- Trang, T.; Chan, J.; Graham, D.Y. Pancreatic enzyme replacement therapy for pancreatic exocrine insufficiency in the 21(st) century. World J. Gastroenterol. 2014, 20, 11467–11485. [Google Scholar] [CrossRef]
- Zentler-Munro, P.L.; Fine, D.R.; Fitzpatrick, W.J.; Northfield, T.C. Effect of intrajejunal acidity on lipid digestion and aqueous solubilisation of bile acids and lipids in health, using a new simple method of lipase inactivation. Gut 1984, 25, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Gelfond, D.; Ma, C.; Semler, J.; Borowitz, D. Intestinal pH and gastrointestinal transit profiles in cystic fibrosis patients measured by wireless motility capsule. Dig. Dis. Sci. 2013, 58, 2275–2281. [Google Scholar] [CrossRef]
- Borowitz, D.; Durie, P.R.; Clarke, L.L.; Werlin, S.L.; Taylor, C.J.; Semler, J.; De Lisle, R.C.; Lewindon, P.; Lichtman, S.M.; Sinaasappel, M.; et al. Gastrointestinal outcomes and confounders in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2005, 41, 273–285. [Google Scholar] [CrossRef]
- Jakab, R.L.; Collaco, A.M.; Ameen, N.A. Characterization of CFTR High Expresser cells in the intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 305, G453–G465. [Google Scholar] [CrossRef] [Green Version]
- De Lisle, R.C.; Borowitz, D. The cystic fibrosis intestine. Cold Spring Harb. Perspect. Med. 2013, 3, a009753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lisle, R.C.; Roach, E.; Jansson, K. Effects of laxative and N-acetylcysteine on mucus accumulation, bacterial load, transit, and inflammation in the cystic fibrosis mouse small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G577–G584. [Google Scholar] [CrossRef]
- Dorsey, J.; Gonska, T. Bacterial overgrowth, dysbiosis, inflammation, and dysmotility in the Cystic Fibrosis intestine. J. Cyst. Fibros. 2017, 16 (Suppl. S2), S14–S23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lisle, R.C.; Meldi, L.; Mueller, R. Intestinal smooth muscle dysfunction develops postnatally in cystic fibrosis mice. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 689–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Lisle, R.C.; Sewell, R.; Meldi, L. Enteric circular muscle dysfunction in the cystic fibrosis mouse small intestine. Neurogastroenterol. Motil. 2010, 22, 341–e87. [Google Scholar] [CrossRef]
- Palm, K.; Sawicki, G.; Rosen, R. The impact of reflux burden on Pseudomonas positivity in children with cystic fibrosis. Pediatr. Pulmonol. 2012, 47, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Ratchford, T.L.; Teckman, J.H.; Patel, D.R. Gastrointestinal pathophysiology and nutrition in cystic fibrosis. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Leeuwen, L.; Magoffin, A.K.; Fitzgerald, D.A.; Cipolli, M.; Gaskin, K.J. Cholestasis and meconium ileus in infants with cystic fibrosis and their clinical outcomes. Arch. Dis. Child. 2014, 99, 443–447. [Google Scholar] [CrossRef]
- Drzymała-Czyż, S.; Dziedzic, K.; Szwengiel, A.; Krzyżanowska-Jankowska, P.; Nowak, J.K.; Nowicka, A.; Aringazina, R.; Drzymała, S.; Kashirskaya, N.; Walkowiak, J. Serum bile acids in cystic fibrosis patients—Glycodeoxycholic acid as a potential marker of liver disease. Dig. Liver Dis. 2022, 54, 111–117. [Google Scholar] [CrossRef]
- Drzymała-Czyż, S.; Krzyżanowska-Jankowska, P.; Dziedzic, K.; Lisowska, A.; Kurek, S.; Goździk-Spychalska, J.; Kononets, V.; Woźniak, D.; Mądry, E.; Walkowiak, J. Severe Genotype, Pancreatic Insufficiency and Low Dose of Pancreatic Enzymes Associate with Abnormal Serum Sterol Profile in Cystic Fibrosis. Biomolecules 2021, 11, 313. [Google Scholar] [CrossRef] [PubMed]
- Gelzo, M.; Iacotucci, P.; Sica, C.; Liguori, R.; Comegna, M.; Carnovale, V.; Dello Russo, A.; Corso, G.; Castaldo, G. Influence of pancreatic status on circulating plasma sterols in patients with cystic fibrosis. Clin. Chem. Lab. Med. 2020, 58, 1725–1730. [Google Scholar] [CrossRef]
- Zardini Buzatto, A.; Abdel Jabar, M.; Nizami, I.; Dasouki, M.; Li, L.; Abdel Rahman, A.M. Lipidome Alterations Induced by Cystic Fibrosis, CFTR Mutation, and Lung Function. J. Proteome Res. 2021, 20, 549–564. [Google Scholar] [CrossRef]
- Nowak, J.K.; Wojsyk-Banaszak, I.; Mądry, E.; Wykrętowicz, A.; Krzyżanowska, P.; Drzymała-Czyż, S.; Nowicka, A.; Pogorzelski, A.; Sapiejka, E.; Skorupa, W.; et al. Increased Soluble VCAM-1 and Normal P-Selectin in Cystic Fibrosis: A Cross-Sectional Study. Lung 2017, 195, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Costantini, D.; Padoan, R.; Curcio, L.; Giunta, A. The management of enzymatic therapy in cystic fibrosis patients by an individualized approach. J. Pediatr. Gastroenterol. Nutr. 1988, 7 (Suppl. S1), S36–S39. [Google Scholar] [CrossRef]
- Steinkamp, G.; Demmelmair, H.; Rühl-Bagheri, I.; von der Hardt, H.; Koletzko, B. Energy supplements rich in linoleic acid improve body weight and essential fatty acid status of cystic fibrosis patients. J. Pediatr. Gastroenterol. Nutr. 2000, 31, 418–423. [Google Scholar] [CrossRef]
- Stark, L.J.; Bowen, A.M.; Tyc, V.L.; Evans, S.; Passero, M.A. A behavioral approach to increasing calorie consumption in children with cystic fibrosis. J. Pediatr. Psychol. 1990, 15, 309–326. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.W.; Holt, T.L.; Cleghorn, G.; Ward, L.C.; Isles, A.; Francis, P. Short-term nutritional supplementation during management of pulmonary exacerbations in cystic fibrosis: A controlled study, including effects of protein turnover. Am. J. Clin. Nutr. 1988, 48, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.; Davidson, G.P.; Martin, A.J.; Pouras, T. Supplemental nasogastric feeding in cystic fibrosis patients during treatment for acute exacerbation of chest disease. Aust. Paediatr. J. 1989, 25, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Dalzell, A.M.; Shepherd, R.W.; Dean, B.; Cleghorn, G.J.; Holt, T.L.; Francis, P.J. Nutritional rehabilitation in cystic fibrosis: A 5 year follow-up study. J. Pediatr. Gastroenterol. Nutr. 1992, 15, 141–145. [Google Scholar] [CrossRef]
- Steinkamp, G.; von der Hardt, H. Improvement of nutritional status and lung function after long-term nocturnal gastrostomy feedings in cystic fibrosis. J. Pediatr. 1994, 124, 244–249. [Google Scholar] [CrossRef]
- Levy, L.D.; Durie, P.R.; Pencharz, P.B.; Corey, M.L. Effects of long-term nutritional rehabilitation on body composition and clinical status in malnourished children and adolescents with cystic fibrosis. J. Pediatr. 1985, 107, 225–230. [Google Scholar] [CrossRef]
- Mansell, A.L.; Andersen, J.C.; Muttart, C.R.; Ores, C.N.; Loeff, D.S.; Levy, J.S.; Heird, W.C. Short-term pulmonary effects of total parenteral nutrition in children with cystic fibrosis. J. Pediatr. 1984, 104, 700–705. [Google Scholar] [CrossRef]
- Bertrand, J.M.; Morin, C.L.; Lasalle, R.; Patrick, J.; Coates, A.L. Short-term clinical, nutritional, and functional effects of continuous elemental enteral alimentation in children with cystic fibrosis. J. Pediatr. 1984, 104, 41–46. [Google Scholar] [CrossRef]
- Siret, D.; Bretaudeau, G.; Branger, B.; Dabadie, A.; Dagorne, M.; David, V.; de Braekeleer, M.; Moisan-Petit, V.; Picherot, G.; Rault, G.; et al. Comparing the clinical evolution of cystic fibrosis screened neonatally to that of cystic fibrosis diagnosed from clinical symptoms: A 10-year retrospective study in a French region (Brittany). Pediatr. Pulmonol. 2003, 35, 342–349. [Google Scholar] [CrossRef]
- Sims, E.J.; Clark, A.; McCormick, J.; Mehta, G.; Connett, G.; Mehta, A.; on behalf of the United Kingdom Cystic Fibrosis Database Steering Committee. Cystic fibrosis diagnosed after 2 months of age leads to worse outcomes and requires more therapy. Pediatrics 2007, 119, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.J.; Cheng, Y.; Cho, H.; Kosorok, M.R.; Farrell, P.M. Association between initial disease presentation, lung disease outcomes, and survival in patients with cystic fibrosis. Am. J. Epidemiol. 2004, 159, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.J.; Shoff, S.M.; Farrell, P.M.; Wisconsin Cystic Fibrosis Neonatal Screening Group. Recovery of birth weight z score within 2 years of diagnosis is positively associated with pulmonary status at 6 years of age in children with cystic fibrosis. Pediatrics 2009, 123, 714–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, G. Does newborn screening improve early lung function in cystic fibrosis? Paediatr. Respir. Rev. 2020, 42, 17–22. [Google Scholar] [CrossRef]
- Collins, M.S.; Abbott, M.A.; Wakefield, D.B.; Lapin, C.D.; Drapeau, G.; Hopfer, S.M.; Greenstein, R.M.; Cloutier, M.M. Improved pulmonary and growth outcomes in cystic fibrosis by newborn screening. Pediatr. Pulmonol. 2008, 43, 648–655. [Google Scholar] [CrossRef]
- Castellani, C.; Massie, J.; Sontag, M.; Southern, K.W. Newborn screening for cystic fibrosis. Lancet Respir. Med. 2016, 4, 653–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gokdemir, Y.; Karadag, B.T. Sweat Testing and Recent Advances. Front. Pediatr. 2021, 9, 649904. [Google Scholar] [CrossRef] [PubMed]
- Borowitz, D.; Baker, R.D.; Stallings, V. Consensus report on nutrition for pediatric patients with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2002, 35, 246–259. [Google Scholar] [CrossRef] [Green Version]
- Brownell, J.N.; Bashaw, H.; Stallings, V.A. Growth and Nutrition in Cystic Fibrosis. Semin. Respir. Crit. Care Med. 2019, 40, 775–791. [Google Scholar] [CrossRef]
- Machogu, E.; Cao, Y.; Miller, T.; Simpson, P.; Levy, H.; Quintero, D.; Goday, P.S. Comparison of WHO and CDC growth charts in predicting pulmonary outcomes in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Stallings, V.A.; Stark, L.J.; Robinson, K.A.; Feranchak, A.P.; Quinton, H.; Clinical Practice Guidelines on Growth and Nutrition Subcommittee; Ad Hoc Working Group. Evidence-based practice recommendations for nutrition-related management of children and adults with cystic fibrosis and pancreatic insufficiency: Results of a systematic review. J. Am. Diet. Assoc. 2008, 108, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, J.S.; Mascarenhas, M.R. Nutrition: Prevention and management of nutritional failure in Cystic Fibrosis. J. Cyst. Fibros. 2017, 16 (Suppl. S2), S87–S93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, S.; Zemel, B.S.; Stallings, V.A.; Rubenstein, R.C.; Kelly, A. Body composition and pulmonary function in cystic fibrosis. Front. Pediatr. 2014, 2, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, A.; Moran, A. Update on cystic fibrosis-related diabetes. J. Cyst. Fibros. 2013, 12, 318–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, L.G.; Gibson, P.G.; Garg, M.L. Circulating markers to assess nutritional therapy in cystic fibrosis. Clin. Chim. Acta 2005, 353, 13–29. [Google Scholar] [CrossRef]
- Sinaasappel, M.; Stern, M.; Littlewood, J.; Wolfe, S.; Steinkamp, G.; Heijerman, H.G.; Robberecht, E.; Döring, G. Nutrition in patients with cystic fibrosis: A European Consensus. J. Cyst. Fibros. 2002, 1, 51–75. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.C.; Bowerman, A.M.; Nixon, L.E.; Macdonald, I.A.; Elborn, J.S.; Shale, D.J. Metabolic and inflammatory responses to pulmonary exacerbation in adults with cystic fibrosis. Eur. J. Clin. Investig. 2000, 30, 553–559. [Google Scholar] [CrossRef]
- Magoffin, A.; Allen, J.R.; McCauley, J.; Gruca, M.A.; Peat, J.; Van Asperen, P.; Gaskin, K. Longitudinal analysis of resting energy expenditure in patients with cystic fibrosis. J. Pediatr. 2008, 152, 703–708. [Google Scholar] [CrossRef]
- Gaskin, K.J. Nutritional care in children with cystic fibrosis: Are our patients becoming better? Eur. J. Clin. Nutr. 2013, 67, 558–564. [Google Scholar] [CrossRef] [Green Version]
- Matel, J.L. Nutritional Management of Cystic Fibrosis. J. Parent. Ent. Nutr. 2012, 36, 60S–67S. [Google Scholar] [CrossRef]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.P.K.J.; Schroder, R.; Van der Hoorn, K.; Deutz, N.E.P.; Com, G. Use of body mass index percentile to identify fat-free mass depletion in children with cystic fibrosis. Clin. Nutr. 2012, 31, 927–933. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.P.K.J.; Com, G.; Deutz, N.E.P. Protein is an important but undervalued macronutrient in the nutritional care of patients with cystic fibrosis. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 515–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matel, J.L.; Kerner, J.A. Nutritional Management of Cystic Fibrosis. Available online: https://aspenjournals.onlinelibrary.wiley.com/doi/abs/10.1177/0148607111420156 (accessed on 3 January 2023).
- Maqbool, A.; Schall, J.I.; Garcia-Espana, J.F.; Zemel, B.S.; Strandvik, B.; Stallings, V.A. Serum linoleic acid status as a clinical indicator of essential fatty acid status in children with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 635–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheelock, C.E.; Strandvik, B. Abnormal n-6 fatty acid metabolism in cystic fibrosis contributes to pulmonary symptoms. Prostaglandins Leukot. Essent. Fat. Acids 2020, 160, 102156. [Google Scholar] [CrossRef]
- Hanssens, L.; Thiebaut, I.; Lefèvre, N.; Malfroot, A.; Knoop, C.; Duchateau, J.; Casimir, G. The clinical benefits of long-term supplementation with omega-3 fatty acids in cystic fibrosis patients—A pilot study. Prostaglandins Leukot. Essent. Fat. Acids 2016, 108, 45–50. [Google Scholar] [CrossRef]
- Ministero della Salute. Linee Guida per una Corretta Prescrizione di Alimenti a Fini Medici Speciali Erogabili per Soggetti con Fibrosi Cistica. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_1438_allegato.pdf (accessed on 3 January 2023).
- Rana, M.; Wong-See, D.; Katz, T.; Gaskin, K.; Whitehead, B.; Jaffe, A.; Coakley, J.; Lochhead, A. Fat-soluble vitamin deficiency in children and adolescents with cystic fibrosis. J. Clin. Pathol. 2014, 67, 605–608. [Google Scholar] [CrossRef]
- Nowak, I.K.; Sobkowiak, P.; Drzymała-Czyż, S.; Krzyżanowska-Jankowska, P.; Sapiejka, E.; Skorupa, W.; Pogorzelski, A.; Nowicka, A.; Wojsyk-Banaszak, I.; Kurek, S.; et al. Fat-Soluble Vitamin Supplementation Using Liposomes, Cyclodextrins, or Medium-Chain Triglycerides in Cystic Fibrosis: A Randomized Controlled Trial. Nutrients 2021, 13, 4554. [Google Scholar] [CrossRef]
- Loukou, I.; Moustaki, M.; Sardeli, O.; Plyta, M.; Katsagoni, C.N.; Douros, K. Association of vitamin A status with lung function in children and adolescents with cystic fibrosis. Pediatr. Investig. 2021, 5, 125–129. [Google Scholar] [CrossRef]
- Greer, R.M.; Buntain, H.M.; Lewindon, P.J.; Wainwright, C.; Potter, J.M.; Wong, J.C.; Francis, P.W.; Batch, J.A.; Bell, S.C. Vitamin A levels in patients with CF are influenced by the inflammatory response. J. Cyst. Fibros. 2004, 3, 143–149. [Google Scholar] [CrossRef] [Green Version]
- Hakim, F.; Kerem, E.; Rivlin, J.; Bentur, L.; Stankiewicz, H.; Bdolach-Abram, T.; Wilschanski, M. Vitamins A and E and pulmonary exacerbations in patients with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2007, 45, 347–353. [Google Scholar] [CrossRef]
- Rust, P.; Eichler, I.; Renner, S.; Elmadfa, I. Long-Term Oral β-Carotene Supplementation in Patients with Cystic Fibrosis—Effects on Antioxidative Status and Pulmonary Function. Ann. Nutr. Metab. 2000, 44, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, A.; Stallings, V.A. Update on fat-soluble vitamins in cystic fibrosis. Curr. Opin. Pulm. Med. 2008, 14, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, A.; Graham-Maar, R.C.; Schall, J.I.; Zemel, B.S.; Stallings, V.A. Vitamin A intake and elevated serum retinol levels in children and young adults with cystic fibrosis. J. Cyst. Fibros. 2008, 7, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finklea, J.D.; Grossmann, R.E.; Tangpricha, V. Vitamin D and Chronic Lung Disease: A Review of Molecular Mechanisms and Clinical Studies. Adv. Nutr. Int. Rev. J. 2011, 2, 244–253. [Google Scholar] [CrossRef] [Green Version]
- Quraishi, S.A.; De Pascale, G.; Needleman, J.S.; Nakazawa, H.; Kaneki, M.; Bajwa, E.K.; Camargo, C.A., Jr.; Bhan, I. Effect of Cholecalciferol Supplementation on Vitamin D Status and Cathelicidin Levels in Sepsis: A Randomized, Placebo-Controlled Trial. Crit. Care Med. 2015, 43, 1928–1937. [Google Scholar] [CrossRef] [Green Version]
- Spedding, S. Vitamin D and Human Health; MDPI: Basel, Switzerland, 2019; 306p. [Google Scholar]
- Chesdachai, S.; Tangpricha, V. Treatment of vitamin D deficiency in cystic fibrosis. J. Steroid Biochem. Mol. Biol. 2016, 164, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Tangpricha, V.; Kelly, A.; Stephenson, A.; Maguiness, K.; Enders, J.; Robinson, K.A.; Marshall, B.C.; Borowitz, D.; Cystic Fibrosis Foundation Vitamin D Evidence-Based Review Committee. An Update on the Screening, Diagnosis, Management, and Treatment of Vitamin D Deficiency in Individuals with Cystic Fibrosis: Evidence-Based Recommendations from the Cystic Fibrosis Foundation. J. Clin. Endocrinol. Metab. 2012, 97, 1082–1093. [Google Scholar] [CrossRef]
- Vanstone, M.B.; Egan, M.E.; Zhang, J.H.; Carpenter, T.O. Association between serum 25-hydroxyvitamin D level and pulmonary exacerbations in cystic fibrosis. Pediatr. Pulmonol. 2015, 50, 441–446. [Google Scholar] [CrossRef] [PubMed]
- McCauley, L.A.; Thomas, W.; Laguna, T.A.; Regelmann, W.E.; Moran, A.; Polgreen, L.E. Vitamin D Deficiency Is Associated with Pulmonary Exacerbations in Children with Cystic Fibrosis. Ann. Am. Thorac. Soc. 2014, 11, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Pincikova, T.; Paquin-Proulx, D.; Sandberg, J.K.; Flodström-Tullberg, M.; Hjelte, L. Clinical impact of vitamin D treatment in cystic fibrosis: A pilot randomized, controlled trial. Eur. J. Clin. Nutr. 2017, 71, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, R.E.; Zughaier, S.M.; Kumari, M.; Seydafkan, S.; Lyles, R.H.; Liu, S.; Sueblinvong, V.; Schechter, M.S.; Stecenko, A.A.; Ziegler, T.R.; et al. Pilot study of vitamin D supplementation in adults with cystic fibrosis pulmonary exacerbation: A randomized, controlled trial. Derm.-Endocrinol. 2012, 4, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sermet-Gaudelus, I.; Bianchi, M.L.; Garabédian, M.; Aris, R.M.; Morton, A.; Hardin, D.S.; Elkin, S.L.; Compston, J.E.; Conway, S.P.; Castanet, M.; et al. European cystic fibrosis bone mineralisation guidelines. J. Cyst. Fibros. 2011, 10, S16–S23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, D.; Carson, K.; Leonard, A.; Davis, J.E.; Rosenstein, B.; Zeitlin, P.; Mogayzel, P., Jr. Current Treatment Recommendations for Correcting Vitamin D Deficiency in Pediatric Patients with Cystic Fibrosis Are Inadequate. J. Pediatr. 2008, 153, 554–559.e2. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, V.A.; Fedorowicz, Z.; Thaker, V.; Chang, A.B. Vitamin K supplementation for cystic fibrosis. Cochrane Database Syst. Rev. 2015, 1, CD008482. [Google Scholar]
- Conway, S.P.; Wolfe, S.P.; Brownlee, K.G.; White, H.; Oldroyd, B.; Truscott, J.G.; Harvey, J.M.; Shearer, M.J. Vitamin K status among children with cystic fibrosis and its relationship to bone mineral density and bone turnover. Pediatrics 2005, 115, 1325–1331. [Google Scholar] [CrossRef]
- Okano, T. Vitamin D, K and bone mineral density. Clin. Calcium 2005, 15, 1489–1494. [Google Scholar]
- Dougherty, K.A.; Schall, J.I.; Stallings, V.A. Suboptimal vitamin K status despite supplementation in children and young adults with cystic fibrosis. Am. J. Clin. Nutr. 2010, 92, 660–667. [Google Scholar] [CrossRef] [Green Version]
- Beker, L.T.; Ahrens, R.A.; Fink, R.J.; O’Brien, M.E.; Davidson, K.W.; Sokoll, L.J.; Sadowski, J.A. Effect of vitamin K1 supplementation on vitamin K status in cystic fibrosis patients. J. Pediatr. Gastroenterol. Nutr. 1997, 24, 512–517. [Google Scholar] [CrossRef]
- Lipman, T.O. Book Reviews: Modern Nutrition in Health and Disease, 8th ed.; Shils, M.E., Olson, J.A., Shike, M., Eds.; Lea & Febiger: Philadelphia, PA, USA, 1994; pp. 1885–1899. [Google Scholar]
- Suskind, D.L. Nutritional deficiencies during normal growth. Pediatr. Clin. N. Am. 2009, 56, 1035–1053. [Google Scholar] [CrossRef]
- Peters, S.A.; Kelly, F.J. Vitamin E supplementation in cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 1996, 22, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohé, R. Vitamin E: The shrew waiting to be tamed. Free Radic. Biol. Med. 2009, 46, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Okebukola, P.O.; Kansra, S.; Barrett, J. Vitamin E supplementation in people with cystic fibrosis. Cochrane Database Syst. Rev. 2017, 3, CD009422. [Google Scholar] [CrossRef] [PubMed]
- Ueda, N.; Suzuki, Y.; Rino, Y.; Takahashi, T.; Imada, T.; Takanashi, Y.; Kuroiwa, Y. Correlation between neurological dysfunction with vitamin E deficiency and gastrectomy. J. Neurol. Sci. 2009, 287, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Koscik, R.L.; Lai, H.J.; Laxova, A.; Zaremba, K.M.; Kosorok, M.R.; Douglas, J.A.; Rock, M.J.; Splaingard, M.L.; Farrell, P.M. Preventing early, prolonged vitamin E deficiency: An opportunity for better cognitive outcomes via early diagnosis through neonatal screening. J. Pediatr. 2005, 147 (Suppl. S3), S51–S56. [Google Scholar] [CrossRef] [PubMed]
- Swann, I.L.; Kendra, J.R. Anaemia, vitamin E deficiency and failure to thrive in an infant. Clin. Lab. Haematol. 1998, 20, 61–63. [Google Scholar] [CrossRef]
- Wilfond, B.S.; Farrell, P.M.; Laxova, A.; Mischler, E. Severe hemolytic anemia associated with vitamin E deficiency in infants with cystic fibrosis. Implications for neonatal screening. Clin. Pediatr. 1994, 33, 2–7. [Google Scholar] [CrossRef]
- Sommerburg, O.; Hämmerling, S.; Schneider, S.; Okun, J.; Langhans, C.-D.; Leutz-Schmidt, P.; Wielpütz, M.; Siems, W.; Gräber, S.; Mall, M.; et al. CFTR Modulator Therapy with Lumacaftor/Ivacaftor Alters Plasma Concentrations of Lipid-Soluble Vitamins A and E in Patients with Cystic Fibrosis. Antioxidants 2021, 10, 483. [Google Scholar] [CrossRef]
- Gelfond, D.; Heltshe, S.; Ma, C.; Rowe, S.M.; Frederick, C.; Uluer, A.; Sicilian, L.; Konstan, M.; Tullis, E.; Roach, C.R.N.; et al. Impact of CFTR Modulation on Intestinal pH, Motility, and Clinical Outcomes in Patients With Cystic Fibrosis and the G551D Mutation. Clin. Transl. Gastroenterol. 2017, 8, e81. [Google Scholar] [CrossRef]
- Hacquebard, M.; Carpentier, Y.A. Vitamin E: Absorption, plasma transport and cell uptake. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 133–138. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R. Vitamin E and drug metabolism. Biochem. Biophys. Res. Commun. 2003, 305, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Feranchak, A.P.; Sontag, M.K.; Wagener, J.S.; Hammond, K.B.; Accurso, F.J.; Sokol, R.J. Prospective, long-term study of fat-soluble vitamin status in children with cystic fibrosis identified by newborn screen. J. Pediatr. 1999, 135, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Declercq, D.; Van Braeckel, E.; Marchand, S.; Van Daele, S.; Van Biervliet, S. Sodium Status and Replacement in Children and Adults Living with Cystic Fibrosis: A Narrative Review. J. Acad. Nutr. Diet. 2020, 120, 1517–1529. [Google Scholar] [CrossRef] [PubMed]
- Coates, A.J.; Crofton, P.M.; Marshall, T. Evaluation of salt supplementation in CF infants. J. Cyst. Fibros. 2009, 8, 382–385. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, E.V.; Schettino, G.C.M.; Camargos, P.A.M.; Penna, F.J. Prevalence of Hyponatremia at Diagnosis and Factors Associated with the Longitudinal Variation in Serum Sodium Levels in Infants with Cystic Fibrosis. J. Pediatr. 2012, 161, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Cystic Fibrosis Foundation; Borowitz, D.; Robinson, K.A.; Rosenfeld, M.; Davis, S.D.; Sabadosa, K.A.; Spear, S.L.; Michel, S.H.; Parad, R.B.; White, T.B.; et al. Cystic Fibrosis Foundation evidence-based guidelines for management of infants with cystic fibrosis. J. Pediatr. 2009, 155 (Suppl. S6), S73–S93. [Google Scholar] [CrossRef] [PubMed]
- Davison, A.G.; Snodgrass, G.J.A. Cystic Fibrosis Mimicking Bartter’s Syndrome. Acta Paediatr. 1983, 72, 781–783. [Google Scholar] [CrossRef]
- Simopoulos, A.P.; Lapey, A.; Boat, T.F.; Di Santagnese, P.A.; Bartter, F.C. The Renin-Angiotensin-Aldosterone System in Patients with Cystic Fibrosis of the Pancreas. Pediatr. Res. 1971, 5, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Orenstein, D.M.; Henke, K.G.; Costill, D.L.; Doershuk, C.F.; Lemon, P.J.; Stern, R.C. Exercise and heat stress in cystic fibrosis patients. Pediatr. Res. 1983, 17, 267–269. [Google Scholar] [CrossRef] [Green Version]
- Kriemler, S.; Wilk, B.; Schurer, W.; Wilson, W.M.; Bar-Or, O. Preventing dehydration in children with cystic fibrosis who exercise in the heat. Med. Sci. Sport. Exerc. 1999, 31, 774–779. [Google Scholar] [CrossRef] [Green Version]
- Al-Ghimlas, F.; Faughnan, M.E.; Tullis, E. Metabolic alkalosis in adults with stable cystic fibrosis. Open Respir. Med. J. 2012, 6, 59–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bower, T.R.; Pringle, K.C.; Soper, R.T. Sodium deficit causing decreased weight gain and metabolic acidosis in infants with ileostomy. J. Pediatr. Surg. 1988, 23, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Uijterschout, L.; Nuijsink, M.; Hendriks, D.; Vos, R.; Brus, F. Iron deficiency occurs frequently in children with cystic fibrosis. Pediat. Pulmonol. 2014, 49, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, P.; Miller, M.G.; Littlewood, J.M. Iron deficiency in cystic fibrosis. Arch. Dis. Child. 1987, 62, 185–187. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Anaemia and Iron Deficiency. Available online: www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/9789241596107/en/ (accessed on 1 November 2011).
- Kałużna-Czyż, M.; Grzybowska-Chlebowczyk, U.; Woś, H.; Więcek, S. Serum Hepcidin Level as a Marker of Iron Status in Children with Cystic Fibrosis. Mediat. Inflamm. 2018, 2018, 3040346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uijterschout, L.; Swinkels, D.W.; Akkermans, M.D.; Zandstra, T.; Nuijsink, M.; Hendriks, D.; Hudig, C.; Tjalsma, H.; Vos, R.; van Goudoever, J.B.; et al. The value of soluble transferrin receptor and hepcidin in the assessment of iron status in children with cystic fibrosis. J. Cyst. Fibros. 2014, 13, 639–644. [Google Scholar] [CrossRef] [Green Version]
- Sands, D.; Mielus, M.; Umławska, W.; Lipowicz, A.; Oralewska, B.; Walkowiak, J. Evaluation of factors related to bone disease in Polish children and adolescents with cystic fibrosis. Adv. Med. Sci. 2015, 60, 315–320. [Google Scholar] [CrossRef]
- Grey, V.; Atkinson, S.; Drury, D.; Casey, L.; Ferland, G.; Gundberg, C.; Lands, L.C. Prevalence of Low Bone Mass and Deficiencies of Vitamins D and K in Pediatric Patients with Cystic Fibrosis from 3 Canadian Centers. Pediatrics 2008, 122, 1014–1020. [Google Scholar] [CrossRef]
- Buntain, H.M.; Greer, R.M.; Schluter, P.J.; Wong, J.C.H.; Batch, J.A.; Potter, J.M.; Lewindon, P.J.; Powell, E.; Wainwright, C.E.; Bell, S.C. Bone mineral density in Australian children, adolescents and adults with cystic fibrosis: A controlled cross sectional study. Thorax 2004, 59, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Aris, R.M.; Merkel, P.A.; Bachrach, L.K.; Borowitz, D.S.; Boyle, M.P.; Elkin, S.L.; Guise, T.A.; Hardin, D.S.; Haworth, C.S.; Holick, M.F.; et al. Guide to bone health and disease in cystic fibrosis. J. Clin. Endocrinol. Metab. 2005, 90, 1888–1896. [Google Scholar] [CrossRef] [Green Version]
- Gore, A.P.; Kwon, S.H.; Stenbit, A.E. A roadmap to the brittle bones of cystic fibrosis. J. Osteoporos. 2010, 2011, 926045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haworth, C.S. Impact of cystic fibrosis on bone health. Curr. Opin. Pulm. Med. 2010, 16, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Sermet-Gaudelus, I.; Castanet, M.; Retsch-Bogart, G.; Aris, R.M. Update on cystic fibrosis-related bone disease: A special focus on children. Paediatr. Respir. Rev. 2009, 10, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Tanumihardjo, S.A.; Russell, R.M.; Stephensen, C.B.; Gannon, B.M.; Craft, N.E.; Haskell, M.J.; Lietz, G.; Schulze, K.; Raiten, D.J. Biomarkers of Nutrition for Development (BOND)-Vitamin A Review. J. Nutr. 2016, 146, 1816S–1848S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, P.-H.; Sermersheim, M.; Li, H.; Lee, P.; Steinberg, S.; Ma, J. Zinc in Wound Healing Modulation. Nutrients 2017, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Young, G.P.; Mortimer, E.K.; Gopalsamy, G.L.; Alpers, D.H.; Binder, H.J.; Manary, M.J.; Ramakrishna, B.S.; Brown, I.L.; Brewer, T.G. Zinc deficiency in children with environmental enteropathy-development of new strategies: Report from an expert workshop. Am. J. Clin. Nutr. 2014, 100, 1198–1207. [Google Scholar] [CrossRef] [Green Version]
- Nussbaum, S.R.; Carter, M.J.; Fife, C.E.; DaVanzo, J.; Haught, R.; Nusgart, M.; Cartwright, D. An Economic Evaluation of the Impact, Cost, and Medicare Policy Implications of Chronic Nonhealing Wounds. Value Health 2018, 21, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Ibs, K.-H.; Rink, L. Zinc-altered immune function. J. Nutr. 2003, 133 (Suppl. S1), 1452S–1456S. [Google Scholar] [CrossRef] [Green Version]
- Salgueiro, M.J.; Zubillaga, M.B.; Lysionek, A.E.; Caro, R.A.; Weill, R.; Boccio, J.R. The role of zinc in the growth and development of children. Nutrition 2002, 18, 510–519. [Google Scholar] [CrossRef]
- Prasad, A.S. Clinical manifestations of zinc deficiency. Annu. Rev. Nutr. 1985, 5, 341–363. [Google Scholar] [CrossRef] [PubMed]
- Ataee, P.; Najafi, M.; Gharagozlou, M.; Aflatounian, M.; Mahmoudi, M.; Khodadad, A.; Farahmand, F.; Motamed, F.; Fallahi, G.H.; Kalantari, N.; et al. Effect of supplementary zinc on body mass index, pulmonary function and hospitalization in children with cystic fibrosis. Turk. J. Pediatr. 2014, 56, 127–132. [Google Scholar] [PubMed]
- Maqbool, A.; Schall, J.I.; Zemel, B.S.; Felipe Garcia-Espana, J.; Stallings, V.A. Plasma Zinc and Growth Status in Preadolescent Children with Cystic Fibrosis. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Van Biervliet, S.; Van Biervliet, J.-P.; Robberecht, E.; Taylor, C. Importance of zinc in cystic fibrosis patients. Curr. Pediatr. Rev. 2009, 5, 184–188. [Google Scholar] [CrossRef]
- Van Biervliet, S.; Vande Velde, S.; Van Biervliet, J.P.; Robberecht, E. The effect of zinc supplements in cystic fibrosis patients. Ann. Nutr. Metab. 2008, 52, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Abdulhamid, I.; Beck, F.W.J.; Millard, S.; Chen, X.; Prasad, A. Effect of zinc supplementation on respiratory tract infections in children with cystic fibrosis. Pediatr. Pulmonol. 2008, 43, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Berry, A.J. Pancreatic enzyme replacement therapy during pancreatic insufficiency. Nutr. Clin. Pract. 2014, 29, 312–321. [Google Scholar] [CrossRef]
- Sermet-Gaudelus, I.; Mayell, S.J.; Southern, K.W.; European Cystic Finrosis Society (ECFS); Neonatal Screening Working Group. Guidelines on the early management of infants diagnosed with cystic fibrosis following newborn screening. J. Cyst. Fibros. 2010, 9, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Haupt, M.E.; Kwasny, M.J.; Schechter, M.S.; McColley, S.A. Pancreatic enzyme replacement therapy dosing and nutritional outcomes in children with cystic fibrosis. J. Pediatr. 2014, 164, 1110–1115.e1. [Google Scholar] [CrossRef]
- Clinical Guidelines: Care of Children with Cystic Fibrosis. 2020. Available online: https://www.rbht.nhs.uk/childrencf (accessed on 1 November 2022).
- De Boeck, K.; Munck, A.; Walker, S.; Faro, A.; Hiatt, P.; Gilmartin, G.; Higgins, M. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J. Cyst. Fibros. 2014, 13, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Dryden, C.; Wilkinson, J.; Young, D.; Brooker, R.J.; Scottish Paediatric Cystic Fibrosis Managed Clinical Network (SPCFMCN). The impact of 12 months treatment with ivacaftor on Scottish paediatric patients with cystic fibrosis with the G551D mutation: A review. Arch. Dis. Child. 2018, 103, 68–70. [Google Scholar] [CrossRef] [Green Version]
- Stallings, V.A.; Sainath, N.; Oberle, M.; Bertolaso, C.; Schall, J.I. Energy Balance and Mechanisms of Weight Gain with Ivacaftor Treatment of Cystic Fibrosis Gating Mutations. J. Pediatr. 2018, 201, 229–237.e4. [Google Scholar] [CrossRef] [PubMed]
- Burghard, M.; Berkers, G.; Ghijsen, S.; Hollander-Kraaijeveld, F.M.; de Winter-de Groot, K.M.; van der Ent, C.K.; Heijerman, H.G.M.; Takken, T.; Hulzebos, H.J. Long-term effects of ivacaftor on nonpulmonary outcomes in individuals with cystic fibrosis, heterozygous for a S1251N mutation. Pediatr. Pulmonol. 2020, 55, 1400–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karb, D.B.; Cummings, L.C. The Intestinal Microbiome and Cystic Fibrosis Transmembrane Conductance Regulator Modulators: Emerging Themes in the Management of Gastrointestinal Manifestations of Cystic Fibrosis. Curr. Gastroenterol. Rep. 2021, 23, 17. [Google Scholar] [CrossRef]
- Schwarzenberg, S.J.; Hempstead, S.E.; McDonald, C.M.; Powers, S.W.; Wooldridge, J.; Blair, S.; Freedman, S.; Harrington, E.; Murphy, P.J.; Palmer, L.; et al. Enteral tube feeding for individuals with cystic fibrosis: Cystic Fibrosis Foundation evidence-informed guidelines. J. Cyst. Fibros. 2016, 15, 724–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erskine, J.M.; Lingard, C.; Sontag, M. Update on enteral nutrition support for cystic fibrosis. Nutr. Clin. Pract. 2007, 22, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Lopes-Pacheco, M. CFTR Modulators: The Changing Face of Cystic Fibrosis in the Era of Precision Medicine. Front. Pharmacol. 2019, 10, 1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meoli, A.; Eickmeier, O.; Pisi, G.; Fainardi, V.; Zielen, S.; Esposito, S. Impact of CFTR Modulators on the Impaired Function of Phagocytes in Cystic Fibrosis Lung Disease. Int. J. Mol. Sci. 2022, 23, 12421. [Google Scholar] [CrossRef]
- Food and Drug Administration. Highlights of Prescribing Information. Kalydeco. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/203188s034,207925s013lbl.pdf (accessed on 3 January 2023).
- Borowitz, D.; Lubarsky, B.; Wilschanski, M.; Munck, A.; Gelfond, D.; Bodewes, F.; Schwarzenberg, S.J. Nutritional Status Improved in Cystic Fibrosis Patients with the G551D Mutation after Treatment with Ivacaftor. Dig. Dis. Sci. 2016, 61, 198–207. [Google Scholar] [CrossRef]
- McKone, E.F.; Borowitz, D.; Drevinek, P.; Griese, M.; Konstan, M.W.; Wainwright, C.; Ratjen, F.; Sermet-Gaudelus, I.; Plant, B.; Munck, A.; et al. Long-term safety and efficacy of ivacaftor in patients with cystic fibrosis who have the Gly551Asp-CFTR mutation: A phase 3, open-label extension study (PERSIST). Lancet Respir. Med. 2014, 2, 902–910. [Google Scholar] [CrossRef]
- Rowe, S.M.; Heltshe, S.L.; Gonska, T.; Donaldson, S.H.; Borowitz, D.; Gelfond, D.; Sagel, S.D.; Khan, U.; Mayer-Hamblett, N.; Van Dalfsen, J.M.; et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am. J. Respir. Crit. Care Med. 2014, 190, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Bellin, M.D.; Laguna, T.; Leschyshyn, J.; Regelmann, W.; Dunitz, J.; Billings, J.; Moran, A. Insulin secretion improves in cystic fibrosis following ivacaftor correction of CFTR: A small pilot study. Pediatr. Diabetes 2013, 14, 417–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, D., Jr.; McCoy, K.S.; Sheikh, S.I. Resolution of cystic fibrosis-related diabetes with ivacaftor therapy. Am. J. Respir. Crit. Care Med. 2014, 190, 590–591. [Google Scholar] [CrossRef] [PubMed]
- Konstan, M.W.; McKone, E.F.; Moss, R.B.; Marigowda, G.; Tian, S.; Waltz, D.; Huang, X.; Lubarsky, B.; Rubin, J.; Millar, S.J.; et al. Assessment of safety and efficacy of long-term treatment with combination lumacaftor and ivacaftor therapy in patients with cystic fibrosis homozygous for the F508del-CFTR mutation (PROGRESS): A phase 3, extension study. Lancet Resp. Med. 2017, 5, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Rowe, S.M.; Daines, C.; Ringshausen, F.C.; Kerem, E.; Wilson, J.; Tullis, E.; Nair, N.; Simard, C.; Han, L.; Ingenito, E.P.; et al. Tezacaftor-Ivacaftor in Residual-Function Heterozygotes with Cystic Fibrosis. N. Engl. J. Med. 2017, 377, 2024–2035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keating, D.; Marigowda, G.; Burr, L.D.; Daines, C.; Mall, M.A.; McKone, E.F.; Ramsey, B.W.; Rowe, S.M.; Sass, L.A.; Tullis, E.; et al. VX-445-Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis and One or Two Phe508del Alleles. N. Engl. J. Med. 2018, 379, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Pecora, F.; Persico, F.; Gismondi, P.; Fornaroli, F.; Iuliano, S.; de’Angelis, G.L.; Esposito, S. Gut Microbiota in Celiac Disease: Is There Any Role for Probiotics? Front. Immunol. 2020, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Frati, F.; Salvatori, C.; Incorvaia, C.; Bellucci, A.; Di Cara, G.; Marcucci, F.; Esposito, S. The Role of the Microbiome in Asthma: The Gut–Lung Axis. Int. J. Mol. Sci. 2018, 20, 123. [Google Scholar] [CrossRef] [Green Version]
- Fattorusso, A.; Di Genova, L.; Dell’Isola, G.; Mencaroni, E.; Esposito, S. Autism Spectrum Disorders and the Gut Microbiota. Nutrients 2019, 11, 521. [Google Scholar] [CrossRef] [Green Version]
- Esposito, S.; Testa, I.; Mariotti Zani, E.; Cunico, D.; Torelli, L.; Grandinetti, R.; Fainardi, V.; Pisi, G.; Principi, N. Probiotics Administration in Cystic Fibrosis: What Is the Evidence? Nutrients 2022, 14, 3160. [Google Scholar] [CrossRef] [PubMed]
- Ooi, C.Y.; Syed, S.A.; Rossi, L.; Garg, M.; Needham, B.; Avolio, J.; Young, K.; Surette, M.G.; Gonska, T. Impact of CFTR modulation with Ivacaftor on Gut Microbiota and Intestinal Inflammation. Sci. Rep. 2018, 8, 17834. [Google Scholar] [CrossRef] [Green Version]
- Bernarde, C.; Keravec, M.; Mounier, J.; Gouriou, S.; Rault, G.; Férec, C.; Barbier, G.; Héry-Arnaud, G. Impact of the CFTR-potentiator ivacaftor on airway microbiota in cystic fibrosis patients carrying a G551D mutation. PLoS ONE 2015, 10, e0124124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neerincx, A.H.; Whiteson, K.; Phan, J.L.; Brinkman, P.; Abdel-Aziz, M.I.; Weersink, E.J.; Altenburg, J.; Majoor, C.J.; der Zee, A.H.M.-V.; Bos, L.D. Lumacaftor/ivacaftor changes the lung microbiome and metabolome in cystic fibrosis patients. ERJ Open. Res. 2021, 7, 00731–2020. [Google Scholar] [CrossRef] [PubMed]
- Maule, G.; Arosio, D.; Cereseto, A. Gene Therapy for Cystic Fibrosis: Progress and Challenges of Genome Editing. Int. J. Mol. Sci. 2020, 21, 3903. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.R.; Hyde, S.C. Delivery of genes into the CF airway. Thorax 2014, 69, 962–964. [Google Scholar] [CrossRef] [PubMed]
Year of Approval by FDA and EMA | CFTR Modulator | Impacts on Nutritional Parameters |
---|---|---|
2012 | Ivacaftor | Improvements in weight gain and BMI (weight and BMI are often primary outcomes that are investigated in the studies concerning the approval of CFTR modulators) Improvements in lung function→fewer exacerbations→better nutritional status, along with better sense of appetite Pancreatic wellness (normalization of fecal elastase), better glycemic control, better absorption of nutrients→better quality of life |
2015 | Lumacaftor/Ivacaftor | |
2018 | Tezacaftor/Ivacaftor | |
2019 | Elexacaftor/Tezacaftor/Ivacaftor |
Improvements in CFTR Function | |
---|---|
Pulmonary effects | ↑ fluidity in respiratory tract mucus, ↓ airways obstruction, ↓ pulmonary exacerbations |
↓ infectious episodes, ↓ work of breathing, ↓ energy expenditure, ↑ catabolic and nutritional status | |
Gastro-intestinal effects | ↑ fluid flow, ↓ constipation, ↓ small intestinal bacterial overgrowth |
↓ intestinal inflammation, ↑ sense of appetite, ↑ nutritional status | |
↑ pH, ↑ enzymatic functioning, ↑ nutrients absorption | |
↑ pancreatic wellness (normalization of fecal elastase) | |
Glycemic control | ↑ insuline secretion, ↑ insulin anti-inflammatory effects ↓ glycosuria, ↑ nutritional status |
Overall effects | ↑ weight and BMI, ↑ pulmonary function, ↓ exacerbations, ↑ quality of life |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariotti Zani, E.; Grandinetti, R.; Cunico, D.; Torelli, L.; Fainardi, V.; Pisi, G.; Esposito, S. Nutritional Care in Children with Cystic Fibrosis. Nutrients 2023, 15, 479. https://doi.org/10.3390/nu15030479
Mariotti Zani E, Grandinetti R, Cunico D, Torelli L, Fainardi V, Pisi G, Esposito S. Nutritional Care in Children with Cystic Fibrosis. Nutrients. 2023; 15(3):479. https://doi.org/10.3390/nu15030479
Chicago/Turabian StyleMariotti Zani, Elena, Roberto Grandinetti, Daniela Cunico, Lisa Torelli, Valentina Fainardi, Giovanna Pisi, and Susanna Esposito. 2023. "Nutritional Care in Children with Cystic Fibrosis" Nutrients 15, no. 3: 479. https://doi.org/10.3390/nu15030479
APA StyleMariotti Zani, E., Grandinetti, R., Cunico, D., Torelli, L., Fainardi, V., Pisi, G., & Esposito, S. (2023). Nutritional Care in Children with Cystic Fibrosis. Nutrients, 15(3), 479. https://doi.org/10.3390/nu15030479