Factors Influencing the Degree of Employee Involvement in Preventive Nutrition and Physical Activity Web-Based Programs in Medium and Small Enterprises
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. E-Platform
2.3. Screening Questionnaire
2.4. Web-Based Educational Campaign
2.5. Statistical Analyses
3. Results
3.1. Employee Characteristics
3.2. Engagement in Web-Based Campaigns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melián-Fleitas, L.; Franco-Pérez, Á.; Caballero, P.; Sanz-Lorente, M.; Wanden-Berghe, C.; Sanz-Valero, J. Influence of Nutrition, Food and Diet-Related Interventions in the Workplace: A Meta-Analysis with Meta-Regression. Nutrients 2021, 13, 3945. [Google Scholar] [CrossRef]
- Schröer, S.; Haupt, J.; Pieper, C. Evidence-based lifestyle interventions in the workplace—An overview. Occup. Med. 2014, 64, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Grimani, A.; Aboagye, E.; Kwak, L. The effectiveness of workplace nutrition and physical activity interventions in improving productivity, work performance and workability: A systematic review. BMC Public Health 2019, 19, 1676. [Google Scholar] [CrossRef] [PubMed]
- World Obesity Day 2022—Accelerating Action to Stop Obesity. Available online: https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity (accessed on 30 August 2023).
- Goettler, A.; Grosse, A.; Sonntag, D. Productivity loss due to overweight and obesity: A systematic review of indirect costs. BMJ Open 2017, 7, e014632. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, C.; Kimura, M.; Okumura, H.; Hayashi, K.; Arao, T. Effect of a worksite-based intervention program on metabolic parameters in middle-aged male white-collar workers: A randomized controlled trial. Prev. Med. 2010, 51, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Salinardi, T.C.; Batra, P.; Roberts, S.B.; Urban, L.E.; Robinson, L.M.; Pitas, A.G.; Lichtenstein, A.H.; Deckersbach, T.; Saltzman, E.; Krupa Das, S. Lifestyle intervention reduces body weight and improves cardiometabolic risk factors in worksites. Am. J. Clin. Nutr. 2013, 97, 667–676. [Google Scholar] [CrossRef]
- Nanri, A.; Tomita, K.; Matsushita, Y.; Ichikawa, F.; Yamamoto, M.; Nagafuchi, Y.; Kakumoto, Y.; Mizoue, T. Effect of six months lifestyle intervention in Japanese men with metabolic syndrome: Randomized controlled trial. J. Occup. Health 2012, 54, 215–222. [Google Scholar] [CrossRef]
- Rachmah, Q.; Martiana, T.; Mulyono, M.; Paskarini, I.; Dwiyanti, E.; Widajati, N.; Ernawati, M.; Ardyanto, Y.D.; Tualeka, A.R.; Haqi, D.N.; et al. The effectiveness of nutrition and health intervention in workplace setting: A systematic review. J. Public Health Res. 2021, 11, 2312. [Google Scholar] [CrossRef]
- Vandelanotte, C.; Spathonis, K.M.; Eakin, E.G.; Owen, N. Website-Delivered Physical Activity Interventions: A Review of the Literature. Am. J. Prev. Med. 2007, 33, 54–64. [Google Scholar] [CrossRef]
- Wantland, D.J.; Portillo, C.J.; Holzemer, W.L.; Slaughter, R.; McGhee, E.M. The Effectiveness of Web-Based vs. Non-Web-Based Interventions: A Meta-Analysis of Behavioral Change Outcomes. J. Med. Internet Res. 2004, 6, e116. [Google Scholar] [CrossRef]
- Oenema, A.; Brug, J.; Lechner, L. Web-based tailored nutrition education: Results of a randomized controlled trial. Health Educ. Res. 2001, 16, 647–660. [Google Scholar] [CrossRef] [PubMed]
- Oenema, A.; Tan, F.; Brug, J. Short-term efficacy of a web-based computer-tailored nutrition intervention: Main Effects and Mediators. Ann. Behav. Med. 2005, 29, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Harris, J.; Felix, L.; Miners, A.; Murray, E.; Michie, S.; Ferguson, E.; Free, C.; Lock, K.; Landon, J.; Edwards, P. Adaptive e-learning to improve dietary behaviour: A systematic review and cost-effectiveness analysis. Health Technol. Assess. 2011, 15, 1–160. [Google Scholar] [CrossRef] [PubMed]
- Neuenschwander, L.M.; Abbott, A.; Mobley, A.R. Comparison of a Web-Based vs. In-Person Nutrition Education Program for Low-Income Adults. J. Acad. Nutr. Diet. 2013, 113, 120–126. [Google Scholar] [CrossRef]
- Melián-Fleitas, L.; Franco-Pérez, Á.; Sanz-Valero, J.; Wanden-Berghe, C. Population Interest in Information on Obesity, Nutrition, and Occupational Health and Its Relationship with the Prevalence of Obesity: An Infodemiological Study. Nutrients 2023, 15, 3773. [Google Scholar] [CrossRef]
- Plotnikoff, R.C.; McCargar, L.J.; Wilson, P.M.; Loucaides, C.A. Efficacy of an E-Mail Intervention for the Promotion of Physical Activity and Nutrition Behavior in the Workplace Context. Am. J. Health Promot. 2005, 19, 422–429. [Google Scholar] [CrossRef]
- Tremblay, A.; Badri, A. Assessment of occupational health and safety performance evaluation tools: State of the art and challenges for small and medium-sized enterprises. Saf. Sci. 2018, 101, 260–267. [Google Scholar] [CrossRef]
- Eakin, J.M.; Champoux, D.; MacEachen, E. Health and Safety in Small Workplaces: Refocusing Upstream. Can. J. Public Health 2010, 101, S29–S33. [Google Scholar] [CrossRef]
- Širok, K.; Stubelj, M.; Voglar, M.; Manojlović, D.; Radoja, D.; Laporšek, S.; Vodopivec, M.; Arzenšek, A.; Rozman, N.; Macur, M.; et al. STAR-VITAL, a Four Year Comprehensive Workplace Health Promotion Program: Study Design. Int. J. Environ. Res. Public Health 2022, 19, 5854. [Google Scholar] [CrossRef]
- Koch, V.; Gabrijelčič Blenkuš, M.; Gregorič, M.; Kostanjevec, S. Risk factors as a result of unhealthy nutrition in the adult population in Slovenia with regard to sociodemographic variables. Slov. J. Public Health 2014, 53, 144–155. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Physical Activity. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 12 October 2023).
- FAO. Human Energy Requirements: Report of a Joint FAO-WHO-UNU Expert Consultation: Rome, 17–24 October 2001; FAO Food and Nutrition Technical Report Series; United Nations University: Rome, Italy, 2004; ISBN 978-92-5-105212-9. [Google Scholar]
- Ministry of Health, Republic Slovenia. Healthy Eating Guidelines for Workers in the Workplace. Available online: https://www.gov.si/assets/ministrstva/MZ/DOKUMENTI/Preventiva-in-skrb-za-zdravje/Varovanje-in-krepitev-zdravja/zdravje-na-del-mestu/Smernice_zdravega_prehranjevanja_delevcev.pdf (accessed on 26 November 2023). (In Slovenian)
- Choi, B.; Schnall, P.L.; Yang, H.; Dobson, M.; Landsbergis, P.; Israel, L.; Karasek, R.; Baker, D. Sedentary work, low physical job demand, and obesity in US workers. Am. J. Ind. Med. 2010, 53, 1088–1110. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Courtney, T.K.; Lombardi, D.A.; Verma, S.K. Association Between Sedentary Work and BMI in a U.S. National Longitudinal Survey. Am. J. Prev. Med. 2015, 49, e117–e123. [Google Scholar] [CrossRef] [PubMed]
- Compernolle, S.; De Cocker, K.; Teixeira, P.J.; Oppert, J.; Roda, C.; Mackenbach, J.D.; Lakerveld, L.; McKee, M.; Glonti, K.; Rutter, H.; et al. The associations between domain-specific sedentary behaviours and dietary habits in European adults: A cross-sectional analysis of the SPOTLIGHT survey. BMC Public Health 2016, 16, 1057. [Google Scholar] [CrossRef] [PubMed]
- Garín-Muñoz, T.; Pérez-Amaral, T.; Valarezo, Á. Evolution of the internet gender gaps in Spain and effects of the COVID-19 pandemic. Telecomm Policy 2022, 46, 102371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Age, gender, and Internet attitudes among employees in the business world. Comput. Hum. Behav. 2005, 21, 1–10. [Google Scholar] [CrossRef]
- Zickuhr, K.; Madden, M. Older Adults and Internet Use; The Pew Research Center’s Internet & American Life Project; Pew Research Center: Washington, DC, USA, 2012. [Google Scholar]
- National Institute of Public Health, Slovenia. Different Aspects of Eating Habits of Inhabitants of Slovenia. Available online: https://nijz.si/wp-content/uploads/2022/07/razlicni_vidiki_prehranjevanja_prebivalcev_slovenije.pdf (accessed on 5 December 2023). (In Slovenian).
- Rasmussen, C.L.; Dumuid, D.; Hron, K. Day-to-day pattern of work and leisure time physical behaviours: Are low socioeconomic status adults couch potatoes or work warriors? BMC Public Health 2021, 21, 1342. [Google Scholar] [CrossRef]
- Sendall, M.C.; McCosker, L.K.; Crane, P.; Rowland, B.; Fleming, M.; Biggs, H.C. Using Facebook for Health Promotion in “Hard-to-Reach” Truck Drivers: Qualitative Analysis. J. Med. Internet Res. 2018, 20, e286. [Google Scholar] [CrossRef]
- Virtanen, J.; Penttinen, M.A.; Laaksonen, M.; Erkkola, M.; Vepsäläinen, H.; Kautiainen, H.; Korhonen, P. The Relationship between Dietary Habits and Work Engagement among Female Finnish Municipal Employees. Nutrients 2022, 14, 1267. [Google Scholar] [CrossRef]
- Seaton, C.L.; Bottorff, J.L.; Caperchione, C.M.; Johnson, S.T.; Oliffe, J.L. The Association Between Men’s Heath Behaviors and Interest in Workplace Health Promotion. Workplace Health Saf. 2020, 68, 226–235. [Google Scholar] [CrossRef]
Characteristics | Female n (%) | Male n (%) | Total n (%) |
---|---|---|---|
Employees | 172 (46.5) | 198 (53.5) | 370 (100) |
Sociodemographic characteristics Age groups (years) | |||
20–29 | 16 (9.3) | 22 (11.1) | 38 (10.3) |
30–44 | 49 (28.5) | 43 (21.7) | 92 (24.8) |
45–70 | 55 (32.0) | 40 (20.2) | 95 (25.7) |
Data not available | 52 (30.2) | 93 (50.0) | 145 (39.2) |
Type of work | |||
Sedentary | 99 (57.6) | 113 (57.1) | 212 (57.3) |
Standing | 38 (22.1) | 34 (17.2) | 72 (19.5) |
Physical | 35 (20.4) | 51 (25.7) | 86 (23.2) |
BMI (kg/m2) 1 | |||
Underweight (<18.5) | 3 (1.7) | 1 (0.5) | 4 (1.1) |
Normal weight (18.5–24.99) | 66 (38.4) | 33 (16.7) | 99 (26.8) |
Pre-obesity (25–29.99) | 25 (16.3) | 56 (28.3) | 84 (22.7) |
Obesity—class I (30–34.99) | 19 (11.0) | 17 (8.6) | 36 (9.7) |
Obesity—class II (35–39.99) | 2 (1.2) | 3 (1.5) | 5 (1.3) |
Obesity—class III (≥40) | 3 (1.7) | 0 | 3 (0.8) |
Data not available | 51 (29.7) | 88 (44.4) | 139 (37.6) |
Unhealthy dietary habits | |||
Eating ≤ 2 meals per day | 42 (24.4) | 79 (39.9) | 121 (32.7) |
Eating < 1 vegetable a day | 47 (27.5) | 74 (37.4) | 121 (32.8) |
Eating < 1 fruit a day | 55 (32.0) | 94 (47.5) | 149 (40.3) |
Eating ≥ 3 servings of red meat/week | 55 (32.2) | 111 (56.1) | 166 (45.0) |
Eating ≤ 3 fish/month | 136 (79.1) | 124 (62.6) | 260 (70.3) |
Eating ≤ 3 servings of whole grain/month | 84 (48.8) | 114 (57.6) | 198 (53.5) |
Eating ≥ 1 serving of fried food/week | 33 (19.2) | 82 (41.6) | 115 (31.2) |
Drinking ≥ 4 sugary beverages/week | 21 (12.2) | 37 (18.8) | 58 (15.7) |
Predominantly good dietary habits 1 | 116 (67.4) | 99 (50.0) | 215 (58.1) |
Unhealthy PA habits | |||
Vigorous intensity PA < 75 min/week | 43 (42.6) | 64 (44.4) | 107 (43.7) |
Moderate intensity PA < 150 min/week | 88 (60.3) | 102 (61.5) | 190 (60.9) |
Predominantly good PA habits 2 | 92 (59.7) | 106 (58.9) | 198 (59.3) |
Group | Descriptive Statistics | Inferential Statistics | ||
---|---|---|---|---|
n | Mean ± SD | Wilcoxon–Mann–Whitney Test | ||
z-Value | p | |||
Gender | ||||
Female | 172 | 34.3 ± 28.7 | –1.613 | 0.107 |
Male | 198 | 39.4 ± 31.6 | ||
Dietary habits | ||||
Poor dietary habits | 155 | 33.2 ± 29.1 | –2.078 | 0.038 ** |
Good dietary habits | 215 | 39.8 ± 31.1 | ||
Physical activity | ||||
Poor PA habits | 136 | 36.5 ± 30.6 | –0.424 | 0.672 |
Good PA habits | 198 | 37.3 ± 29.8 | ||
n | Mean ± SD | Kruskal–Wallis H test | ||
χ2(2) | p | |||
Age group (years) | ||||
20–29 | 38 | 31.5 ± 30.2 | 10.992 | 0.041 ** |
30–44 | 92 | 30.5 ± 30.1 | ||
45–70 | 95 | 41.9 ± 32.3 | ||
Type of work | ||||
Sedentary | 212 | 42.6 ± 31.2 | 22.832 | 0.000 *** |
Standing | 72 | 29.5 ± 28.0 | ||
Physical | 86 | 29.4 ± 27.4 |
Dependent Variable: Engagement Frequency | |
---|---|
Gender (baseline: women) | |
Men | 7.537 ** |
(3.391) | |
Age (baseline: 20–29 years) | |
30–44 years | –2.509 |
(6.145) | |
45–70 years | 7.465 |
(6.193) | |
Data not available | 4.265 |
(5.947) | |
Dietary habits (baseline: poor dietary habits) | |
Good dietary habits | 6.016 * |
(3.460) | |
PA habits (baseline: poor PA habits) | |
Good PA habits | –1.651 |
(3.434) | |
Job type (baseline: sedentary work) | |
Standing work | –13.215 *** |
(3.989) | |
Physical work | –11.332 *** |
(4.206) | |
Constant | 32.211 *** |
(6.381) | |
Number of observations | 334 |
R2 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stubelj, M.; Širok, K.; Laporšek, S.; Perčič, S. Factors Influencing the Degree of Employee Involvement in Preventive Nutrition and Physical Activity Web-Based Programs in Medium and Small Enterprises. Nutrients 2023, 15, 5129. https://doi.org/10.3390/nu15245129
Stubelj M, Širok K, Laporšek S, Perčič S. Factors Influencing the Degree of Employee Involvement in Preventive Nutrition and Physical Activity Web-Based Programs in Medium and Small Enterprises. Nutrients. 2023; 15(24):5129. https://doi.org/10.3390/nu15245129
Chicago/Turabian StyleStubelj, Mojca, Klemen Širok, Suzana Laporšek, and Simona Perčič. 2023. "Factors Influencing the Degree of Employee Involvement in Preventive Nutrition and Physical Activity Web-Based Programs in Medium and Small Enterprises" Nutrients 15, no. 24: 5129. https://doi.org/10.3390/nu15245129
APA StyleStubelj, M., Širok, K., Laporšek, S., & Perčič, S. (2023). Factors Influencing the Degree of Employee Involvement in Preventive Nutrition and Physical Activity Web-Based Programs in Medium and Small Enterprises. Nutrients, 15(24), 5129. https://doi.org/10.3390/nu15245129